
www.manaraa.com

 

Between Discipline and Profession 

 

A History of Persistent Instability in the Field of Computer Engineering, 

circa 1951-2006 
 

by Brent K. Jesiek 

 
Dissertation submitted to the Faculty of the  

Virginia Polytechnic Institute and State University  

in partial fulfillment of the requirements for the degree of  

  

Doctor of Philosophy in  

Science and Technology Studies  

 

Gary L. Downey (Chair) 

Janet Abbate 

Daniel Breslau 

Timothy W. Luke 

Michael S. Mahoney (Princeton University) 

 

December 13, 2006 

Blacksburg, VA 

 

Keywords:  

history, computer, computing, design, technology, engineers,  

engineering, engineering studies, discipline, profession, instability 

 

Copyright 2006, Brent K. Jesiek 



www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  DP19901

Copyright  2012  by ProQuest LLC.

UMI Number:  DP19901



www.manaraa.com

Between Discipline and Profession 

 

A History of Persistent Instability in the Field of Computer Engineering, 

circa 1951-2006 
 

by Brent K. Jesiek 

 

Abstract 

 
This dissertation uses a historical approach to study the origins and trajectory of 

computer engineering as a domain of disciplinary and professional activity in the United States 

context.  Expanding on the general question of “what is computer engineering?,” this project 

investigates what counts as computer engineering knowledge and practice, what it means to be a 

computer engineer, and how these things have varied by time, location, actor, and group. This 

account also pays close attention to the creation and maintenance of the “sociotechnical” 

boundaries that have historically separated computer engineering from adjacent fields such as 

electrical engineering and computer science. In addition to the academic sphere, I look at 

industry and professional societies as key sites where this field originated and developed. The 

evidence for my analysis is largely drawn from journal articles, conference proceedings, trade 

magazines, and curriculum reports, supplemented by other primary and secondary sources. 

The body of my account has two major parts. Chapters 2 through 4 examine the pre-

history and early history of computer engineering, especially from the 1940s to early 1960s. 

These chapters document how the field gained a partially distinct professional identity, largely in 

the context of industry and through professional society activities. Chapters 5 through 7 turn to a 

historical period running from roughly the mid 1960s to early 1990s. Here I document the 

establishment and negotiation of a distinct disciplinary identity and partially unique 

“sociotechnical settlement” for computer engineering. Professional societies and the academic 

context figure prominently in these chapters. This part of the dissertation also brings into relief a 

key argument, namely that computer engineering has historically occupied a position of 
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“persistent instability” between the engineering profession, on the one hand, and independent 

disciplines such as computer science, on the other. 

In an Epilogue I review some more recent developments in the educational arena to 

highlight continued instabilities in the disciplinary landscape of computing, as well as renewed 

calls for the establishment of a distinct disciplinary and professional identity for the field of 

computer engineering. I also highlight important countervailing trends by briefly reviewing the 

history of the software/hardware codesign movement. 
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Chapter 1 

Introduction 

 

 

 
In an important sense, this dissertation lives between the fourth and fifth floors of 

Virginia Tech’s Newman Library. Organized according to the venerable Library of Congress 

(LoC) classification scheme, the library’s fourth floor is dominated by the holdings for the call 

letter Q, which represents a wide swath of the physical, natural, and biological sciences, as well 

as mathematics. And it is within the QA subclass for Mathematics that we find further relevant 

divisions, including QA71-90 for “Instruments and Machines,” and then QA75-76.95 for 

“Calculating Machines,” QA75.5-76.95 for “Electronic Computers” and “Computer Science,” 

and QA76.75-76.765 for “Computer Software” (“Q – Science,” n.d., p. 3). The library’s fifth 

floor, on the other hand, is largely filled with holdings for the call letter T, which covers 

Technology generally and an array of engineering subjects more specifically. Digging deeper 

still, we find that within the TK subclass (which itself covers electrical engineering, electronics, 

and nuclear engineering) a smaller sliver of materials in the TK7885-TK7895 range has been 

earmarked for “Computer Engineering” (“T – Technology,” n.d., p. 11). On the surface, some 

may find it puzzling that the LoC scheme segregates “Computer Engineering” from seemingly 

related subjects such as “Electronic Computers,” “Computer Science,” and “Computer 

Software.”  However, this apparent quirk in classification begins to hint at a key goal of this 

project, namely to develop a better understanding of the unique historical position of computer 

engineering “between” electrical engineering, on the one hand, and mathematics and computer 

science, on the other.1 

Electrical engineering – which is often viewed as the main “parent” discipline of 

computer engineering – is a broad area of activity that melds engineering method with electrical 

                                                
1 This example also hints at some of the potential implications of these divisions. Perhaps most obviously, 
the physical separation of these books and journals means that researchers from one field or another may 
be less likely to stumble upon potentially relevant texts that happen to be shelved in another area or even 
on a different floor. 
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and electromagnetic phenomena. Beginning in the early 1950s, computer engineering started to 

gain an identity that was at least partially distinct from electrical engineering, and since then the 

dominant image of the field has remained closely linked to computer “hardware.”2 More 

specifically, the line between electrical and computer engineering is often negotiated at the 

lowest levels of computer structure, where electrical engineers tend to concern themselves with 

the physical properties of integrated circuits and other microelectronics, leaving computer 

engineers to focus on the more abstract upper levels of computer technology, such as logic 

design, system design, and low-level programming. The Institute for Electrical and Electronics 

Engineers (IEEE) has been the professional society with the closest ties to computer engineering, 

especially via the IEEE Computer Society (IEEE CS) subgroup and its historical predecessors. 

Computer science, on the other hand, emerged in the 1950s and 1960s with significantly more 

multidisciplinary origins, and with a stronger orientation toward mathematics, algorithms, 

computer programming, and “software.” The Association for Computing Machinery (ACM) has 

been – and largely remains – the major professional organization for computer scientists. 

As the preceding passage suggests, the dominant image of computer engineering and 

computer science as respectively linked to hardware and software is deeply rooted in history. Yet 

much of the research on which this project is based suggests that these generalizations hide a 

much more complicated – and interesting – historical reality. From the earliest days of the field 

there has been wide recognition among computer professionals that the divide between computer 

software and hardware is anything but fixed or easily identifiable. Some of the earliest 

discussions about the ambiguous and shifting nature of this boundary date back to the 1940s and 

1950s, and similar commentaries have periodically cropped up time and again, despite ongoing 

and major changes in computer technology. In his 1976 textbook, for example, computer 
                                                
2 My use of the term “dominant images” in this dissertation is significantly informed by the prior work of 
Gary Downey (1998, pp. 5-6). As nicely summarized by his colleague Juan Lucena, “Dominant images 
create expectations about how individuals in that location are supposed to act or behave. In this new 
concept of culture, the image remains the same over a period of time, while individual or group reactions 
to the image’s challenges might differ. When challenged by the same image, individuals or groups resist, 
accommodate, fully accept, or experience ambiguity in different ways” (Lucena, 2005, pp. 6-7). While 
my own account places somewhat less explicit emphasis on “culture,” I use the concept of “dominant 
images” to highlight how competing definitions and conceptions (or “images”) of “computer engineering” 
and “computer engineers” have developed and circulated over time, in the process challenging many 
actors and groups. My use of the term “field,” on the other hand, is used very generally throughout this 
document in reference to a given domain of activity, and without any major theoretical or normative 
assumptions. I use alternate concepts such as “discipline” and “profession” more judiciously, as outlined 
in detail below. 
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scientist Andrew Tanenbaum noted in an introductory chapter on the historical development of 

computer organization and architecture that “one man's hardware is another man's software,” and 

he went on to describe the boundary between these two domains as “arbitrary and constantly 

changing” (p. 11).  

Yet Tanenbaum’s remarks about the software-hardware boundary – or the lack thereof – 

seem to stand in marked tension with the mid-1970s relationship between computer engineering 

and adjacent fields, such as computer science. In a December 1975 issue of the IEEE journal 

Computer – which was dedicated to the topic of “computer education” – guest editors David 

Irwin and C. V. Ramamoorthy summarized that “from the educator's point of view, perhaps no 

problem is so apparent as that of overcoming the dichotomy between computer science and 

computer engineering” (Irwin and Ramamoorthy, 1975, p. 27). And in another article in the same 

journal issue, engineer Michael Mulder used the evocative image of the “tar pit” to describe the 

difficult meshing of computer science and computer engineering curricula (Mulder, 1975, p. 28).  

How might we explain this apparent tension between increasingly blurred technological 

boundaries coexistent with deeply entrenched – and perhaps even conflicting – disciplinary and 

curricular boundaries? One might postulate that these tensions were eventually worked out 

through some combination of technological and disciplinary change, limiting their significance 

to the historical moment and actors identified here. Yet ample evidence suggests that no clear 

resolution was achieved, and that tensions like these can be traced throughout much of the 

history of computing, even to the present.  

To take a second – and more recent – example of these tensions, a task force representing 

both the ACM and IEEE-CS was formed in the late-1980s to develop a new set of curricular 

recommendations for what the committee came to call “the discipline of computing” (Tucker, et 

al., 1991). This seemingly unprecedented move – toward a more integrated “meta-discipline” of 

computing – looked like an important step toward overcoming some of major the social and 

technological rifts that had long persisted in the various computing fields. Yet jumping ahead 

roughly a decade, we find a very different set of recommendations coming out of the Computing 

Curricula 2001 effort. Also a joint venture of the IEEE-CS and ACM, this new task force was 

charged with reviewing and updating the 1991 report. However, the group quickly splintered out 

to develop separate reports with separate recommendations for five different disciplinary 

domains, namely computer science, computer engineering, information systems, software 
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engineering, and information technology. In justifying these divisions, the authors of the 

computer engineering volume argued that while efforts to mesh or merge the computing 

curricula “may have seemed reasonable in the past, there is no question that computing in the 

twenty-first century encompasses many vital disciplines with their own identities and 

pedagogical traditions” (Hughes, et al., 2004, p. 1). Those familiar with the professional and 

disciplinary tensions that marked earlier eras of computing will likely read such passages with a 

sense of déjà vu. 

Research Questions and Objectives 

In order to better understand the types of trends and tensions outlined above, this project 

uses a historical approach to study the origins and trajectory of computer engineering as an area 

of academic and professional activity, in the United States context, and from the pre-history of 

the field in the 1940’s and 1950’s to the present.  Expanding on the general question of “what is 

computer engineering?,” the project investigates what counts as computer engineering 

knowledge and practice, what it means to be a computer engineer, and how these things have 

varied both across time and space and between various publication outlets, actors, and groups. In 

addition, this dissertation pays close attention to the creation and maintenance of the social and 

technological boundaries that have historically separated computer engineering from adjacent 

fields, such as electrical engineering and computer science. In addition to the academic sphere, I 

also pay close attention to industry and professional societies as other sites where this field 

originated and developed. The evidence for my analysis is largely drawn from journal articles, 

conference proceedings, trade magazines, and curriculum reports, supplemented by a range of 

other primary and secondary sources. 

In summary, the account that follows documents how each step in the historical 

development of computer engineering has involved important social and technical negotiations, 

some managed within the field, and some requiring engagement and even conflict with the 

representatives of adjacent fields. Central to this project is the idea that carefully and closely 

exploring the long sequence of dilemmas over what it means to be a computer engineer or 

computer scientist – or alternatively, over where to draw the line between software and 

hardware, theory and design, and/or science and engineering – can reveal key insights about the 

past, the present, and even the imagined future of computing. My analysis also plays particularly 
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close attention to the ongoing failure of computer engineering to be clearly identified as either an 

independent discipline or branch of the engineering field, thereby contributing to the field’s long 

and persistent instability. 

The larger significance of this project is three-fold. First, it makes documentary 

contributions to engineering studies and the history of computing, two areas of scholarship that 

have dealt neither directly nor extensively with computer engineering. Second, the project uses 

leading edge theory and method – drawn from the literature on professions, disciplines, and 

Science and Technology Studies (STS) – to argue that the existence of computer engineering has 

involved the ongoing and active “co-production” of the social, material, and epistemological. 

Further, the project hypothesizes that the history of computer engineering is a history of 

persistent instability, with the field’s very existence requiring ongoing efforts to align diverse 

elements, such as professional and disciplinary identities, organizations, computing technologies, 

and bodies of knowledge. Third and finally, studying the foundations and trajectory of computer 

engineering can suggest possibilities for transformation and reform, both in computing generally 

and computer engineering specifically. More specifically, I claim that assessing both dominant 

and alternative ways of organizing computing disciplines and technologies can reveal important 

new pathways toward more thoroughly contextualized, reflective, and socially responsible 

cultures of computer design and use. 

Historical Literature Review 

Given that this project contributes to a number of major bodies of scholarship, including 

the history of engineering and engineering studies, I begin my literature review with a survey of 

relevant work in these areas. In most general terms, some important historical work has been 

done on the professional and disciplinary development of various engineering fields, but it 

remains somewhat scant. Notable exceptions include Layton’s well-known The Revolt of the 

Engineers (1971), which is largely premised on the claim that understanding the historical 

development of the engineering profession demands that we analyze ongoing efforts to negotiate 

the boundaries between engineering, science, and business. Reynolds (1986) follows similar 

themes in his detailed history of chemical engineering, and he places particular emphasis on how 

early definitions of this particular field were not so much about tensions between business and 

science, but rather about how chemical engineers both worked their way into management and 
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came to identify with management interests. Vincenti’s (1990) case studies from the history of 

aeronautical engineering, on the other hand, approach the history of engineering from a 

somewhat different angle by shedding light on the important role that “design hierarchies” often 

play in engineering work. 

Moving closer to the subject of this dissertation, a handful of authors have developed 

general histories of American electrical engineering. Texts by Ryder and Fink (1984) and 

McMahon (1984), for example, were published with IEEE support around the time of the 

Institute’s centennial anniversary. The former stands as a broad yet somewhat celebratory history 

of electrical engineering in the United States, while McMahon’s volume provides a more 

critically engaged history of electrical engineering as a profession, with particular emphasis on 

the IEEE and its predecessor societies. As McMahon claims, looking at the history of the 

relevant professional societies can provide a window into “the state of the profession” (p. xiii), 

although his account also discusses the pivotal role of industry and the academy in the 

development of electrical engineering (p. xiv). And while both Ryder and Fink and McMahon 

comment on the evolving relation of engineers and computing, they fail to provide in-depth 

discussions about the development of computer engineering as a field, and they do not seriously 

engage with issues of disciplinary identity or tendencies toward disciplinary fragmentation. 

The history of computing is another large and growing body of scholarship that is 

relevant to my project, although relatively little work in this area has focused on the disciplinary 

landscape of computing. For example, historian Paul Ceruzzi’s otherwise wide-ranging History 

of Modern Computing (2003) devotes just a few pages to the origins and early history of 

computer science, and entirely avoids discussing the development of computer engineering as a 

distinct field (pp. 101-103; 201-203). By contrast, historical work on well-known inventors, 

devices, companies, and sub-industries is somewhat more common, both in Ceruzzi’s work and 

beyond.3 Surveying the history of computing literature, Mahoney nicely summarizes this trend 

when he notes that “[b]iographies of men or machines – some heroic, some polemical, some both 

– are a prominent genre, and one reads a lot about 'pioneers'” (1988, p. 114). Calling for a 

“decentering of the machine,” Mahoney has identified a number of under-explored topics in the 

                                                
3 The mainstream history of computing literature is well represented by texts such as those authored by 
Campbell-Kelly and Asprey (1996) and edited by Akera and Nebeker (2002) and Rojas and Hashagen 
(2000). Although beyond the scope of this review, I periodically turn to these texts in later chapters for 
various historical details. 
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history of computing, including most notably for this project the software-hardware relationship 

and the history of computing disciplines and institutions (1988, 2004a). Noting “the need for 

histories of the main communities of computing,” he offers an important follow-up question: 

“How has the balance of professional power shifted among these communities, and how has the 

shift been reflected in the technology?” (1996).  

Mahoney's own historical studies of the field of software engineering stand as important 

attempts to grapple with these topics (1990; 2004b). Especially noteworthy here is the author's 

interest in tracing out ongoing efforts to establish both a canonical history for software 

engineering and a common “agenda” for its practitioners. As Mahoney argues, “Software 

engineering began as a search for an engineering discipline on which to model the design and 

production of software” (2004b, p. 17), and elsewhere he describes at length how the proponents 

of the emergent field drew inspiration for their endeavor from domains as diverse as applied 

science, mechanical engineering, and industrial engineering (pp. 9-16). And while Mahoney’s 

historical account also hints at persistent tensions between the image of software engineering as 

either a discipline or profession, he leaves many open questions about the extent to which such 

tensions have inhibited the development of this particular field. 

Other secondary sources have paid only modest attention to the historical emergence and 

ongoing development of other relevant fields, such as computer science and computer 

engineering. Wildes and Lindgren (1985) and Guttag (2005), for instance, help fill in some 

important pieces of this puzzle via their institutional histories of electrical engineering and 

computer science at MIT, although the wider relevance of their accounts is limited by their site 

specificity. Following a parallel line of inquiry, Aspray’s (2000) in-depth analysis of the early 

decades of computing at five major universities – namely MIT, Harvard, the University of 

Pennsylvania, Columbia, and Princeton – provides other clues about how the various flavors of 

computer research and education emerged and evolved in the American academic context. And 

while Aspray’s analysis is primarily focused on discussing whether early entry into computing 

provided these schools with a “competitive advantage,” he repeatedly touches on the disciplinary 

tensions that were often in play, especially as mathematicians and electrical engineers, and later 

computer scientists, staked out their claims. 

Luiz Ernesto Merkle’s research on computing-related disciplines stands as another 

important contribution in this area (Merkle, 2001; Merkle and Mercer, 2002). One important 
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facet of Merkle’s work centers on its historical exploration of the many fields that fall under the 

broad “informatics” or “computing” umbrella, ranging from computer engineering and computer 

science to human-computer interaction (HCI) and information systems (IS). Hence, Merkle's 

work draws our attention to historical shifts in – and struggles over – the disciplinary and 

professional boundaries of computing. In fact, he and co-author Robert E. Mercer explicitly 

argue that computing specializations and subfields become “reified across educational 

institutions and their enacted curricula, across industry and commerce and their organizations, 

and across governments with policies and resources” (Merkle and Mercer, 2002, p. 92). 

Following this line of reasoning, these authors go on to claim that the many fields and subfields 

of informatics have historically tended toward over-specialization and disciplinary exclusivity, 

thereby hampering the types of cross-disciplinary collaboration and pollination that Merkle and 

Mercer clearly favor (Merkle and Mercer, 2002, p. 92). 

The historical review and forward-looking vision presented by these authors resonates 

with my own work. However, Merkle’s historical research is largely limited to a high-level 

review of key professional organizations and curriculum reports, setting aside important 

questions about how and why various computing fields have been linked to particular 

disciplinary knowledge claims and computer technologies. In addition, his ambitious efforts to 

both locate and re-theorize the “human” and “social” dimensions of computing lead him to 

concentrate much of his analysis on domains such as HCI and semiotics, leaving fields such as 

computer engineering under-analyzed. Hence, Merkle begins with many source materials and 

questions that are relevant to this dissertation, but he follows them in very different directions. 

Casting a wider net in the history of computing reveals other texts that are generally 

relevant to this project. In one of his earlier articles, for instance, Ceruzzi looks at the “co-

evolution” of electronics technology and computer science in the 1940-1975 period (1989). In 

doing so, he provides a lengthy description of the “continuous and reciprocal interaction between 

electronics and computing” (p. 257), leading him to important insights regarding the role of 

technological change in the development of computing disciplines. As Ceruzzi argues, electrical 

engineering initially “took over” the work of those involved in computing, but the tables later 

turned as “the science of computing ‘took over’ the discipline of Electrical Engineering, in the 

sense that its theory of digital switches and separation of hardware and software offered EE a 

guide to designing and building ever more complex circuits” (p. 257). While such claims are 
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provocative, the author can be critiqued for glossing over the tripartite relationship linking 

electrical engineering, computer engineering, and computer science. Further, he assumes an 

oversimplified distinction between software and hardware, thereby downplaying both the multi-

level complexity of this boundary and the extent to which it is has both shifted and been 

contested over time. 

Tracy Kidder's Pulitzer Prize winning The Soul of a New Machine (1981), on the other 

hand, documents the design and building of the new “Eagle” minicomputer system at a major 

American computer manufacturer in the late 1970s. In this journalistic-styled account, Kidder 

provides us with a rare glimpse of computer engineers and computer scientists working in their 

native corporate habitat. For starters, Kidder excels at explaining arcane computer concepts to 

general audiences – a valuable lesson given my own desire to produce a readable and accessible 

historical narrative. But even more importantly for the project outlined here, Kidder's text closely 

follows the trials and travails of “the Hardy Boys” and “Microkids,” the two main groups of 

computer engineers who were responsible for designing the hardware and low-level microcode 

of the Eagle, respectively. In following these groups, the author reveals the deep interplay of 

social, organizational, and technical divisions of labor in the building of a new computer. In 

addition to highlighting how new technologies and unconventional management and design 

techniques seemed to be inaugurating a new phase of development for America’s high-

technology industries, Kidder’s account provides an important historical snapshot of the 

interplay of the various fields and subfields of computing within a corporate context.4 By 

accounting for the emergence and persistence of the major sociotechnical boundaries that have 

long separated computer engineers from both one another and other computer professionals, this 

dissertation fills in a key part of the historical backdrop against which Kidder’s story unfolds. 

Theoretical Literature Review 

The chapters that follow also draw on and inform a number of bodies of theoretical 

literature. In this section I introduce theoretical work on the social and historical studies of 

professions and disciplines, the concept of “co-production,” and discourse. It is first worth noting 

that a handful of writers have already done work on issues of professionalism in the context of 
                                                
4 I draw here from a recent book review by Moon (2004) that nicely summarizes Kidder’s analysis and 
major claims. She also makes a strong case for the continued significance of this book, both for historians 
of technology generally and for historians of computers and computing specifically. 
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computing. Historian and social scientist Nathan Ensmenger, for example, nicely documents and 

analyzes how various segments of the computer field dealt with the “question of 

professionalism” in the 1950s and 1960s (2001). Yet Ensmenger largely avoids critically 

retheorizing professionalism or connecting it with discipline building, focusing instead on how 

computer scientists and programmers understood professionalism and used it to their strategic 

advantage. Computer scientist Stuart Shapiro, on the other hand, has comprehensively reviewed 

the many different models of professionalism that have been applied to the various fields and 

subfields on information technology, with a focus on both accounting for the historical lack of a 

dominant model and suggesting alternate ways of understanding what it means to engage in 

professional computing practice (1994). While Shapiro’s analysis is especially useful in pointing 

us toward issues such as the persistent gap between science- and engineering-based 

conceptualizations of the various computing fields, the present analysis requires a somewhat 

more substantial body of theory than Shapiro provides. 

For additional theoretical support I turn to Andrew Abbott, whose work on the 

professions has largely been focused on traditional subjects such as medicine and law, albeit with 

some forays into the so-called “information professions” and some examples drawn from 

engineering and computing. In The System of Professions (1988), Abbott resists framing 

professions in monolithic terms or as “silos,” instead claiming that they are both located within 

larger systems and defined relationally. Central to understanding this systems-oriented view of 

professionalization and professional development is the author’s concept of “jurisdiction,” or 

“the link between a profession and its work” (p. 20). For Abbott, jurisdictions are by definition 

“strong” and “exclusive,” and jurisdictional control can be negotiated in various contexts. The 

public and legal realms play roles in this process, but Abbott emphasizes worksites as pivotal for 

maintaining professional jurisdictions, especially through ongoing efforts to control work tasks. 

The academic context is also framed as a context where some degree of professional 

legitimation, research, and instruction can occur (p. 56-57). More specifically, Abbott notes that 

the academy is often where the most abstract forms of professional knowledge are cultivated and 

transmitted, although Abbott clarifies that “professional education takes place in institutions 

controlled by the professions” (p. 205).  

Chaos of Disciplines (2001), on the other hand, reflects Abbott’s engagement with issues 

of discipline formation and disciplinarity, with a primary focus on the social sciences. The author 
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frames academia as the main locus of disciplinary development, with departments and graduate 

degree programs standing as pivotal hallmarks of disciplinarity in the American context, albeit 

with national disciplinary societies playing a strong supporting role (pp. 125-126). In further 

contrast to his work on professions, Abbott uses the metaphor of “settlement” to describe the 

“interactional field of academic disciplines” (p. 136), where claims to academic work and 

disciplinary bodies of knowledge are often complex and shifting, in no small part due to “an 

extraordinary interpenetration of settlements” (p. 142). Building on his earlier “ecological model 

for professional knowledge” (p. 136, fn. 21), the author further fleshes out his settlement 

framework by suggestively describing disciplines as “amoebas putting out pseudopods as they 

move in a multidimensional intellectual space” (p. 138). 

Casting a wider net reveals a variety of science studies scholars whose views are largely 

synergistic with the work of Abbott. Contextualist and constructivist accounts of disciplinary 

history are particularly relevant here (Messer-Dabidow et al., 1993; Lenoir, 1997). In fact, one 

central insight to take away from this body of texts centers on the claim that scientific disciplines 

are ever changing and adaptive. In his study of the field of geophysics, for example, historian 

Gregory Good nicely summarizes that “scientific activities may achieve degrees of identity 

development,” and that disciplines “pass through no regular stages on their way from immature 

to mature status” (2000, p. 259). These arguments stand as a further corrective to the more 

traditional and idealized view of disciplines as uniform and monolithic. 

Concerns by these and other authors regarding the negotiation of professional and/or 

disciplinary boundaries also lead us to concepts such as “boundary objects” and “boundary 

work.” Regarding the former, Star and Griesemer have convincingly described how actors and 

groups with different interests often use common points of reference (or “boundary objects”) to 

communicate with one another, even if their understanding or interpretation of these entities 

differs considerably (1989). Their adaptation of Hughes’ “institutional ecology” framework to 

describe the larger institutional backdrop against which these interactions occur can also be 

usefully adapted to grapple with disciplines and professions. In fact, the preceding overview 

hints at the extent to which the ecological approach employed by Star and Griesemer resonates 

with Abbott’s work. Akera (2004a; 2004b; 2006), on the other hand, has usefully looked at how 

ecologies of both knowledge and institutions inflected some early developments of computing 

field, albeit largely in relation to the career and work of computer pioneer John W. Mauchly.   
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Gieryn's theorizing on the concept of “boundary work” is similarly helpful here, 

especially given his insightful discussions about how various demarcation processes are used to 

bound off domains of disciplinary knowledge (1983; 1995; 1999). More specifically, Gieryn 

describes four central categories of boundary-work, namely monopolization, expansion, 

expulsion, and protection (1995, pp. 424-439). Another important theme evident in Gieryn's 

writings – and also brought to the fore in the work of Golinski (1998, Ch. 2) – centers on the idea 

that the formation, legitimation, and ongoing development of fields and disciplines often 

involves the active and power-laden “disciplining” of knowledge, people and even the physical 

world.  

It is further worth noting that much of the literature on the topic of disciplines has tended 

to focus on the sciences, yet my own work supports the argument that engineering and other 

technology-oriented fields are equally significant sites for applying the aforementioned concepts. 

In making this move, it is important to wrestle with questions about the role of knowledge claims 

in the formation and development of disciplines and professions. In Abbott’s analysis of the 

social sciences, for example, we find that the author’s settlement framework is primarily used to 

uncover and examine competing knowledge claims. While this approach may work well for his 

particular case, elsewhere Abbott discusses how various non-epistemological factors – such as 

technological developments and organizational changes – can shift professional jurisdictions. As 

more specific examples, he notes that the “increasingly technical quality of machinery and 

physical structures” helped stimulate the establishment and growth of the engineering profession 

(1988, p. 92), while the later development of “higher-level” programming languages such as 

FORTRAN and COBOL helped create new areas of expertise that were claimed by computer 

programmers (1988, p. 93). 

In order bring into further relief the full range of factors that impinge on the development 

of disciplines and professions, I turn to the concept of “co-production,” as explored at length in a 

recent edited volume (Jasanoff, 2004). Central to the co-production framework is the idea that 

neither social nor natural order can be assumed to have explanatory or causal priority in studies 

of science and technology, and that we must instead view the social and the natural as actively 

“co-produced.” As editor Sheila Jasanoff describes, scientific knowledge, as well as technology 

and technological knowledge, “both embeds and is embedded in social practices, identities, 

norms, conventions, discourses, and institutions – in short, in all the building blocks of what we 
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term the social” (p. 3).  Jasanoff adds that the co-production framework emphasizes the constant 

intertwining of the cognitive, material, social, and normative, leading us to ask questions such as: 

“what sorts of scientific entities or technological arrangements can usefully be regarded as being 

co-produced with which elements of social order; ... what are the principal pathways by which 

such co-production occurs[?]” (p. 6; p. 18). 

My analysis of disciplinary and professional development also looks beyond 

sociotechnical factors to engage with discourses. My work here is significantly inspired by Paul 

Edwards’ The Closed World (1996), which works at the intersection of computing machinery 

and metaphors of computing in the Cold War era. More specifically, central to Edwards’ analysis 

is the idea that discourse “is a self-elaborating ‘heterogeneous ensemble’ that combines 

techniques and technologies, metaphors, language, practices, and fragments of other discourses 

around a support or supports” (p. 40). Other important points to take away from Edwards include 

his emphasis on the social processes that are at the heart of discourses, as well as his claim that 

computer technology acted as a crucial “support” for Cold War, closed-world discourses. The 

value of discourse as a theoretical framework is also evident in recent work by other scholars. 

Ronald Kline, for example, carefully traces the long historical development of the phrase 

“information technology,” with particular emphasis on how various discourse communities 

promoted their own particular interpretations of what this “keyword” signified (2006).  

Building on the work of these authors, my own historical study of the field of computer 

engineering frames disciplines and professions as “heterogeneous ensembles” that are composed 

of diverse sociotechnical elements, ranging from discourses, identity markers, and institutional 

structures to technologies and bodies of knowledge.5 Hence, I depart from Edwards by seeing 

discourse as one among many important facets of disciplinary and professional development, 

rather than the fundamental plane on which the field of computer engineering has historically 

been constructed. Further building on the preceding theoretical moorings, I claim that 

establishing and legitimating a discipline or profession requires that its proponents bring many 

heterogeneous elements into alignment in order to achieve some level of stability. Yet this 

stability is necessarily both partial and temporary, in no small part because these fields and 

                                                
5 As authors such as David Hess noted, Foucault is generally credited with initially developing the 
concept of a “heterogeneous ensemble” (1997, p. 107). It has been widely applied in the field of science 
and technology studies, in no small part due to the ease with which it can be applied to a wide variety of 
sociotechnical subjects. 
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subfields always exist against the backdrop of pre-existing systems of professions and/or 

ecologies of disciplines. Drawing on the coproduction framework, on the other hand, helps 

remind us that the realization of computer engineering as a distinct field of activity involves not 

only discursive achievements, but also successful alignments of social and technical order, often 

in the midst of rapid sociotechnical change. 

I also explicitly and intentionally deal with issues of discipline formation and 

professional development in my account, thereby helping to bridge some of the analytic and 

topical divides reflected in the preceding literature review. More specifically, I document the role 

of professional societies and educational institutions as key interfaces or mediators between the 

professional and disciplinary realms. In fact, professional societies are particularly important in 

this regard, given that they often serve as a key common point of contact for members of 

industry and the academy. Further, professional society publications and activities frequently 

provide unique high-level perspectives on the state of a given field. Finally, and as suggested by 

its title, one of the key themes of this dissertation centers on the somewhat ambiguous position of 

computer engineering between profession and discipline, which I claim has been a major yet oft-

overlooked source of instability in the more than five-decade-long history of the field. 

Methodology 

As a guiding principle, the research on which this project is based is largely focused on 

those persons and texts most closely associated with the field of computer engineering. Hence, 

my goal is to develop a history of the field that emphasizes the perspectives of computer 

engineers themselves. While this approach keeps the project somewhat more focused and 

manageable, I avoid a monolithic account by grappling with the multiplicity of viewpoints and 

agendas that have existed within the field. The project is also concerned with individuals, 

technologies, and texts from adjacent fields, but with an emphasis on how engineers have reacted 

to, commented on, and/or interacted with these “outsiders.”  

It is also important to emphasize that this account is almost exclusively concerned with 

developments in the United States. In terms of benefits, this approach makes the scope of this 

project far more manageable, especially with respect to placing reasonable bounds on both the 

research required and the length of the resulting analysis. On the other hand, I am acutely aware 

that many of the themes developed in this dissertation are partially or even wholly peculiar to the 
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American context. In some nations and regions, for example, the field of computer engineering 

does not exist per se, while other disciplinary designators such as informatics or software 

engineering may take on different meanings and/or have much greater prominence, especially as 

compared to the United States. In the future, I intend to look more closely at the unique 

development of computer engineering and related fields in a variety of national and cultural 

contexts, with the present case standing as one example among many. 

The data presented in the following chapters has been culled from a wide variety of 

primary sources, including professional journals, trade magazines, conference proceedings, 

committee reports, and textbooks. I also draw on secondary historical accounts, as well as a 

handful of oral histories. My approach is largely qualitative in nature as I examine historical 

patterns, explore the positions and interests of different actors and groups, and seek out the 

deeper values, ideologies, and meanings of an array of discourses and texts. Some quantitative 

data is presented to account for broad-based trends, including the historical development of 

academic departments and degree programs in computer science, computer engineering, and 

related fields. Below I discuss in more depth the significance of the major types of source 

material on which this project is based. 

Professional Publications 

 The various publications of professional societies – such as transactions, conference 

proceedings, journals, and magazines – are a main source of data for this project. In narrowing 

down the scope of this material, I concentrate on the publications of the most relevant 

professional groups, including the AIEE, IRE, IEEE, and ACM. At times my analysis also 

narrows to relevant sub-groups, such as the IRE-PGEC and the IEEE’s Computer Society. In 

addition to allowing us to glean the larger orientations, agendas, and institutional histories of 

these groups, many professional publications act as sounding boards for high-profile actors in the 

field. They also sometimes serve as outlets for debate over contentious issues, especially via 

letters to the editor, published speeches, and/or special messages from the leaders of 

organizations. I also use a number of personnel ads published in AIEE and IRE journals to 

document some early employment trends in the field. To varying extents, these publications have 

historically served mixed audiences of professionals with ties to both the academy and industry. 

As this overview suggests, professional society publications are valuable not only because they 
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tell us much about the parent organizations, but also because they frequently provide valuable 

windows into contexts that are otherwise difficult to access or assess, such as the private sector. 

Trade Magazines 

 The early chapters of my analysis present significant evidence drawn from two of the 

largest computer-oriented trade magazines from the 1950s and 1960s, namely Computers and 

Automation and Datamation. And while these outlets tended to lack the prestige and technical 

rigor of other types of publications, they often featured articles and commentary that were more 

candid, daring, and accessible. Datamation, for example, became well-known for carrying the 

witty yet biting editorial remarks of Herb Grosch, the so-called “enfant terrible of the computing 

world” (Shapiro, 1994, para. 14). These magazines also maintained closer ties to the computing 

industry, frequently discussed larger trends in the field, and periodically published critical 

evaluations of the major professional societies and computer conferences. Looking at the articles 

and advertisements published in these magazines provides valuable opportunities for comparison 

and contrast, especially through juxtapositions with professional society publications. 

Curriculum and Model Program Reports 

The latter chapters of this dissertation place significant emphasis on a long series of 

curricular recommendations and model program reports. Many of these were authored and 

published by subcommittees of the ACM and IEEE, while others were developed by quasi-

independent groups like the COSINE Committee. In order to further enrich my analysis, I seek 

out and analyze related documents such as interim reports, summary articles, reviews, and 

follow-up commentaries. These types of sources are important in that they often explicitly 

describe what counts – or what an author or group thinks should count – as computer engineering 

and/or computer science. These often involve idealized depictions of a given field’s history and 

agenda, supported by in-depth evaluations and surveys of the structure and content of academic 

departments, programs, and courses. In addition, the authors frequently articulate an imagined 

future for various computer-oriented disciplines by presenting recommended reforms and 

detailed curricular recommendations and model programs. At the same time, these documents 

often reveal some of the ways in which the field's academic and professional spheres are linked. 

Perhaps not surprisingly, many of these reports have triggered extended discussion and heated 
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debate over the identity, agenda, and scope of computer engineering, computer science, and 

related fields.  

Other Sources 

I use a large number of sources that do not fall neatly within the categories describe 

above. Material in this category includes primary sources such as textbooks, reference volumes, 

and other types of committee reports. I also make extensive use of secondary sources, including 

other historical accounts, retrospective histories by primary actors, and oral history interviews 

conducted by both others and myself. I often draw on these sources to compare and contrast how 

various actors, groups, and sectors have dealt with common themes and issues. As such, these 

materials help me to both “triangulate’ my analysis and develop more compelling arguments. 

Summary of Chapter Contents 

The historical account that follows features six body chapters and a concluding epilogue. 

The body chapters can be further divided in two major parts, with Chapters 2 through 4 focused 

on the pre-history and early history of “computer engineering.” In these chapters I place 

particular emphasis on documenting how the field of computer engineering gained a partially 

distinct professional identity, largely in the context of industry and through the activities of 

professional societies.  

Turning to individual chapters, the major goal of Chapter 2 is to account for the historical 

emergence of “computer engineer,” “computer engineering,” and closely related terms. Doing 

so, however, demands a summary review of the history of electrical engineering, with a focus on 

both the early decades of the twentieth century and the development of the American Institute of 

Electrical Engineers (AIEE) and the Institute of Radio Engineers (IRE). I then turn to the 1940s, 

when a handful of influential electronic computer projects got off the ground, and when a 

nascent computing community first started to emerge. My account looks closely at engineers, 

both by examining the roles they played in designing and building the first high-speed, digital 

computers, and by documenting the early movement of groups such as the AIEE and IRE into 

various areas of computing.  

In the latter parts of this chapter I turn to some of the distinct identities, activities, and 

bodies of knowledge that were growing up at the intersection of engineering and computing, 
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especially in the early and mid-1950s. And by focusing on some of the earliest uses of terms 

such as “computer engineer” and “computer designer” in the context of industry and by 

professional societies, I analyze how the boundaries around this emergent branch of the 

engineering profession were defined and negotiated in relation to both the development of 

computer technology and some of the other major subfields of computing. My account also gives 

voice to a handful of commentators who were beginning to critique these boundaries, especially 

in light of the apparent, ongoing expansion of the divide between computer designers and 

computer programmers. 

In Chapter 3 I turn to the internal development and relational interaction of three major 

groups that maintained interests in the computer field through the 1950s and into the 1960s, 

namely the IRE’s Professional Group on Electronic Computers (IRE-PGEC), the AIEE’s 

Computing Devices Committee (AIEE CDC), and the Association for Computing Machinery 

(ACM). My account frames these organizations as constituting a dynamic “system of 

professional societies” that was united not by a shared association with a single profession or 

discipline, but rather by their overlapping and interpenetrating settlements in various bodies of 

knowledge and domains of technology. Further, I argue that the overall stability of this system 

can be accounted for by looking at a long series of negotiations and compromises that were 

worked out within and between these groups.  

I place particular emphasis in this chapter on the long-running Joint Computer 

Conference (JCC) series and associated National Joint Computer Committee (NJCC). In fact, I 

claim that the JCC and NJCC played key roles in 1950s as common points of contact where 

these groups could negotiate their respective sociotechnical settlements. The success of this 

process is all the more striking given the presence of various destabilizing forces, including rapid 

technological developments, changes in the size and scope of each group, and incursions from 

outsiders. My account also speaks to how the stability of this system was maintained through a 

series of major institutional changes in the early and mid-1960s, including the merger of the 

AIEE and IRE to form the Institute of Electrical and Electronic Engineers (IEEE) and the 

founding of the American Federation of Information Processing Societies (AFIPS). And finally, 

throughout this chapter I document the close association of the IRE-PGEC and its successor 

organization (the IEEE Computer Group) with “computer engineering” and “hardware.” 
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 While my third and fourth chapters look at roughly the same historical period, the latter is 

focused on three additional sites where the dominant images of computer engineering developed, 

namely in industry, hardware-software discourses, and the academy. To begin with, I examine 

how the term “computer engineer” and its variants went through a period of interpretive 

flexibility in the mid-1950s, finally stabilizing in the 1960s to refer to design-oriented work in 

computer circuits, logic, and systems. In so doing, I show how computer engineers and designers 

were associated with the domain of computer “hardware,” linked to engineering education and 

the engineering profession, and positioned in relation to other types of computer professionals. 

These themes provide an appropriate segue to a more general discussion of the computer field’s 

evolving sociotechnical boundaries. More specifically, I juxtapose the fragmentary tendencies of 

the software-hardware dichotomy with a variety of calls for “integrating” the computer field’s 

major divisions of labor, technologies, and bodies of knowledge.  

The second major part of this chapter reviews some early trends in the formal education 

of computer professionals, especially through the 1950s and into the early 1960s. More 

specifically, I document the slow development of computer-oriented courses and degree 

programs in electrical engineering departments, as well as some of the earliest efforts to promote 

the “computer sciences” as a formative academic discipline. My account also raises questions 

about the extent to which the academic context was positioned to serve as a site for either 

challenging or reinforcing the computer field’s major sociotechnical boundaries. 

Chapters 5 through 7 cover a historical period running from roughly the mid 1960s to late 

1980s and early 1990s. Topically, these chapters are primarily focused on both the establishment 

of a distinct disciplinary identity and negotiation of a partially unique “sociotechnical 

settlement” for the field of computer engineering, especially through developments in the 

academic context.  This part of the dissertation also engages with two other major themes. First, I 

discuss the evolving character and role of the relevant professional societies. Second, I document 

how computer engineering came to occupy an unstable position between the engineering 

profession, on the one hand, and independent disciplines such as computer science, on the other.  

Chapter 5, in particular, carries my analysis of the educational sphere through the 

remainder of the 1960s and into the early 1970s. The first major part of this chapter documents 

ongoing efforts to define, position, and institutionalize the discipline of computer science. In 

addition to emphasizing the role of the ACM and its constituency in this process, my account 
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also points to the importance of “bottom-up” processes of disciplinary development, where the 

establishment of computer science courses, programs, and even departments greatly bolstered the 

legitimacy and independence of this young field. In the middle part of this chapter I turn to a 

handful of “insiders” who raised concerns in the mid- and late-1960s about computer science 

education, including its continued movement away from engineering and technology.  

This line of analysis helps sets up the second major part of this chapter, which details 

how a new cadre of electrical engineers lobbied for a thorough reorientation of electrical 

engineering education toward computers and computing. By focusing on the activities of the 

COSINE Committee and its members, I document how the initial efforts of these reformers to 

bring computer science “into the fold” of electrical engineering were largely replaced by calls for 

the establishment of computer engineering degree options and programs within existing 

engineering programs. While these developments laid important foundations for the ongoing 

development of computer engineering education, they also suggested that the major 

sociotechnical schisms of the computer field were being reproduced in the academic sector. On a 

related note, my analysis also reveals growing tensions between the dominant images of 

computer science as an independent discipline and computer engineering as a branch of the 

engineering profession. 

  My sixth chapter is largely focused on the history of the IEEE Computer Group – later 

renamed the Computer Society – from approximately the mid-1960s to late-1980s. To begin 

with, I demonstrate how this group’s position between the IEEE as its parent organization and 

the ACM as its independent sibling society was maintained during this period. More specifically, 

I show how various structures and processes of “sociotechnical mediation” helped create a 

modicum of stability in this system of societies, especially against the backdrop of rapid 

technological and institutional change, and irrespective of extensive overlap and penetration 

between the sociotechnical settlements of each group. In fact, I argue in this chapter that the 

relationship of the IEEE Computer Society and the ACM through the 1970s and into the 1980s 

bore a striking resemblance to the evolving relation of hardware and software. By more closely 

examining the interests and activities of these two groups in a handful of “boundary” domains – 

such as computer architecture, microprogramming, and software engineering – I argue that these 

similarities were no coincidence, but rather a potent reflection of the ongoing coproduction of the 
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computer field’s social and technical order. This chapter also reveals a gradual fading of the 

Computer Society’s image as primarily an organization of and for computer engineers. 

Chapter 7 starts by examining the Computer Society’s expanding activities in the 

educational arena, beginning in the 1970s. My analysis reveals two countervailing trends. On the 

one hand, I show how various actors and groups worked to develop curricular and program 

recommendations that were designed to better integrate or unify computer science and computer 

engineering education, beginning with the Computer Society’s “Computer Science and 

Engineering” movement from the mid-1970s to mid-1980s. This trend culminated in the late-

1980s and early 1990s with the “Computing as a Discipline” and “Computing Curricula 1991” 

projects, which involved unprecedented levels of cooperation between the Computer Society and 

the ACM and seemed to point the way toward major curricular reforms.  

On the other hand, this chapter reveals the perennial fragmentation of computer science 

and computer engineering education, as reflected by the publication of alternative and competing 

curricular recommendations, the prevailing structure of degree programs and departments, and 

the establishment of multiple accreditation systems and processes. In addition to emphasizing the 

destabilizing character of these forces, my analysis speaks to how these trends are linked to other 

persistent schisms in the field, including those based on the poles of software and hardware, 

science and engineering, and profession and discipline. 

Finally, I use a concluding Epilogue to accomplish two major goals. First, I review some 

recent developments in the educational arena to highlight continued instabilities in the 

disciplinary landscape of computing, as well as new calls for the establishment of a distinct 

disciplinary and professional identity for the field of “computer engineering.” Second, I bring 

into relief important countervailing trends through a brief historical introduction to the 

software/hardware codesign movement. My analysis also points to some of the larger 

implications of these trends, especially as related to the future training of computer professionals 

and the future shape of computer technology. As my account makes clear, debates about the 

sociotechnical boundaries of computer science and computer engineering are not only deeply 

rooted in history, they are also alive and well today, and their outcome will likely have far-

reaching implications. 



www.manaraa.com

 22

 

Chapter 2 

From Engineers and Computing to Computer Engineering 

 

 

 
Among the many important developments that often appear on timelines and 

chronologies of computer history, the first Joint Computer Conference (JCC) is an oft-cited 

event. And indeed, the conference is worthy of recognition. Held in Philadelphia in 1951, the 

meeting attracted almost 900 attendees, making it one of the largest – if not the largest – 

computer conferences to date. Yet most historical accounts fail to discuss the distinct scope and 

tenor of the event. Unlike other early events of this type – which tended to attract a wide variety 

of attendees and cover a broad swath of topics – the inaugural JCC was primarily focused on the 

“engineering aspects” of computer design and construction. It was also largely organized under 

the auspices of two professional societies, namely the American Institute of Electrical Engineers 

(AIEE) and the Institute of Radio Engineers (IRE), and electrical engineers dominated both the 

conference planning committee and the roster of conference speakers.  

In light of this overview, how might we account for the fact that this conference was both 

largely focused on the physical technology of computing and primarily organized by and for 

electrical engineers? Further, does the unique character of this event have some larger historical 

significance? As I argue in this chapter, the orientation of the first JCC was not an anomaly, but 

rather an important element in a more general movement. By the late 1940s and early 1950s, a 

growing band of electrical engineers had recognized the rapid expansion and increasing 

importance of high-speed, electronic computers, and they started to actively stake out their 

territory in this nascent yet burgeoning domain of activity. And as this movement gained 

momentum through the early and middle part of the 1950s, terms such as “computer engineer” 

and “computer designer” emerged to provide a distinct social and professional identity for 

engineers who were working in the computer field. Further, these new identities emerged in 

tandem with – and became linked to – the general sphere of computer technology designated by 

the term “hardware.” 
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Yet before I develop a more detailed account of these trends, it is necessary to provide the 

relevant background, especially with regard to both the history of electrical engineering and early 

development of high-speed computing. The first section of this chapter reviews the history of 

electrical engineers and electrical engineering knowledge, with an emphasis on the founding and 

development of the AIEE and IRE. I then turn to the 1940s as a key decade for high-speed 

electronic computing, when a handful of major computer development projects were getting 

underway, and when tentative efforts to cultivate a more cohesive computing field gained 

momentum. In order to further appraise the role of electrical engineers and electrical engineering 

in this historical account, this chapter also provides an extended discussion of AIEE and IRE 

efforts to enter various areas of computing, from roughly the mid-1940s to mid-1950s. 

The latter sections of the chapter turn more specifically to the distinct identities, 

activities, and bodies of knowledge that were emerging at the intersection of engineering and 

computing. Using the first joint conference as a window into this theme, I review a number of 

early comments about both the historical and prospective links between electrical engineering 

and computing. In doing so, I uncover some of the earliest uses of labels such as “computer 

designer” and “computer engineer.” As I demonstrate, exploring the history of these terms brings 

into further relief early efforts to establish a distinct professional identity for the many electrical 

engineers who were designing, building, or otherwise working with the first generation of high-

speed electronic computing machines. Further, tracing out the history of the term “computer 

engineering” reveals some of the ways in which the boundaries around this area of activity were 

being defined and negotiated in relation to both the ongoing development of computer 

technologies and the other major subfields of computing. Yet as suggested in the account that 

follows, the long-term relationship between engineers, on the one hand, and computers and 

computing, on the other, was neither obvious nor fixed.6 

A Brief Early History of Electrical Engineering and Its Institutes 

For many decades, the AIEE and IRE were the two major professional societies for 

American electrical engineers, and tracing out their respective histories forcefully reveals how 

the development of engineering fields and subfields frequently involves the negotiation of social, 

                                                
6 In historical terms, the noun “computers” has frequently been used to refer to the machines themselves, 
while the verb “computing” more often refers to the use or application of such machines. 
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technological, and epistemological boundaries. A review of this history also provides important 

background framing for the remainder of this chapter. Established in 1884, the AIEE was formed 

as the first national professional society for American electrical engineers. In summary, the 

founding of the group was largely stimulated by the rapid development and maturation of 

electrical science and technology, along with a growing recognition that the relatively young 

field of electrical engineering was distinct from its historical forerunners, such as civil and 

mechanical engineering. As explained by historian A. Michael McMahon, the new field “was 

veering off sharply from America’s traditional engineering culture” (1984, p. 1).  

With its leadership and membership ranks initially filled out with a “broad spectrum of 

electricians and capitalists” (McMahon, 1984, p. 29), the founding and early expansion of the 

AIEE paralleled the growth and maturation of the electric power industry, and to a lesser extent 

the telegraphy industry. Yet the Association was also developing in concert with the increasing 

professionalization and academization of electrical engineering work and education. By the late 

decades of the nineteenth century, the formal training of electrical engineers was gaining 

momentum in colleges and technical schools, initially in physics departments, but increasingly in 

standalone engineering departments. The composition of the AIEE – as well as the field of 

electrical engineering more generally – was increasingly populated by rank-and-file engineers, 

scientist-engineers, and engineering managers, many who happened to hold engineering degrees 

(Layton, 1971, p. 39). 

By the early 1910s, the AIEE’s primary orientation toward both power engineering and 

the commercial sphere was well established. Further, it was clear by this time that the electrical 

engineering field was entering a phase of rapid diversification, in no small part due to ongoing 

scientific breakthroughs and technological developments. For instance, the discovery of the 

electron in the latter part of the nineteenth century opened up a broad swath of research into 

related electrical phenomena, devices, and applications. The communications field in particular 

benefited greatly from this research, especially as the invention and refinement of vacuum tubes 

– one of the most important of the early “electron devices” – helped pave the way for the 

development of radio broadcasting and other new types of wireless communication. In a move 

that was clearly intended to bring these and other new areas of research under the AIEE’s 

umbrella, the institute formed a series of new technical committees from around 1910 onward 

(McMahon, 1984, pp. 126-127).  
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Yet tentative steps to establish a committee in the increasingly important area of radio – 

or “wireless telegraphy,” as it was called at the time – came too late. Responding to the AIEE’s 

lack of coverage in low-voltage and wireless technologies, two upstart radio engineering 

societies merged in 1912 to form the IRE. And while this new group was in many ways indebted 

to the AIEE as its historical forerunner and organizational prototype, the IRE also represented a 

new and increasingly divergent subculture of electrical engineering. As described by McMahon, 

radio engineering, “though close intellectually and institutionally to power engineering, 

possessed a distinctive social and technical basis” (McMahon, 1984, p. 131).7  

The distinct character of the new group was linked to a number of factors. For starters, 

and in contrast to the make-up of the AIEE, radio engineers tended to be younger and often 

worked for smaller companies (Abbott, 1988, p. 180). In addition, many of the concerns faced by 

the IRE and its members centered on the sorts of issues that typically challenge new fields and 

subfields. For example, standardization of units and measures was one such issue that received 

significant coverage. Another important topic centered on new technological developments, 

especially in the area of electron devices. And finally, Layton has argued that the IRE’s early 

orientation toward science and “scientific professionalism” further distinguished it from the 

AIEE (Layton, 1971, p. 43; 251).  

Yet as the field matured in subsequent decades, the IRE remained largely oriented toward 

radio industry and technology, a trend that mirrored the persistent links between the AIEE and 

the power industry. This tilting of the IRE toward radio was increasingly problematic, especially 

given the growing prominence and expansion of electronics as a more general field of interest 

through the 1920s and the 1930s.8 While electronics had largely grown out of radio engineering 

and technology, it quickly diversified and grew to the point where radio was overshadowed by 

both the rapid expansion of electronics research and a proliferation of new applications. And in a 
                                                
7 While this comment is ostensibly about the radio engineering, it nicely captures the more general 
processes of division and fragmentation that have led to the periodic creation of new engineering fields 
and subfields. Yet it is often difficult to sort out the primary reasons for such divisions. Regarding the 
IRE, Layton has argued that the motivations for founding the group were largely professional rather than 
technical. More specifically, he explains that the formation of the IRE was significantly a reaction to 
AIEE moves around 1912 to relax membership requirements – and hence make the organization more 
friendly to business (Layton, 1971, p. 43). Per Layton, business interests often tend to promote division in 
the engineering field, while professionalism often encourages greater unity (p. 44). 
8 Further, and as noted in an early historical retrospective authored by well-known Cambridge computer 
pioneer Maurice V. Wilkes, the rising prominence of electronics was in part reflected by the 
establishment of the monthly magazine Electronics in 1930 (Wilkes, 2004, p. 1). 
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somewhat ironic reversal of roles, it was the AIEE’s Communications Committee that moved to 

fill this gap in the 1930s, largely by expanding conference activities and publications in the area 

of electronics (McMahon, 1984, pp. 188-189). On the one hand, the AIEE succeeded in serving 

some of the needs in this budding field, while also encouraging joint AIEE-IRE activities in 

areas of common interest. On the other hand, McMahon has argued that the AIEE nonetheless 

“remained a predominantly power engineering society” (1984, p. 194), both during this period 

and beyond.  

The Second World War further shaped the social and technological boundaries of the 

electrical engineering field. For starters, wartime research helped set the stage for the continued 

ascendance of electronics engineering and technology. Per McMahon, “the wartime R&D 

program powerfully launched electronics as the nation’s dominant technology in the postwar 

era” (1984, p. 195). Even more importantly for the present analysis, an even larger number of 

developments from this period were pivotal for many subsequent technological developments, 

including high-speed electronic computers. Research in the area of radar, for instance, led to 

innovative new devices like mercury delay lines, as well as to dramatic improvements in existing 

devices, such as vacuum tubes. Further, considerable experience was gained during the war in 

the design and construction of electronic systems of unprecedented scale and complexity. A 

number of major research projects, for instance, advanced the state of the art in the area of 

analog computing devices, especially as applied to problems such as automatic gun control. 

A wide range of difficult computational problems encountered during the war also helped 

sow the seeds for the emergence of large-scale digital computers. The calculation of ballistics 

tables was a particularly intense area of activity that provided much of the justification for the 

design and building of war-era computers such as the ENIAC.  These early projects also hinted 

at the major potential areas of involvement for electrical engineers in computing. More 

specifically, these areas included components (or devices), systems, and applications. The 

distinction between analog and digital computers surfaced as another important boundary that cut 

deeply through all phases of computer design and use. 

The war also brought into relief the major social and technical divisions of labor in the 

area of electronics. Most important for the present analysis, it was increasingly evident that 

electrical engineers wielded no clear monopoly over this expanding domain. To be sure, many 

electrical engineers played important roles in war-oriented electronics research, but many of their 
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best-known contributions were in the administration of research programs and shaping of R&D 

policy (McMahon, 1984, Ch. 6; pp. 195-206).  In terms of actual research and development 

work, engineers were often overshadowed by physicists generally, and “electronic physicists” 

specifically.  

While McMahon sketches the outlines of this story, historian Peter Galison provides a 

detailed description of wartime research activities that nicely highlights the typically lop-sided 

relation of physicists and engineers (McMahon, 1984, 233-245; Galison, 1997, Ch. 4). Abbott 

similarly notes that physicists were often at the forefront of innovation in the area of electrical 

engineering and electronics, while engineers were more frequently involved with specific 

applications and routine types of work (Abbott, 1988, pp. 181-182). As these accounts make 

clear, science in general – and physics in particular – maintained an upper hand over engineering 

in terms of prestige and status, both during and after the war. In fact, a prominent speaker at the 

1946 National Electronics Conference revealed the extent to which engineering was viewed as 

“downstream” from science by titling his talk “Physics of Today Becomes the Engineering of 

Tomorrow” (“1946 National Electronics Conference,” 1946, p. 665). As I discuss below, the 

early development of the computer field was similarly marked by the presence of both physicists 

and engineers, at times working in cooperation, and at times standing in tension. 

Finally, it is worth noting that from the 1940s onward the IRE can be credited for 

reversing its tendency toward specialization, allowing it to secure a position at the forefront of 

the electronics field. As McMahon notes, “the electronics engineers’ choice of the IRE over the 

AIEE for their professional society made all the difference for the futures of the two societies” 

(1984, p. 214). And as subsequent passages make clear, this was one of a number of factors that 

tended to inhibit AIEE’s involvement in computing. On the other hand, the AIEE was one of the 

earliest professional organizations to express formal and active interests in computing. Exploring 

this interest, however, first requires a review of some early developments in computing. 

Intersections of Expertise in Early Computer Development Projects 

As noted above, wartime research activities provided significant impetus for the design 

and construction of high-speed computing machines. Other key developments can be traced back 

to earlier decades and even earlier centuries. Since much of this history has been covered in 

detail elsewhere, I will largely restrict my attention to surveying the social composition and 
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technical character of some of the early computer development projects, labs, and conferences, 

with particular emphasis on the roles played by electrical engineers and electrical engineering 

knowledge. This section is also focused on the 1940s, when the first high-speed electronic 

computing machines were being built and becoming operational, and when a small but growing 

cadre of organizations and individuals were coalescing around common areas of interest.  

Regarding the overall scope and scale of computing during this time period, Aspray 

estimates that by the mid-1940s there were at most ten major computer research centers, ten 

operating high-speed computers, and 1,000 persons interested in computer development (Aspray, 

1985, p. ix). In rather general terms, each of the early computer projects involved the assembly 

of a diverse range competencies, knowledge, and resources, all of which helped facilitate the 

successful design, construction, and use of the first high-speed computing and calculating 

machines. Cortada, commenting on the skills required to build these machines, explains that 

“[t]he electrician had to work with the engineer and the mathematician with the physicist to 

make it happen” (Cortada, 1993, p. 14).  

More specifically, electricians and low-level (or up-and-coming) engineers often acted as 

the “higher technical labor” that was essential for physically building and testing these large and 

very complex calculating machines. Numerous electrical engineers and physicists, on the other 

hand, contributed a wealth of codified and tacit knowledge, especially in the overall design of 

electronic systems, as well as in research and development activities involving electronic 

devices, such as vacuum tubes. A large number mathematicians and scientists added important 

theoretical angles and mathematical foundations, while also frequently grappling with the 

challenges of actually using high-speed computing machines to solve mathematical problems.  

This blending of disciplines and talents was evident in all of the early, large-scale 

computer projects, albeit with interesting local variations. Yet credit for the design and 

development of these early machines was rarely distributed evenly, and was frequently skewed 

toward those individuals with more prestigious backgrounds in science or mathematics. At Bell 

Labs, for instance, a series of large relay computers was designed and built from the late-1930s 

to late-1940s. Much of this effort was led by George Stibitz and Samuel Williams, the former 

with a background in mathematics and physics, the latter with significant training and experience 
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in engineering generally and electrical engineering specifically.9 As historian Atsushi Akera has 

documented, in later years Williams was disappointed by the credit that was heaped on Stibitiz 

for his role in the design of the Bell computers (Akera, 1998, p. 575).10  

A variant of this theme played out in the story of the Automatic Sequence Controlled 

Calculator (ASCC) or Mark I, another early computer that was largely based on 

electromechanical technology. The design of this high-speed calculating device was primarily 

formulated by Harvard’s Howard Aiken, who held an undergraduate degree in electrical 

engineering and a Ph.D. in Physics (Aspray, 2000, p. 51).11 Yet the detailed design work and 

overall construction of the Mark I was almost entirely in the hands of IBM engineers, who 

assembled much of the machine from off-the-shelf components such as relays, switches, rotating 

shafts, and clutches.  

Completed in 1943, the Mark I was commissioned and used by the Navy and used to 

solve numerous war-time computing problems. Yet just as the machine was being put into 

service, a dispute between Harvard and IBM surfaced when Aiken failed to acknowledge IBM’s 

role in the building of the computer. As described by Aspray, “The dispute may have stemmed in 

part from the different ways in which scientists and engineers value contributions: Harvard 

thought of Aiken’s functional specifications for the machine as foremost, while IBM regarded 

the real work as residing in the engineering design and construction” (2000, p. 51). Far from an 

isolated incident, the tendency for these kinds of links to form between university research, 

science, and theory, on the one hand, and industry, engineering, and technology, on the other, 

was an important factor in the unique trajectory of many subsequent computer development 

projects, as well as in the more general development of the computer field. 

                                                
9 Stibitz held an undergraduate degree in Math and Physics from Denison University, an M.S. from Union 
College, and a Ph.D. in physics from Cornell (“Inventor Profile – George Stibitz,” 2002). Williams 
received an M.E. degree in Electrical Engineering from Ohio State in 1905 (“Retirements,” 1946, p. 252).  
10 Later in this same account, Akera goes so far as to describe Williams as “a mechanic and not a 
mathematician” (Akera, 1998, p. 578). In light of both Williams’ education in electrical engineering and 
his working experiences as an engineer at Bell Labs, “engineer” is a clearly a more appropriate and 
accurate label for Williams. 
11 Aiken’s dissertation work, which he completed in 1939, was doubly relevant for his later work in 
computing. First, his research was focused on theoretical problems associated with vacuum tubes. 
Second, these problems involved non-linear differential equations, which were very difficult to solve via 
conventional means. As early as 1936, Aiken was considering how calculating equipment might assist in 
solving such equations (Aspray, 2000, p. 51).  
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Surveying some of the major computer projects that got underway in the mid and late 

1940s provides additional clues about the disciplinary composition of the formative computer 

field. In terms of the technical foundations of large-scale computing, a shift from 

electromechanical components (such as relays) to electronic components (primarily vacuum 

tubes) was well underway during this time period. Further, much research in the design and 

application of computing machines was situated in university computer labs, often through 

extensive government support. In fact, universities were especially well suited to such projects 

given the relative ease with which diverse talents, abilities, and resources could be assembled 

and coordinated in academic research environments. Among the handful of early focal points for 

computer research, Harvard, Princeton, the University of Pennsylvania, and MIT were some of 

the key institutions in the 1940s.12 Surveying the activities at these four schools helps shed 

additional light on how university research and development activities in computing variously 

intersected with the major fields and subfields of science, mathematics, and engineering. 

After the Mark I project soured Harvard’s relationship with IBM, Aiken’s Computation 

Lab undertook the design and construction of three large-scale computers, namely the Mark II, 

III, and IV. But in contrast to other early sites of computer research and development, the 

relatively low status of engineering at the school contributed to the evolution of a unique culture 

of computing at Harvard, one that emphasized mathematics, theoretical science, and 

applications. As evidence for this tendency, the computer lab had close ties to the Department of 

Engineering Sciences and Applied Physics, and Aiken’s tenure was in applied mathematics. 

Further, many among the “strong cadre of master’s and doctoral students” that passed through 

the lab were trained from 1947 onward in an applied mathematics program that was more 

specifically oriented toward the use of computing machinery, rather than its design (Aspray, 

2000, p. 52).  

Yet historians also suggest that Aiken held a favorable view of engineering education as a 

pathway into computing, even if it was not a readily available option for Harvard students. As 

recounted by Kathleen Broom Williams, in 1945 Aiken told a visitor from the Aberdeen Proving 

                                                
12 Aspray provides an excellent review of the entry and ongoing involvement of these four schools in 
computing, with particular emphasis on educational activities such as courses and degree programs 
(2000). And while he also discusses key developments at Columbia University, this school did not 
spearhead an early computer design and development project. Instead, it maintained close ties with IBM, 
which furnished the school with computers and other calculating equipment, and utilized Columbia 
researchers in developing new and improved machines. 
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Grounds that he should seek engineers rather than mathematicians in staffing the Ballistics 

Research Laboratory (1999). Indeed, Aiken may have gained this insight by observing the 

researchers with whom he worked. As described by Williams, well-known mathematicians at the 

Harvard Computation Lab such as Richard Bloch and Grace Murray Hopper worked very hard to 

gain an in-depth understanding of the engineering and technical aspects of the Mark I.  

As suggested by this overview, Harvard researchers frequently grappled with aspects of 

computing that were likely labeled engineering elsewhere. But at Harvard, the term was 

generally avoided. Further, Aiken gained an early reputation for his interest and expertise in 

computer use, and both Aiken and Hopper published a number of important early articles 

focused on programming and applications. In addition, historians such as Aspray have 

documented Aiken’s notoriously “conservative approach to machine design” (2000, p. 54). In 

more general terms, the movement of the Harvard Lab away from the engineering and design 

dimensions of computing was established relatively early, with Aiken announcing in 1949 that 

only one more computer (the Mark IV) would be built at the school (Aiken, 1951).13 Aiken’s 

moves hinted at larger trends that were emerging at the time, as the primary locus of computer 

design and development activities shifted from universities to industry, a point to which I return. 

In many ways, the early history of computing at Princeton paralleled developments at 

Harvard. For starters, computing at the school was largely situated in the Institute of Advanced 

Studies (IAS), which was primarily composed of distinguished mathematicians and scientists. 

One member of the lab, John von Neumann, developed an interest in applied mathematics and 

related topics through his war-related research activities. Recognizing the value of high-speed 

computing devices in his own work, von Neumann visited the Moore School and gained 

familiarity with the ENIAC and EDVAC projects (Ceruzzi, 2003, pp. 21-23; Aspray, 2000, p. 

72). By 1945 he was actively pursuing a computer project at the IAS, yet he faced many 

obstacles (Aspray, 2000, p. 72). In addition to the challenges that came with finding funding for 

such an ambitious project, von Neumann had to work around the dominant culture and 

orientation of the IAS, which placed utmost value on theory, science, and mathematics. As 

Aspray explains, “Most of the faculty regarded computing as a practical subject area, not worth 

                                                
13 Soon after the Mark IV was completed in 1952, Aiken explicitly “ceded hardware development to 
industry” (Aspray, 2000, p. 54), a point to which I will return. 
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of their investigation,” adding that “there was great concern among the faculty over having to 

share their hallowed grounds with engineers, technicians, coders, and operators” (2000, p. 73).  

The resourceful von Neumann ultimately attracted the necessary support and backing for 

his venture, in part by soliciting additional design and engineering support from the Radio 

Corporation of America (RCA), as well as from other Princeton departments and labs (Aspray, 

2000, p. 73). And even though this particular machine didn’t go into operation until 1952, the 

technical knowledge gained during the project quickly spread beyond Princeton, and the IAS 

computer was even used as a prototype in building machines at other sites, such as the RAND 

Corporation (Aspray, 2000, p. 73). Yet formal education in computing at Princeton remained 

sparse, and the relationship between the IAS computer project and Princeton’s Electrical 

Engineering Department was minimal, at best. Willis Ware, who worked on the IAS computer 

project while pursuing a Ph.D. in electrical engineering, more recently noted the difficulties he 

faced as he tried to find electrical engineering faculty at Princeton who were qualified to review 

his computer-oriented thesis (2005). In more general terms, computing at Princeton went into a 

short period of decline in the mid-1950s. But as documented by Aspray (2000), this trend 

reversed in the 1950s, in large part due to computer-oriented research and educational activities 

that were led by Princeton’s Electrical Engineering Department. I return to this topic below. 

The University of Pennsylvania, on the other hand, leaned much more strongly toward 

the engineering end of the science-engineering spectrum, perhaps not surprising given that the 

Moore School of Electrical engineering was the university’s principal site for computer-related 

research. One of the earliest and best-known computer projects at the School involved the design 

and construction of the ENIAC between 1943 and 1945. Supported by Army funding and built 

for the Ballistics Research Laboratory, the ENIAC’s somewhat esoteric design in part reflected 

the wartime context in which it was developed. In fact, a “freeze” was placed on the design of 

the machine at a relatively early stage, in hopes that the ENIAC would be up and running as 

quickly as possible (Winegrad, 1996, p. 8). The successful construction of the computer also 

brought together a broad array of expertise in areas such as engineering, science, and 

mathematics, and electrical engineers and electrical engineering knowledge were especially 

prominent in this particular project. 14 

                                                
14 Akera’s history of the ENIAC is especially valuable in revealing the multi- and interdisciplinary 
character of the project (Akera, 2000, pp. 62-121). 
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John W. Mauchly and John Prester Eckert shared much of the credit for the design and 

construction of the ENIAC. Mauchly boasted a Ph.D. in Physics and a long-standing interest in 

electronics, especially as related to scientific instruments (Stern, 1980; Mauchly, 1984). Eckert, 

on the other hand, held B.S. and M.S. degrees in Electrical Engineering, both earned at the 

Moore School (Lee, 1995, p. 271). Other important contributions came from the “senior 

engineers” assigned to the project. These included T. K. Sharpless, another M.S. graduate of the 

Moore School, and Arthur Burks, who both held a Ph.D. in Philosophy and possessed extensive 

expertise in the area of logic. Mathematicians at the Moore School such as Hans Rademacher 

also assisted with the mathematical dimensions of the ENIAC.15 Another mathematician, 

Herman Goldstine, acted as the Army’s liaison between the Ballistics Research Laboratory and 

the Moore School, but his contributions to the ENIAC were mainly managerial and logistical. 

And finally, it is worth noting that a host of relatively “junior” Moore School engineers and 

researchers made significant contributions in many areas, including component design and 

testing. 

 The ENIAC project clearly boosted the Moore School’s reputation as an influential and 

well-known early location for computer development and research. It also became a key site for 

the training of computer-oriented electrical engineers, and the historical account below is 

checkered with Moore School staffers and graduates. Many of these engineers contributed to the 

early computer-related activities of the AIEE and IRE, especially by serving on committees, 

publishing articles, and presenting papers at conferences. Yet for various reasons, the Moore 

School’s prominent position in computing started to fade from around 1946 onward.16 

As a final case, the history of computing at MIT can be placed somewhere between the 

Harvard and Penn examples. Research in the general area of computing machinery started early 

                                                
15 The well-known mathematician John von Neumann also visited the project regularly, although his 
precise contributions have been the subject of much debate. He later became well known for his leading 
role in the design and constriction of a high-speed electronic computer at Princeton’s Institute for 
Advanced Studies (IAS). This machine was fully operational in 1952. von Neumann was also the sole 
author of a 1945 report titled First Draft Report on the EDVAC, which introduced the basic concepts of 
“stored-program” computing. While questions remain regarding the role of other computer pioneers in the 
genesis of the stored-program idea, the term “von Neumann architecture” is often used in reference to this 
type of computer design, which remains dominant today. 
16 Aspray identifies three major factors that contributed to the declining prominence of the Moore School, 
namely post-war civilian redeployment of key staffers, the reluctance of university administration to 
support peacetime military research, and the inability of the school to support the commercial interests of 
its staff (2000, pp. 59-60). 
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at MIT, especially through the building of differential analyzers by electrical engineers such as 

Vannevar Bush and Samuel Caldwell (Aspray, 2000, pp. 43-46). MIT was also an important site 

for the development of network analyzers, another early type of analog computing device. 

Project Whirlwind, on the other hand, quickly became one of MIT’s most important and well-

known computer projects. From the mid-1940s onward the Whirlwind effort was headed by Jay 

Forrester, who held B.S. and M.S. degrees in Electrical Engineering, the latter earned at MIT.  

From the mid-1940s into the early-1950s, the Whirlwind team included top-level staff 

and graduate students drawn from electrical engineering, mechanical engineering, physics, and 

mathematics (Wildes and Lindgren, 1985, Ch. 17; Redmond and Smith, 1980). Yet despite this 

diversity, electrical engineering students made up a very large share of the lab’s ranks. Further, 

electrical engineering at MIT around this time had a particularly high level of prestige, as well as 

a long-standing reputation for both its roots in physics and its orientation toward science and 

mathematics (Aspray, 2000, p. 44). By all appearances, these characteristics made MIT 

engineers especially well-suited to computer-related work, and the school was recognized early 

on as a key site for computer research and development.  

As suggested by these examples, electrical engineers and electrical engineering 

knowledge played important roles in early computer research. Yet these roles varied significantly 

from site to site, making it clear that there were no long-term guarantees regarding the position 

of electrical engineers in the computer field. In fact, it was clear that these engineers often stood 

in the shadows of other types of experts. As Akera explains, the hierarchies of prestige in 

postwar computing research were largely a continuation of earlier trends: “the applied 

mathematicians who aided the physicists in their wartime work first garnered the highest 

authority with respect to computing research” (1998, p. 336). Following this line of inquiry, 

Akera adds that mathematicians, engineers, and other types of specialists were each beginning to 

pursue their own unique approaches to computer research and development, especially in the 

postwar era. As the field expanded and diversified, the boundaries between these unique 

approaches and particular areas of interest were increasingly evident. 

Connecting the Islands: Early Steps toward a Field of Computing 

As Akera has argued, the various computer development projects that were launched both 

during and soon after World War II were leading toward a “more unified body of knowledge” 
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and a “more identifiable community” (1998, p. 207). Yet even as these projects started to lay the 

social and technical foundations for a more recognizable computer “field,” the points of contact 

between isolated researchers and labs remained relatively sparse, even well into the 1940s. 

Aspray nicely summarizes the situation, explaining: 

There were no professional organizations, regularly scheduled conferences, or 

journals concerned primarily with high-speed computation. What few papers were 

published appeared mostly in the proceedings of either the Institute of Radio 

Engineers (IRE) or the American Institute of Electrical Engineers (AIEE), or in 

Mathematical Tables and Other Aids to Computation. … The main channels of 

communication between the isolated research centers and individual workers, 

aside from individual personal contacts and occasional reports, were one-of-a-

kind seminars and conferences (1985, pp. ix-x). 

Perhaps not surprisingly, many of the aforementioned universities and labs hosted these one-off 

events, and they often published associated proceedings and reports. This early period was also 

marked by some of the earliest expressions of interest in the computing field by the electrical 

engineering institutes. 

Early meetings of note include a relatively small gathering at MIT in 1945, which Aspray 

identifies as one of the first computer conferences (Aspray, 1985, p. x). And another series of six 

meetings on digital and analog computing machinery was held at Columbia University in 1946 

and 1947, organized by the New York chapter of the AIEE (Alt, 1962, p. 300). While these 

AIEE meetings are rarely referenced in today’s historical literature, Alt later claimed that each 

attracted more than 200 attendees. And finally, Jay Forrester was instrumental in organizing a 

series of five or six lectures on digital computers at MIT in the Spring of 1947, as part of the 

Department of Electrical Engineering’s seminar program. Each of these lectures attracted 100 or 

more persons (Alt, 1962, p. 300; Wildes and Lindgren, 1985, p. 287). 

As researchers in the field came into more frequent contact with another through these 

and other events, the social and technological contours of computing became more evident. 

Take, for example, the “Moore School Lectures.” This influential and well-known eight-week 

lecture course was held during the summer of 1946 at the University of Pennsylvania’s Moore 

School. Appropriately titled “Theory and Techniques for Design of Electronic Digital 

Computers,” the course brought together a diverse assortment of speakers and attendees, most 
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with backgrounds in engineering, the sciences, and mathematics (Campbell-Kelly and Williams, 

1985, pp. xv-xvii). In terms of content, the course included introductory lectures covering a wide 

range of topics, as well as numerous days dedicated to the close study of specific machines.  

Yet the schedule for this event also reflected a growing boundary between the 

engineering and mathematical dimensions of computing. As explained by one of the event’s 

coordinators, roughly two and a half weeks of the course were planned around “two almost 

independent programs …  one program will treat certain mathematical topics in greater detail, 

and the other will be concerned with the engineering design features relating to specific 

components” (Campbell-Kelly and Williams, 1985, p. xxx). As suggested by this passage, the 

splitting out of these two topic areas revealed that component design and mathematical analysis 

were being viewed as quite distinct areas of activity. The “system” level of analysis, on the other 

hand, tended to bridge the diverse phases of computer research and development. 

The 1947 Symposium on Large-Scale Digital Calculating Machinery provides another 

important early snapshot of the field (Harvard Computation Laboratory, 1948). Hosted by 

Harvard University and jointly sponsored by Harvard and The Navy Department Bureau of 

Ordnance, the relative size and scope of the event made it one of the most influential of the early 

computer meetings. For starters, the symposium attracted more than 300 participants, drawn 

from academic institutions, the government, and private industry. And while incomplete 

information makes it difficult to compile detailed information about the attendees, members of 

the symposium identified themselves under a wide variety of occupational and professional 

designations, with the most common title being engineer, followed by mathematician and then 

physicist (Aspray, 1985, pp. xvii-xxix).17 This was clearly a diverse group, in terms of 

institutional affiliation, professional identity, and agenda.  

The early heterogeneity of the computer field was further reflected in the range of topics 

explored in the eight symposium sessions. A large number of papers and sessions covered 

machine design and construction, with particular emphasis on descriptions of existing system 

designs, storage devices, and input-output devices. And as a partial reflection of the research 

                                                
17 Of the 335 “members” of the symposium, 86 were clearly identified as engineers or professors of 
engineering. While many of these individuals were listed as electrical and electronic engineers, many 
others were simply identified as “engineers,” and still others were affiliated with subfields such as 
aeronautical or civil engineering. Another 49 of the participants were identified as mathematicians or 
professors thereof, and 35 as physicists or professors thereof. 
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orientation of the host institution, a large number of sessions and papers coalesced around topics 

such as numerical methods, computational techniques, and problem preparation and “coding.”  

Follow-up events followed similar patterns. Take, for instance, the “Symposia on Modern 

Calculating Machinery and Numerical Methods,” which was held in July of 1948 at UCLA and 

attracted more than 500 attendees (“Symposia on Modern Calculating Machinery,” 1949, p. 

381). As suggested by the title of the event, the program was organized around two major areas 

of interest. The first centered on a series of “progress reports” that reviewed recent developments 

at “principal” sites of computer research and development (p. 382). These reports were split out 

into two separate sessions, one dedicated to reports from academic research centers, the other to 

speakers from commercial laboratories.18 While it is difficult to determine the content of these 

presentations, both the roster of speakers and the paper titles suggest that engineering and design 

dimensions were prominent topics. On the other hand, an entirely separate set of sessions was 

dedicated to an array of topics in areas such as programming, numerical analysis, and applied 

mathematics (pp. 381-382). 

While the content and organization of these symposia hinted at growing boundaries 

between the design and application – or engineering and scientific/ mathematical – dimensions 

of computer research and development, commentators like John W. Mauchly were explicitly 

commenting on the emergent social and technological boundaries of computing. In order to 

foreground these remarks, I turn to a brief description of the ENIAC. While this machine was 

one of the best known of the early electronic computers, it also played an important role in 

stimulating subsequent technological developments and new divisions of sociotechnical labor.19  

Mauchly, the ENIAC, and the Machine-Instruction Boundary 

Following a pattern that is well-known among historians of technology, the ENIAC’s 

overall ease of operation was clearly limited by its rapid construction, esoteric design, and 

                                                
18 These two panels also tell us much about the shifting landscapes of computer research and development 
in the 1940s. Academic research centers represented at the conference included Harvard, MIT, the 
University of Pennsylvania, Princeton, and the Illinois Institute of Technology (IIT). Discussions of 
commercial developments included Eckert-Mauchly Computer Corporation, Engineering Research 
Associates, IBM, Bell Labs, and Raytheon. 
19 There is little question that many important computing devices preceded the ENIAC, including high-
speed electromechanical machines like the Harvard/IBM Mark I and the Bell Labs series of relay 
computers. Yet the vacuum-tube-based ENIAC stands apart as one of the earliest, large-scale computers 
that was largely based on electronic components and technology (Van der Spiegel, et al., pp. 121, 123). 
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reliance on a host of new technological developments. In order to solve mathematical problems 

using the ENIAC, machine operators set myriad electronic switches and physically 

interconnected, via wires or bundles of wires, the various sub-units of the device. The 

configuration of the computer at any given time reflected a wide range of considerations, 

including the specific mathematical equations to be solved and the sequence of operations to be 

performed (Van der Spiegel, et al., 2000). As noted in many historical accounts, literally 

“rewiring” the machine to change its operation proved time-consuming and tedious, a reality that 

was evident even before the ENIAC was complete and operational.  

One limitation of the ENIAC design that quickly became evident centered on the fact that 

the sparse memory of the machine could only be used for “data,” while the machine instructions 

(that is, the operations to be performed on that data) were entirely “hardwired.” In light of this 

issue, the ENIAC project is often credited with stimulating the design of “stored-program” 

computing machines. At a 1947 symposium, Mauchly provided one early discussion of this 

novel approach.20 Describing a new class of computers called “EDVAC-type” (Electronic 

Discrete Variable Arithmetic Computer) machines, Mauchly identified three features that set 

these computers apart from previous designs: “(1) an extensive internal memory; (2) elementary 

instructions, few in number, to which the machine will respond; and (3) ability to store 

instructions as well as numerical quantities in the internal memory, and modify instructions so 

stored in accordance with other instructions” (Mauchly, 1948, p. 203). Mauchly’s presentation 

was one of a handful of early attempts to describe the design characteristics of a true “stored-

program” computer, where a much larger and more flexible machine memory could be used to 

store and manipulate both numerical data and machine instructions.21 Indeed, historians often 

point to these characteristics as the central defining characteristics of a “modern” computer.  

                                                
20 Around this same time, Eckert and Mauchly left the Moore School to start Electronic Control 
Company, which was one of the first commercial manufacturers of high-speed electronic computers. The 
company was quickly renamed the Eckert-Mauchly Computer Corporation, and was purchased by 
Remington Rand in 1950 (Norberg, 2005). 
21 While the origins of the “stored-program” concept are not entirely clear, Akera notes that Eckert and 
Mauchly were exploring related ideas in as early as 1944. John von Neumann’s well-known “First Draft 
of a Report on the EDVAC,” released in 1945, is another key document that “contained many of the 
fundamental ideas for the stored-program computer” (Akera, 2002, p. 67). According to computer 
scientist and historian Michael Williams, the stored-program concept gained significant traction at the 
1946 summer lecture series at Pennsylvania’s Moore School  (2002, pp. 23-24). Mauchly’s remarks at the 
1947 symposium were a clear extension of these efforts, as suggested by his use of the EDVAC acronym. 
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Yet Mauchly’s comments about “elementary instructions” in the preceding passage point 

to another dimension of computer design that has received somewhat less attention in the 

historical literature. In the same Symposium presentation, Mauchly made one of the earliest 

attempts to identify and explore the boundaries that were forming around two major areas of 

activity in computing, namely machine design and “coding.”22 As Mauchly explained:  

A decision must be made as to which operations shall be built in and which are to 

be coded into the instructions. Reference has already been made to the uncertain 

status of division as a built-in operation. Many others, such as forming logarithm, 

cosine, arctangent, or square root, have been built into existing machines. 

Ultimate choice must depend upon the analysis by the designer of the character of 

the work to be performed by the machine, the frequency of occurrence of 

operations, and the ease with which non-built-in operations can be compounded 

from those which are built in (Mauchly, 1948, p. 205). 

As suggested by this passage, it was evident that the design of a given computing machine 

needed to include some minimum set of elementary instructions for manipulating data and 

controlling program flow. Instructions such as add, shift or subtract, for instance, were 

literally hardwired in the physical machine and called upon as needed. But more complex 

operations – such as division –required more complex algorithms, where longer sequences of 

basic instructions (such as adding or shifting) were executed to achieve the desired results.23 

In fact, the study of such algorithms was a central concern for many of the mathematicians 

who were using computers to solve problems. 

                                                
22 As noted by Aspray, Mauchly’s paper “was perhaps the earliest published discussion of the 
consequences of stored programming on logical design and programming” (1985, p. xvi). In 
contemporary terms, it should be noted that Mauchly’s paper was one of the first to identify and discuss 
the nascent boundary between the physical “hardware” of the machine and the programs (or what would 
later come to be called the “software”) that could be run on it. 
23 Building on many of the ideas developed by researchers such as Mauchly and von Nuemann, the first 
stored-program machines went into operation in the late 1940s and early 1950s. These included the 
Manchester University Mark I in 1948, the EDSAC (Electronic Delay Storage Automatic Calculator) at 
Cambridge University in 1949, and the Institute for Advanced Studies (IAS) computer at Princeton in 
1952 (Randell, 2002, p. 41; Aspray, 2000, p. 73). Each of these machines dealt differently with the sort of 
design trade-offs described by Mauchly. The EDSAC, for instance, featured a set of 18 instructions for 
basic operations, including addition, subtraction, copy, multiply, and shift. Other instructions were also 
included, such as for transferring data to different memory locations, and for performing simple branching 
operations (Campbell-Kelly, 2002, pp. 415-416). 
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In terms of design trade-offs, when many complex operations are “built into” a 

machine, it can significantly streamline the work of the machine’s users or operators, since 

they can easily call on these instructions as needed. Further, such operations can run more 

efficiently given that they are literally “hardwired” into the machine's logical circuitry. On 

the downside, built-in operations can greatly increase the complexity of a device, especially 

in the case of the early machines, when thousands or even tens of thousands of vacuum tubes 

were involved. Further, the particular algorithm used to implement any given operation might 

be inefficient or error-prone.24 If such an algorithm is built directly into a machine, it can be 

exceedingly difficult to make changes or improvements, except by literally rebuilding some 

part of the computer, or perhaps by bypassing the existing operation with an entirely new set 

of programmed instructions. And as suggested by Mauchly, the intended application of a 

given computing device was a key consideration in determining which operations should be 

built-in, and which should left to be “coded” by the users of a machine. If one were designing 

a computing device to calculate tables for the firing of ballistics, for instance, it might be 

highly advantageous to include trigonometric functions in the machine’s instruction set. 

In light of Mauchly’s remarks, we find that even in the mid-1940s distinct research 

and development activities were growing up around the “physical machine,” on the one hand, 

and “coded instructions.” Further, the essential point of negotiation between these two areas 

surfaced as an increasingly important issue in subsequent years, albeit often in tandem with 

new terminology and a host of related issues. Before tracing out the development of this 

theme, however, it is worth appraising the early role of the AIEE and IRE in the computing 

field. As suggested above, AIEE and IRE interests in computing gradually coalesced around 

a handful of common areas, including components and devices, systems, and certain areas of 

application. And as I demonstrate below, questions about the technological boundaries of the 

computing field quickly became intertwined with other concerns, such as the appropriate 

scope of organizations, the definitions of various professional identities, and even the actual 

design of electronic computers. 

                                                
24 Errors in hardware-based algorithms have repeatedly surfaced as a problem in the computing industry. 
One more recent and widely-publicized example involved a bug in one of the division instructions that 
was built into the Intel Pentium processor (“Pentium FDIV Bug,” 2006). 
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The AIEE and Computing 

While AIEE and IRE involvement in computing happened relatively early, the AIEE was 

the first of the two institutes to express formal interest in this new area of activity. In fact, the 

earliest direct evidence of AIEE interest in computing machines can be traced back to 1946. As 

mentioned above, a series of meetings at Columbia University was organized by the New York 

chapter of the AIEE in 1946 and 1947. In addition, a subcommittee on Large-scale Computing 

Devices was established in 1946 within the AIEE’s larger Basic Sciences technical committee 

(“AIEE Officers and Committees,” 1946, p. 1219).25 According to General Electric power 

engineer Charles Concordia – who served as the first chairman of the subcommittee – much of 

the initiative behind this development came from AIEE President A. S. Lee and two successive 

chairmen of the Basic Sciences committee, John G. Brainerd and Julian D. Tebo (Concordia, 

1976, p. 42). This push is not entirely surprising, given Brainerd's background as a Moore School 

graduate and professor, as well as his role as one of the main supervisors of the ENIAC project 

(Weiss, 1988). Concordia’s interests, on the other hand, centered largely on analog computing 

devices, which had been used in the power industry since at least the 1920s.26 Brainerd and 

Concordia’s respective associations with digital and analog computing technologies symbolized 

two of the major areas around which AIEE activities were coalescing.  

Yet in the mid-1940s, interest among engineers in the area of calculating and computing 

devices remained limited. In fact, Concordia later acknowledged that he faced some difficulty in 

forming the original group given that “there were not then a great many AIEE members familiar 

with the field” (1976, p. 42). He ultimately assembled the subcommittee around seven founding 

                                                
25 Aside from chapter activities, interest in particular subject areas was organized around AIEE technical 
committees and subcommittees. Through these groups, relatively small groups of engineers who were 
knowledgeable and interested in a topic or field would spearhead relevant activities, such as organizing 
panels and recommending papers for publication. The somewhat unusual position of the computing 
subcommittee within the basic sciences group is also worth noting  because it reveals the difficulties that 
often came with positioning computing within pre-existing networks of disciplinary expertise, bodies of 
knowledge, and professional identities. 
26 In fact, Concordia co-authored a 1945 article on the use of “analyzers” (an early type of analog 
computer) in solving engineering and scientific problems (Peterson and Concordia, 1945). This paper 
reviewed four major types of devices, namely DC network analyzers, AC network analyzers, transient 
network analyzers, and differential analyzers. For more details on Concordia’s career trajectory and areas 
of technical expertise and interest, see Kaplan (1999).  
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members.27 And despite an apparent lack of familiarity and interest in the area of computing 

among the AIEE’s general membership, Lee soon pushed for the elevation of the subcommittee 

to full committee status (Concordia, 1976, p. 42). The AIEE board approved this change in 1948, 

and the group was officially renamed the Committee on Computing Devices (“AIEE Forms 

Committee on Computing Devices,” 1948). This group – which later was also frequently referred 

to as the Computing Devices Committee (CDC) – claimed nine members in 1948 and thirteen by 

1949, with the most notable new member being Mauchly of Moore School and ENIAC fame 

(“AIEE Officers and Committees for 1948-1949,” 1948, p. 1792; “AIEE Officers and 

Committees for 1949-1950,” 1949, p. 802).  

While the group’s early focus was primarily on analog computing devices – especially as 

applied in the area of electric power systems analysis – it quickly moved to expand its scope. By 

1949 Brainerd had taken the chairmanship and two subcommittees had formed, one led by 

Mauchly in the area of digital computing, and the other led by Harder and focused on 

“continuous-variable” computers – or “analog” computers, as they came to be widely known 

later (“AIEE Officers and Committees for 1948-1949,” 1948, p. 1792).  A third subcommittee 

dedicated to “computer bibliography” appeared in 1951, ostensibly formed to collect and manage 

the growing body of literature in the emergent field (“AIEE Technical Subcommittees 1950-

1951,” 1950, p. 942). 

From the beginning, the orientation of the AIEE group tended to lean toward systems and 

components rather than applications. In one interview, Concordia explained that the first meeting 

of the subcommittee was focused on “computing devices, not on applications” (Concordia, 1994, 

p. 26).28 This orientation was also evident in a statement of scope that was published after the 

group was elevated to full technical committee status: 

                                                
27 In addition to Concordia and Brainerd, the group included notables such as Samuel H. Caldwell, an 
MIT electrical engineering professor known for his research on differential analyzers with colleague 
Vannevar Bush, and Edwin L. Harder, a Westinghouse electrical engineer. Other members included J. D. 
Tebo, a Bell Labs engineer, Gilbert D. McCann, a Westinghouse electrical engineer who took a position 
at CalTech in 1946, and Princeton's W. C. Johnson. Regarding the selection of this group, Harder later 
explained that the members “were chosen by people that were already on the committees or the 
organization knowing that they were the knowledgeable people and that they should be there” (Harder, 
1991, p. 49). As suggested by this remark, pre-existing social networks often played a central role in the 
creation and ongoing development of technical committees, both within and beyond the AIEE. 
28 Concordia added, “the next year [1947] we also had a small presentation on applications. It was harder 
to find people for that. Everyone wanted to talk about what was coming and what was new, or about what 
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The scope of the committee is [t]he treatment of all matters in which the dominant 

factors are the requirements, design, construction, selection, installation, and 

operation of machinery and devices relating to computing devices, including 

studies of the electromagnetic, electronic, and mechanical phenomena of such 

devices. Fundamental mathematic, electronic, and properties of materials entering 

into these devices are not included (“AIEE Forms Committee on Computing 

Devices,” 1948). 

In addition to demarcating the group's boundaries in relation to a pre-existing milieu of dozens of 

other AIEE technical committees and subcommittees, this statement also distanced the group's 

activities from other areas of computing, such as those more closely linked to mathematics and 

“applications.”  

The AIEE computing group was instrumental in organizing a broad range of early 

publications and presentations, many featuring content that was rather generalized and 

introductory. This material served to familiarize the general membership of the AIEE with the 

computer field, potentially generating further interest in the topic. Much of this material 

appeared in the AIEE journal Electrical Engineering. Aiken and Hopper authored the first such 

article in 1946, and their three-part piece provided readers with a description of the Harvard/IBM 

Automatic Sequence Controlled Calculator, or Mark I (Aiken and Hopper, 1946).29 In addition to 

briefly summarizing the history of mechanical computing machines, the article provided a 

lengthy discussion of the construction and operational aspects of the Mark I.  

In subsequent years, news and articles about computing appeared in Electrical 

Engineering with increasing frequency. Other articles of note include a 1947 review of recent 

developments in electronics, which included a brief survey of “electronic computing devices” 

(Condon, 1947, pp. 355-256). A paper published in 1948, on the other hand, surveyed both 

historical and contemporary developments in the area of calculating machines, with an emphasis 

                                                                                                                                                       
they have been doing to develop computers. But it wasn't as interesting to talk about applications” 
(Concordia, 1994, p. 26). 
29 Others have recognized the historical significance of this particular article. It was reprinted, for 
instance, in Brian Randell's The Origins of Digital Computers: Selected Papers (1982). It is also worth 
noting that much of the article was adapted from the much longer and more detailed A Manual of 
Operation for the Automatic Sequence Controlled Calculator, an impressive 500+ page tome that was 
largely authored by Hopper and published in 1946 as the first volume of the Annals of the Computation 
Laboratory of Harvard University (Harvard Computation Laboratory, 1946).  
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on describing the operational and technical characteristics of the ENIAC, EDVAC, MANIAC, 

and UNIVAC computers (Tumbleson, 1948). 

Also in 1948, Brainerd and fellow Moore School engineer T. K. Sharpless authored a 

more extensive article on the design, construction, and operation of the ENIAC (Brainerd and 

Sharpless, 1948). In the article's introduction, the authors noted that “[e]lectrical engineers in the 

United Stated have had a major interest in the development of large-scale computing devices” (p. 

163). Brainerd and Sharpless also identified AC calculating boards, differential analyzers, and 

electromechanical machines (such as the Bell Labs relay computers and the Mark I) as 

noteworthy predecessors to the ENIAC. Given that many electrical engineers were already 

familiar with these and other analog calculating devices, the author's remarks provided further 

emphasis on the role of electrical engineers in the history of computing devices. 

In addition to publications, the computing subcommittee arranged many conference 

sessions at AIEE district and general meetings. The first of these, at the 1947 Winter Meeting, 

featured “men from each of the six leading centers of computer development” (“Tentative 

Program, AIEE Winter Meeting,”1947, p. 78; see also “Large Scale Computer Developments 

Discussed,” 1947). Notable speakers – including Aiken, Bigelow, McPherson, Sharpless, 

Forrester, and Williams – discussed both current and probable developments in digital 

computing, and the event attracted an impressive audience of about 350 (Concordia, 1976, p. 

42).30 A conference panel at the AIEE’s 1947 summer meeting, on the other hand, was focused 

on the engineering applications of computing devices (Condon, 1947, pp. 355-356; “Program, 

AIEE Summer General Meeting,” 1947, p. 594). As noted by Concordia, it proved more difficult 

to find speakers on this topic, and the session ultimately featured only two presentations and 

drew around 70 attendees (Concordia, 1976, p. 42). The relatively lack of engineers working in 

the area of applications was increasingly apparent by the late 1940s. 

Computing devices and related topics continued to appear regularly in the late 1940s and 

early 1950s, both in the publications and in the technical programs of AIEE general and regional 

meetings. Through this period, AIEE panels and papers also tended to cluster around a handful 

                                                
30 Aiken discussed the Harvard/IBM Mark I machine, Princeton’s Bigelow spoke on the design of the 
proposed IAS machine, IBM’s McPherson discussed the history of difference engines and current uses of 
IBM calculating machines, Sharpless from the Moore School presented on the completed ENIAC and in-
progress EDVAC, Forrester described the proposed MIT computer (later to be called Whirlwind), and 
Williams discussed relay computing developments at Bell Labs. 
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of major topics. In the digital area, systems and components attracted much attention, while 

applications received considerably less coverage. At the 1949 Winter General Meeting, for 

instance, a session on digital computers featured four papers on the description and design of 

systems and components, but only one on applications (“Electronic Digital Computers,” 1949). 

As digital computers came to be viewed as increasingly “general purpose,” it helped pave 

the way for this deepened division between the areas of design and application. However, the 

situation was very different in the analog area. At the same Winter meeting, a session of five 

papers on analog computing revealed that analog machines were not so easily divorced from 

specific problem areas or types of applications. In addition to describing the design of various 

analog computers, this panel discussed how these devices were being applied in areas such as 

nonlinear mechanics, heat flow, electric power, vibration, and flight simulation (“Computing 

Devices Conference,” 1949). Interest in analog computing was particularly strong at many AIEE 

meetings in the early-1950's, and Electrical Engineering carried many articles and news items on 

the topic around this time. Yet by at least 1950, it was evident that digital computers might 

replace many analog calculators. As one review article noted, “One topic which has been 

discussed recently has been the question of whether a-c calculating boards may be replaced by 

some of the new large-scale electronic computers” (“1949 Engineering Developments,” 1950, p. 

4). 

In more general terms, the level of interest in computing among the general membership 

of the AIEE is difficult to gage. But in light of the long-standing orientation of the AIEE toward 

power engineering rather than electronics, it is reasonable to conclude that interest remained 

confined to a relatively small subset of the organization’s membership. Further, computer 

pioneer Herb Grosch retrospectively explained that those involved with the AIEE’s computer 

activities tended to be older, as well as “more conservative, and more old fashioned”  (Grosch, 

1971, p. 57). Another witness, Willis Ware, noted that the AIEE remained strongly oriented 

toward the increasingly marginalized area of analog computing, even well into the 1950s (Ware, 

2005). In light of these and other factors, AIEE activities in computing were increasingly 

overshadowed by the IRE’s Professional Group on Electronic Computers (PGEC) in the 1950s. 
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The IRE and Computing: From Technical Committee to Professional Group 

As noted above, the IRE’s history was closely tied to electronics and communications, 

making the group’s move into computing a somewhat natural extension of its scope. One of the 

earliest efforts to move into this area involved a session on “Electronic Digital Computers” at the 

1947 IRE National Convention (“Extensive Plans Set,” 1947, pp. 176-177). The panel was 

comprised of computer pioneers such as Forrester (MIT) and Goldstine (Moore School), as well 

as Samuel Alexander (National Bureau of Standards), Jan Rajchman (RCA), and Perry Crawford 

(Office of Naval Research). Further, the session was primarily oriented toward digital computing 

and covered a full range of topics, including g system design, input devices, component devices, 

and applications. Speaking on the topic of “Electronic Computing,” Goldstine’s rather general 

presentation was particularly noteworthy given its focus on the “interrelationship between the 

engineer and mathematician in the development of computing instruments” (p. 177). This session 

was one of four at the conference that was repeated due to over-attendance, suggesting 

significant early interest in computers among IRE members (“1947 IRE National Convention, 

1947,” p. 499). This interest was further reflected in the coordination of two panels on computers 

– one dedicated to “systems” and the other to “components” – at the IRE's National Convention 

in 1948 (“1948 IRE National Convention Program,” 1948, pp. 377, 379). 

An IRE Technical Committee on Electronic Computers was also formed in 1948, with an 

initial roster of 21 members. Initially headed by chairman James R. Weiner (Raytheon) and vice-

chairman George Stibitz (formerly of Bell Labs, but by this time an independent consultant), the 

group included many other well-known figures such as Alexander, Eckert, and Forrester (Smith, 

1991, pp. 6-7; “Technical Committees,” 1948, p. 761).31 And while the original definition of the 

committee's scope – approved by the IRE Executive Committee in 1948 – was rather broad, it 

did identify some of the group’s major intended areas of activity: 

The Technical Committee on Electronic Computers is responsible for all work 

relating to digital and continuous computers. Included are applications to 

scientific computing, fire control, and industrial control problems. A primary duty 

of the Committee will include the compilation of a glossary of definitions ... 

                                                
31 Other notable early members included J. V. Atanasoff, J. H. Bigelow, Perry Crawford, C. S. Draper, N. 
Goldstine, E. L. Harder, B. L. Havens, E. Lakatos, G. D. McCann, C. H. Page, J. A. Rajchman, Nathaniel 
Rochester, Robert Serrell, T. K. Sharpless, R. Snyder, and C. F. West. 
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Additional duties of the Committee include standardization of test methods, 

coordination with the Papers Procurement Committee, and computer session 

planning (“Executive Committee,” 1948, p. 633).32 

By 1949, the group had undertaken a number of activities characteristic for those working in a 

new field, such as the compilation of a computer bibliography and development of a list of 

computer definitions (“Technical Committee Notes,” 1949, p. 63). The latter was published in 

the Proceedings of the IRE in 1951 (“Standards on Electronic Computers,” 1951).  

At a 1949 committee meeting, the group revisited its scope and subcommittee structure, 

especially with regard to giving “equitable coverage to analog and digital computers” 

(“Technical Committee Notes,” 1949). Yet despite such concerns, numerous papers on systems 

and components, both in the analog and digital areas, were being published in the Proceedings of 

the IRE through the late-1940s. The group was also instrumental in organizing a slightly 

expanded presence at the IRE's 1949 national convention. Scheduled events included a panel on 

Electronic Computers that was oriented toward analog computing and a larger symposium on 

Electronic Computing Machines. The latter was primarily focused on “recent advances in the 

state of the art,” especially in the digital area (“1949 IRE National Convention Program,” 1949, 

pp. 165-166).  

The committee's membership ebbed and flowed – hitting a high of 24 in mid-1949 and 

low of 16 by 1954 (“Technical Committees,” 1949, p. 668; “Institute Committees – 1954,” 1954, 

p. 1583). The group's leadership also shifted, with Jay Forrester gaining the chairmanship in 

1949 and IBM’s Nathanial Rochester taking the position in 1951 (“Technical Committees,” 

1949, p. 668; “Technical Committees,” 1949, p. 721). However, the efforts of the technical 

committee were increasingly overshadowed by the emergence of IRE professional group 

activities in the computing field. The IRE’s new professional group structure, which was 

formally adopted in 1948, allowed the diverse membership of the Institute to cluster more 

cohesively around special interests, including specific problem areas, particular technical 

interests, or various combinations thereof (Van Atta, 1950).33 It also opened the way for the 

                                                
32 The term “continuous” slowly fell out of favor in the and 1940s and 1950s, and was largely replaced by 
“analog.” 
33Additional details about the new system appeared in the Proceedings of the IRE in 1948 (“The Institute 
on the March,” 1948; The IRE Professional Group System,” 1948). A summary and evaluation of the 
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formation of local professional group chapters, while simultaneously retaining technical 

committees to coordinate specific activities at the national level, such as standards setting. In 

light of the historical record, the emergence of the membership-based professional group 

structure was timely, for it helped pave the way for a rapid expansion of IRE activity in the 

computing field. By contrast, both the AIEE’s orientation toward power engineering and its 

organizational reliance on a system of regional chapters and national technical committees 

limited AIEE involvement in computing to a relatively small group of members and range of 

activities. 

In the IRE, interest in a new professional group in the area of electronic computers was 

expressed as early as 1948, but the first concrete steps toward this development happened in 

1950 (“The IRE Professional Group System,” 1948). In that year, the IRE’s Los Angeles section 

organized its own Electronic Computers Professional Group, headed by Harry Huskey of the 

National Bureau of Standards Institute for Numerical Analysis at UCLA and Harry Larson of 

Hughes Aircraft (Astrahan, 1976, p. 43). While it was perhaps unusual for such a group to 

initially emerge at the local level, organization at the national level followed closely behind.34 

Nathaniel Rochester – at the time the chairman of the IRE's computing committee prodded 

IBM's Morton M. Astrahan to champion the formation of a national group. This led to the 

successful establishment of the Professional Group on Electric Computers (PGEC) in 1951, with 

Astrahan promoting the group on the East coast and Larson on the West (“Professional Group 

Notes,” 1951; Astrahan, 1976, p. 43). The Los Angeles group was formally approved as a PGEC 

chapter in 1952 (Astrahan, 1976, p. 44). The PGEC's administrative committee was initially 

comprised of twelve members, jumping to fifteen under the group's first constitution. Astrahan 

served as the first chairman and Huskey first vice-chairman, again revealing the group's bi-

coastal orientation (Astrahan, 1976, p. 43). 

The professional group and technical committee operated in parallel for a number of 

years, with the former focused on the formation and organization of regional groups and 

meetings, and the latter’s subcommittee structure used to organize work in other areas, such as 

                                                                                                                                                       
professional group system was published in 1950 (Van Atta, 1950). For a good secondary account, see 
McMahon (1984, pp. 215-218). 
34 The initial origins of the PGEC in the LA area ties into larger issues about the early emergence of 
distinct computing communities on the east and west coasts, each having a partially distinct culture of 
computer design and application. As Akera has noted, this bi-coastal division was also an important issue 
for the ACM in the 1950s (1998, Ch. 7). 
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terminology and storage devices. Yet technical committee activities were beginning to pale in 

light of the rapid growth of the PGEC. The professional group initiated a membership drive soon 

after it was founded, leading to a surging member roster. A report issued in late 1953 indicated 

that the size of the group had jumped to an impressive 1100 paid and 400 unpaid members 

(Astrahan, 1976, p. 44). And by October of 1953 the PGEC boasted 2000 members, and it 

claimed active local chapters in Los Angeles, Philadelphia, San Francisco, and Washington, D.C. 

(Gannett, 1953a). By September of 1954 the group had around 2,500 members, making it not 

only the largest Professional Group in the IRE, but also the largest computing-oriented 

professional group in the nation (“News,” 1954). 

Rapidly expanding membership was accompanied by an impressive scaling up of PGEC 

publication efforts. This flurry of publications from 1951 onward revealed an impressive 

expansion of the relevant material available for publication, in no small part due to the ongoing 

growth and diversification of the computer field as a whole. In late 1952, for instance, the PGEC 

founded its very own journal, titled the Transactions of the IRE Professional Group on 

Electronic Computers. Another important and related effort involved the group’s extensive 

involvement in the October 1953 publication of a special computer issue of the Proceedings of 

the IRE. This issue was especially noteworthy for being roughly three times average size. The 

group also played a key role in the publication of proceedings from conferences and meetings. 

One such event was the as the 1952 Electronic Computer Symposium, which was organized by 

the PGEC’s Los Angeles chapter in cooperation with the UCLA Department of Engineering. The 

PGEC also published the proceedings of the well-known Joint Computer Conferences (or JCCs).  

In summary, the mid-1940s computing field was characterized by isolated researchers 

and research groups, scattered publications and commentary, one-off conferences, and one-off 

machines. The flurry of publications and conference sessions from the late-1940s onward – both 

within and beyond the AIEE and IRE – hinted at the emergence of a more cohesive computer 

field, albeit one that was undergoing considerable growth and diversification. More specific 

trends were also becoming evident, such as a shift from universities to industry as the principal 

site of computer design and construction, as well as the release of the first commercially 

available computers. Even more importantly, we find the origins and early negotiation the key 

sociotechnical boundaries in the field. The remainder of the chapter uses the early joint computer 

conferences as a window onto these and other themes. 
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The Joint Computer Conferences 

By all appearances, the early relationship of the IRE and AIEE computing committees 

was generally congenial and cooperative. By the late-1940s, the two groups were working 

together to develop definitions and bibliographies for the computing field. And from the mid-

1940s to early-1950s, at least five individuals were at some point simultaneous members of both 

the AIEE and IRE computing committees. Indeed, such cooperation was not unprecedented, 

given that the IRE and AIEE had a long history of working together in areas of common interest. 

This cooperation was also reflected in the Joint Computer Conferences (JCCs). In historical 

terms, these conferences were significant in setting the stage for later developments, including 

the formation of the American Federation of Information Processing Societies (AFIPS) in 1961. 

But more importantly for the present analysis, surveying the content and scope of the early joint 

conferences provides further insights regarding the evolution of the computer field’s major social 

and technological boundaries. 

The origins of the joint computer conferences can be traced back to a series of meetings 

on electron tubes that were co-organized by the AIEE and IRE. In fact, by the late-1940s it was 

widely recognized that electron tubes were a crucially important computer system component, as 

evidenced by a talk on the topic of “Digital Computers” at the 1948 joint conference on electron 

tubes. Presented by Moore School engineer R. L. Snyder, this presentation emphasized two 

major issues, namely ongoing efforts to both improve the reliability of existing tubes and 

develop new tubes specifically for computers (“Tentative Program, Conference on Electron 

Tubes,” 1948).35 In late 1950 the AIEE and IRE co-sponsored a two-day conference that was 

more specifically dedicated to the topic of “Electron Tubes for Computers,” and it drew more 

than 300 attendees (“Five Sessions Held at Conference,” 1951).36 According to one summary, 

important stimulus for the event came from a survey that revealed a need for further 

                                                
35 Snyder’s presentation revealed two distinct types of technological change. On the one hand, off-the-
shelf components might be applied in entirely new ways in new technological systems. Second, existing 
component devices may act as a springboard in the development of new or improved components, often 
for use in particular applications or systems. 
36 The conference was also a result of collaboration with the Panel on Electron Tubes, a part of the 
Department of Defense Research and Development Board. 
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“clarification” in this area.37 While much of the conference was focused on tube reliability, 

design innovations and manufacturing challenges were also discussed.  

On the one hand, the computer tubes conference revealed the extensive involvement of 

both the AIEE and IRE in the area of electronic devices generally, and computer components 

specifically. On the other hand, the conference set the stage for subsequent events. As Akera 

explains, the “enthusiasm displayed at this meeting convinced both groups to organize a larger, 

regular meeting in the computing field” (1998, p. 577). Others point to John Brainerd, the second 

chairman of the AIEE Committee on Computing Devices, as the first to propose the idea of large 

computer conference (“Reflections on a Quarter-Century,” 1986, p. 226). The resulting gathering 

– which was dubbed the Joint Computer Conference (JCC) and topically titled a “Review of 

Electronic Digital Computers” – was held in December of 1951. With 900 attendees, it was one 

of the largest computer conferences to date (“Joint AIEE-IRE Computer Conference,” 1952). In 

late 1952, more than 1100 attendees were attracted to a second joint computer conference that 

was focused more specifically on the use of input-output equipment in computing systems 

(“Record Attendance at Computer Conference,” 1953). In 1953 the conference went bi-annual, 

with meetings alternating between the east and west coasts.  

As I will discuss in subsequent chapters, the planning and scope of the joint conferences 

in the 1950s and 1960s brought into further relief the social and technical contours of the 

computing field. Yet the first JCC stands out as particularly important, not only because it 

occurred at a pivotal time, but also because the scope and tenor of the conference program 

revealed important themes and trends. In the following section, I use the JCC to highlight three 

such themes. First, the event’s program and speakers placed both implicit and explicit emphasis 

on the role of engineers and engineering in the computing field. Second, the conference provided 

some of the earliest evidence for the emergence of a distinct and identity and bounded area of 

expertise for these engineers, especially through the use of terms such as “computer designer” 

and “computer engineer.” And finally, the event hinted at how the major subfields of computing 

were developing in relation to one another, as well as in relation to computer technologies.  

                                                
37  The survey was conducted by Samuel Alexander, an engineer who would become well-known for his 
computer-related work from at the National Bureau of Standards from 1946 onward. 
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Positioning Computers in Engineering 

In most general terms, the inaugural JCC was notable in that it was largely organized by 

engineers and primarily focused on engineering. In fact, the event was explicitly dedicated to 

exploring the “engineering aspects” of computer design and construction, and most of the 

presentations and papers were oriented accordingly. As indicated in a foreword that was included 

with the published conference proceedings, it was suggested that the meeting “would be of 

permanent value in the development of engineering knowledge of this new field of activity” 

(“Foreward,” 1952a). And in delivering a closing summary and address to attendees, Jay 

Forrester emphasized this theme by pointing to the “magnitude of engineering involved” in the 

building of the early digital computers (Forrester, 1952, p. 109). He also noted: 

A comparison of the present status of the digital computer field with any of our 

older branches of engineering shows that we are not far advanced. We are firmly 

on the threshold of a new field, but the digital computer work has reached no real 

maturity. … We have first models of a new type of machine. There is no reason to 

believe that they are relatively more advanced than were the first models of 

automobiles, the first aircraft, or the first radio sets (p. 109).  

Forrester’s remark clearly suggested that the technology of computing fell within the jurisdiction 

of engineers. Further, his reference to other major technologies implied that the ongoing 

expansion of the computer field would require larger numbers of engineers and large amounts of 

engineering expertise and knowledge. 

Yet Forrester was by no means the first to comment on the role of engineers and 

engineering in the computing field. As noted above, in a 1948 article Brainerd and Sharpless 

emphasized the historical position of electrical engineers in computer development. And 

Forrester himself had commented on the topic in a panel paper titled “Outlook for Electronic 

Digital Computers – The Scope of the Engineering Involved,” presented in January of 1949 at 

the AIEE’s Winter General Meeting. As described in one summary report on the session, 

Forrester used this particular presentation to call for additional study and research in the area of 

“systems engineering” (“Electronic Digital Computers,” 1949, p. 266).38  

                                                
38 According to one review of the panel, Forrester framed systems engineering as “the integration of 
computer components into equipment” (“Electronic Digital Computers,” 1949). Further paraphrasing 
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From the early 1950s onward, commentary on the position of engineers and engineering 

knowledge in the computer field – as well as the more specific role of electrical and electronics 

engineering – surfaced with increasing regularity. One important source of evidence for this 

trend can be found in a 1950 treatise by electrical engineer Lofti Zadeh. While in later years he 

became well-known for his work in areas such as system theory and fuzzy logic, the article 

appeared just after Zadeh had completed a Ph.D. in electrical engineering at Columbia 

University. Suggestively titled “Thinking Machines: A New Field in Electrical Engineering” 

(1950), this particular piece is probably the first extended discussion of the engineering-

computing relationship to appear in print.  

Discussing the emergence and larger implications of “electronic brains” or “thinking 

machines,” Zadeh started the article by asking: “[W]hat is the role played by electrical engineers 

in the design of these devices?” (p. 12).39 Reponding to this question, the author went on to 

emphasize the role of mathematicians, both in the historical and contemporary development of 

computing devices:  

Thinking machines are essentially electrical devices. But, unlike most other 

electrical devices, they are the brain children of mathematicians and not of 

electrical engineers. Even at the present time most of the advanced work on 

thinking machines is being done by mathematicians (p. 12).  

Zadeh returned to this theme later in the article by adding that “[i]t is true that most of the 

fundamental principles on which thinking machines are based, have been contributed by 

mathematicians” (p. 31).40  

 While the historical record suggests that Zadeh was guilty of exaggeration in these 

passages, his remarks were nonetheless well-suited to his forward-looking agenda. He went on to 

emphasize, for instance, “the ability of electrical engineers to supply the techniques that make 

possible the storage devices, processors, computors [sic], decision makers, and other less 

important elements of thinking machines” (p. 31). And after noting that engineers had been 

                                                                                                                                                       
Forrester’s remarks, the summary added: “Greater study must be applied to co-ordination of computers 
with communications systems and automatic control devices.” 
39 From the late-1940s onward, terms such as “electronic brains” or “thinking machines” were often used 
to describe high-speed electronic computers, especially in more popularized accounts. 
40 While Zadeh did not specifically mention the role of scientists in the computing field, his use of the 
mathematician label likely included some scientists, especially in mathematically-intense fields such as 
physics. 
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exposed to computing-related subjects such as Boolean algebra and multivalued logic through 

their association with mathematicians, the author added that the dominance of mathematicians in 

the field “will last until electrical engineers become more proficient in those fields of 

mathematics which form the theoretical basis for the design of thinking machines” (p. 31).41 The 

strategy implied by Zadeh was fairly straightforward. If electrical engineers could meld their 

existing knowledge of electronic components and systems with the appropriate mathematical 

moorings, they might lay the foundations for a new branch of engineering focused on computers 

and computing. And indeed, computer pioneers such as Forrester and Eckert – not to mention 

pioneering research groups such as MIT’s Computation Laboratory and Penn’s Moore School – 

had already demonstrated the potential success for this type of approach to computer research 

and development. 

While Zadeh’s commentary was thought-provoking and provocative, the overall impact 

of the article was probably limited, especially given that the publication in which it appeared – 

Columbia Engineering Quarterly – was probably not read widely outside of some relatively 

small circles of engineers. Yet the significance of the article for the present analysis is two-fold. 

First, it was likely Zadeh’s first attempt to formulate a disciplinary agenda for computer-oriented 

electrical engineers. In fact, he would revisit, refine, and pursue this agenda with vigor in later 

years. And second, the article raised important questions about the position of engineers with 

respect to computing, Such questions were increasingly salient from the early-1950s onward. 

Looking beyond the aforementioned JCC, for instance, reveals a 1952 computer 

symposium organized by the IRE-PGEC’s newly-formed Los Angeles chapter. The title of the 

meeting, “Engineering Tomorrow's Computers,” reflected both the event’s intended audience 

and its topical orientation. One speaker – computer pioneer and self-described “human 

computer” Ida Rhodes – pandered to this theme by referring to the early electronic computers as 

a “brainchild of electronic engineers,” and she went on to praise the “achievements of electronic 

engineers” in the computing field (1952, pp. XII:1, XII:4).  Such remarks were not confined to 

conference proceedings. An introductory article published in the special 1953 computer issue of 

the IRE’s Proceedings, for instance, noted that “[t]he design of a successful computer demands a 

high degree of engineering skill” (Buchholz, 1953, p. 1220). Not to be outdone, the editors of the 

                                                
41 It is possible that much of the motivation behind this argument came from Zadeh’s own impressive 
abilities in various areas of mathematics. I return to this point in subsequent chapters. 
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same issue described “the growth of Electronic Computers as a branch of the radio engineering 

field” (Gannett, 1953b).  

In summary, the evidence presented here reveals a number of early moves to describe and 

probe the relationship between electrical engineering and computing. And while some 

commentators simply pointed to the historical role and/or contemporary position of engineers in 

the computing field, authors such as Zadeh hinted at a more ambitious forward-looking agenda. 

The development of this agenda was intertwined with the emergence of a more distinct and 

cohesive identity for these same engineers, and also linked to the idea that computing could 

indeed be framed as a “new branch” of electrical engineering. 

Computer Engineering Identities 

The use of pre-existing labels and titles to describe the engineering dimensions of 

computer development can be traced back to the early days of the field. Terms such as 

“electronics engineer” or “circuit designer,” for instance, were regularly applied from the 1940s 

onward to those engineers who worked on computer systems and components (Felker, 1952b, p. 

1584). More specific labels also started to appear in the late-1940s and early-1950s. Not only did 

these titles become linked to specific areas of expertise, they also played an important role in the 

ongoing efforts of electrical engineers to claim major areas of the computing field as their own. 

Some of this boundary-work was explicit, such as when commentators mentioned or defined new 

identities for computer-oriented engineers. Additional evidence for these trends can be gleaned 

from the scope and content of various publications and conferences. 

The most prominent identity markers that were surfacing in the early 1950s were clearly 

situated at the intersection of computing and engineering. The term “computer designer,” for 

instance, both took hold early and emphasized the dominant image of engineering work as linked 

to the theory and practice of design (“Radio Progress During 1951,” 1952, p. 430). “Computer 

engineering” also gained currency around this time, mirroring the prior emergence of 

engineering titles that were linked to specific areas of technology, such as “radio engineering” 

and “power engineering.” The importance of these new engineering titles is two-fold. First, they 

facilitated the extension of the major engineering fields into entirely new domains of technology 

and technological knowledge. Second, the use of the “engineering” moniker provided these new 

fields and subfields with convenient and pre-existing disciplinary and professional structures, 
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ranging from conferences and publication outlets to professional societies and curricula. In an 

important sense, the identity of a radio engineer or computer engineer is as much about 

engineering as it is about a specific domain of knowledge and technology. 

With regard to “computer engineering,” the term can be traced back to at least the first 

JCC, held in 1951. One conference announcement explained that the meeting was “held 

specifically to review accomplishments in the relatively new field of large-scale digital computer 

engineering” (“Joint IRE/AIEE Computer Conference Slated,” 1951). And while another report 

noted that “more than 900 engineers, scientists, and mathematicians” (“Joint AIEE-IRE 

Computer Conference,” 1952) attended the conference, a somewhat oblique comment made by 

one of the keynote speakers at the conference implied that “computer engineers” were his 

primary audience (MacWilliams, 1952, p. 6).42 And if the conference was ostensibly dedicated to 

the general area computer engineering, the conference program hinted at the scope of this field of 

activity. With an overarching emphasis on “the characteristics and performance of working, 

large-scale electronic digital computers,” the vast majority of the papers and published 

discussion were focused on the individual computing machines, with particular emphasis on 

engineering and design challenges, performance characteristics, and issues of reliability 

(“Foreward,” 1952a, p. 3). Only one paper more narrowly dealt with computer components, 

although the author’s discussion of the possible uses of transistors in computers was an important 

early exposition of the topic, especially when vacuum tube technology still dominated computing 

(Felker, 1952a). 

On the other hand, topics such as applications, programming, and analog computers 

garnered only scattered commentary. One noteworthy exception was a paper on the possible uses 

of both analog and digital machines in the solution of aircraft engineering programs. As noted in 

a foreword published with the conference proceedings, this presentation “gave the members of 

the conference a better understanding of the ultimate usefulness of their efforts” (“Foreward,” 

1952a). Yet this particular session was relegated to a luncheon meeting on the last day of the 

                                                
42 MacWilliams stated: “One could say really that we have been optimists to schedule a meeting like this. 
We feel that in addition to keeping computer engineers employed – in itself a praiseworthy objective – a 
great deal of worthwhile experience has been obtained from the perhaps $30,000,000 that have been spent 
so far on large high-speed digital computers. It is important to get the most out of the experience resulting 
form this large amount of work, so that our new machines can be made as good as possible” (p. 6). In 
addition to identifying computer engineers as a distinct group of workers, this comment also suggests that 
the title was gaining particular salience in the commercial sector. I return to this point below. 
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conference, suggesting that the conference organizers viewed the area of computer applications 

as separable from – and perhaps even tangential to –computer design and engineering. 

While the topic of computer applications received short shrift on the official schedule, a 

series of informal sessions were hastily convened to “discuss problems arising in programming” 

(Carr, 1952, p. 113).43 Interested conference attendees met to address topics such as computer 

operating procedures, the prospects for universal machine operating codes, and methods for 

preventing and locating programming mistakes (p. 113-114).44 As noted in the conference 

review, only eighteen individuals participated in these sessions, and the small discussions that 

did take place were marked by an “absence of mathematicians and programmers.” (p. 114). 

These informal gatherings – as well as discussions of applications and programming more 

generally – were clearly a footnote to an event that was almost wholly dedicated to computer 

design and engineering. 

Surveying other publications from around this time period reveals that the use of the term 

“computer engineering” at the first JCC was part of a more general trend. The term surfaced 

again, for instance, in the special 1953 computer issue of the IRE’s Proceedings. In an 

introductory article, IBM engineer Werner Buchholz explained that the special issue was 

intended:  

To provide a set of stimulating and informative articles which would introduce the 

non-specialist reader to the new and exciting field of electronic computer 

engineering, and to furnish the specialist with a single volume of reference 

material on a wide variety of computer subjects (Buchholz, 1953, p. 1220). 

In another paper in the same issue, non-specialists were treated to an elementary introduction and 

overview of computers that explicitly emphasized “the ‘lingo’ of the computer engineer” 

                                                
43 This analysis is based on a written summary of these informal discussions, submitted by mathematician 
John W. Carr III and published at the very end of the conference proceedings. While I will revisit Carr’s 
work in the next chapter, this was one of his earliest attempts to raise the visibility of programming issues 
among computer designers. 
44 The use of the term “operating codes” here refers to the various machine instructions that are used to 
control and direct the operation of a given computer. At the time, each computer had its own unique set of 
operating codes, and these codes served as the fundamental building blocks for the development of more 
complex sequences of operations, or “programs.” The discussion at the JCC explored the tentative 
possibilities for a universal set of codes for all machines. These might be built into a given machine, or 
run through an “interpreter” that would convert universal codes into machine-specific instructions. The 
idea of developing higher-level languages followed closely behind. 
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(Samuel, 1953, p. 1223).45 While these passages revealed the increasing importance of 

computing – even for IRE members whose primary interests lay elsewhere – they also suggested 

the emergence of both a new field called computer engineering and a new identity for the so-

called “computer engineer.”  

If the first JCC and the 1953 special issue hinted at the anticipated purview of computer 

engineering, early issues of the Transactions of the PGEC both named this new area of activity 

and provided a more explicit outline of its scope. A forward in the first issue stated: “It is hoped 

that this issue will be the start of a major publication in the field of digital and analog computer 

engineering” (“Foreward,” 1952b). And in a second issue, the editors further expressed their 

belief that the membership of the PGEC was expected to be principally interested in “hardware,” 

adding that papers about the “physical components of which computers are made ... are the 

backbone of an engineering journal” (“Editorial,” 1953). Not only did these remarks provide a 

definition for the term “hardware” in the context of computing, they also linked this term to the 

new field of computer engineering and promoted the Transactions as its preferred journal. 

Employing Computer Designers and Engineers 

As suggested by the preceding analysis, the general area of computer design and 

engineering was emerging as an increasingly distinct area of activity from the early 1950s 

onward. Yet it is important to note that this formative subfield was developing in tandem with 

the growing dominance of private-sector industry in the design and construction of computers. 

While this trend has been well-documented by others, it is worth summarizing that the mid- and 

late-1940s were marked by a handful of commercial computing ventures that were slowly 

gaining momentum. The trend accelerated in the early 1950s, with many new and existing 

companies entering the field. And as the industry grew, computer development activities at 

universities entered a period of relative decline. 

As noted above, Aiken was one of the first university researchers to explicitly distance 

his lab from the area of computer design and construction, perhaps not surprising given both 

Harvard’s unfriendly stance toward engineering and Aiken’s long interest in the application of 

computing machines. Hinting at larger trends that were afoot, in 1949 Aiken explained:  
                                                
45 The rich and expansive lexicon of the computing field and its subfields forcefully reveals the 
importance of terminology in ongoing efforts to define and delineate particular areas of disciplinary 
activity and expertise. 
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Therefore, at our laboratory we have decided not to undertake the construction of 

any more large-scale computing machines with the exception of one, which we 

hope to build for our own use and keep at Harvard. There is an ever-increasing 

number of industries interested in constructing computing machines outside the 

universities (1951, p. 7). 

Aiken’s observation certainly captured trends that were afoot, and by the mid-1950s there were 

at least a dozen major commercial outfits producing digital computers (Flamm, 1988, p. 81). And 

while some schools maintained active research programs in computer design during this period, 

commercial computer research quickly overshadowed university research.  

Further, the expanding commercial sector appeared to be the primary locus of the new 

subfield of “computer engineering.” As one piece of evidence for this trend, the organizing 

committee of the first joint conference – which was substantially oriented toward engineering 

and design – was almost entirely dominated by those whose primary affiliations were in the 

commercial sector (“Joint AIEE-IRE Conference Committee,” 1952). Even more importantly, a 

canvass of employment listings in a number of major publications reveals that the term 

“computer engineering” quickly gained currency from the early 1950s onward, both within 

budding computer companies and beyond. These listings also reveal the major areas of expertise 

that were being linked to this newly demarcated area of computer work. 

The earliest examples of this trend can be traced back to at least 1952. Surveying the 

many open positions published each month in the AIEE’s Electrical Engineering reveals an 

October 1952 listing for an “electronic or computer engineer” with a B.S.E.E. or M.E. 

(Engineering Societies Personnel Service, Inc., 1952, p. 86A). Also in 1952, a series of ads from 

the Gilfillan Corporation that called for “experienced radar and computer engineers” were 

published in the Proceedings of the IRE (Gilfillan, 1952a; 1952b).46 Later in the same year, 

Engineering Research Associates (ERA) – which was founded in the mid-1940s as one of the 

first commercial developers of computer equipment – was similarly seeking “digital computer 

engineers” (Engineering Research Associates, Inc., 1952a; 1952b; 1952c). These ERA ads more 

specifically called for electrical engineers and physicists with expertise in the design and 

development of circuits and system. A 1954 ad from ERA, on the other hand, called for 

“electrical engineers and physicists to do digital computer engineering” (Engineering Research 

                                                
46 Gilfillan was particularly active in radar research and development around this time. 
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Associates, 1954). And in the same year, the Jet Propulsion Laboratory at Cal Tech posted an 

opening for “Computer Engineers (Analog and Digital),” with specific emphasis on circuit 

design, logical design, transistors, and “theory of automatic digital computers” (Jet Propulsion 

Laboratory, 1954).  

From the mid-1950s onward, employment listings from a variety of companies solicited 

“computer engineers” with increasing frequency. Other ads from around this time omitted this 

specific term, but nonetheless called for electronics engineers and physicists with expertise in 

computing and related areas.47 These advertisements also tended to avoid reference to 

mathematics, programming, or numerical analysis. For starters, this suggested that the ideal 

prospective employees for computer design and development work were male engineers, albeit 

with some room for research scientists. Corporate employers were likely eager to employ 

computer designers and engineers who had been trained as engineers, and who could be expected 

to behave as predictable “professionals.” Further, the relatively large number of postings for 

computer-oriented engineers revealed an early division of labor between the design and 

application aspects of computer development, as well as a relatively low level of early demand 

for application-oriented workers. As I discuss in the following chapter, openings for computer 

programmers, numerical analysts, and related positions appeared more regularly in the mid-

1950s and beyond. Yet terms such as “computer engineer” and “computer engineering” 

persisted, and they remained closely linked to research and development activities in the 

commercial sector. 

The Relational Ontology of Computer Engineering48 

Like earlier terms such as “radio engineering,” the “computer engineering” moniker was 

coupled with a specific and relatively young technology. It also encompassed a broad array of 

engineering sub-specialties – including electronics engineering, circuit design, and systems 

engineering – that played central roles in the computing field. Further, the term was starting to 

subsume new areas of expertise, such as logical design, that were growing out of work in the 

computing field. Yet the area of computer engineering was not emerging in isolation, and the 
                                                
47 For instance, a 1954 Hughes ad that carried the heading “Digital Computer Techniques” called for 
engineers, physicists, and “computer applications specialists.” More specific areas of expertise listed in 
the ad included logical design, component development, programming, circuit design, and systems 
analysis (Hughes Research and Development Laboratories, 1954). 
48 On the concept of relational ontology, see Breslau (2000). 
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definition of “hardware” was not without contestation. It was increasingly necessary to position 

the field and its associated technologies with respect to the wider disciplinary and technological 

landscape of computing.  

As the general area of computer design and computer engineering gained a more 

cohesive identity and scope, a number of commentators explicitly discussed how the major 

subfields of computing were related. These remarks often centered on the boundaries around 

two major areas, the first centered on design, engineering, and “hardware,” and the second 

encompassing applications, users, and programming. While this particular theme can be 

traced back to Mauchly’s aforementioned remarks at the 1947 symposium, it was revisited 

with increasing frequency from the early-1950s onward. At the first JCC, for instance, we 

find echoes of Mauchly in Forrester's closing remarks: “A great deal of machine time can be 

saved by analyzing computing programs and providing special machine logic or facilities for 

saving time in the more frequent types of operations” (1952, p. 113).  

While this type of trade-off was an important issue on its own, it was also closely 

linked to the boundaries around the activities of computer design and use, as well as the 

identities of computer designers and users. A keynote address at the same meeting, delivered 

by Bell Labs engineer W. H. MacWilliams, added that one of the major objectives of the 

conference was: 

[T]o assess the adequacy of the designs of present working high-speed digital 

computers in order to point out the direction in which computer design should go, 

to make computers best for the jobs that they have been doing and for the jobs 

that they will have to do. This is basically an engineering or design objective, but 

it is clear that it also involves the users in an important way. This is a meeting of 

both builders and users, all of whom are actively interested in the field (1952, p. 

5). 

As suggested by this remark, by the 1950s computer builders and users were being portrayed as 

increasingly distinct groups, each linked to particular areas of expertise, activity, interest, and 

technology. Yet given that the two groups were united under the larger umbrella of the 

computing field, their emergence and ongoing development were necessarily happening in 

relation, not isolation. 
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MacWilliams’s comment also revealed that the budding divide between computer 

builders and users was accompanied by a growing recognition that computer designers needed to 

more actively study how computers were being applied, especially as they worked to refine 

existing computers and imagining new designs. Further, much of this critique was coming from 

mathematicians and other computer users. For instance, Murray Lesser of Northrop spoke at the 

1952 LA symposium about the challenges of using high-speed calculating equipment for solving 

engineering problems. Playfully chiding engineers for their lack of knowledge regarding the 

actual use of computers, Lesser explained: “Although the viewpoint about to be expressed 

appears to be largely ignored by the designers and builders of the new breeds of automatic high-

speed digital computing machines, it is the opinion of this writer that the primary reason for the 

existence of such devices is to aid in the solution of problems” (Lesser, 1952, p. IX:1).  

At the same event, mathematician Derrick Lehmer pushed in a similar direction when he 

mentioned the lack of programming knowledge among engineers: “We had a little session on 

coding this morning. I think a number of engineers got a clearer picture of how important this 

part of computing has to be” (1952, p. XX:2). Lehmer also echoed Goldstine’s aforementioned 

1947 conference summary as he commented on the budding tensions between the engineers and 

mathematicians involved the computing field. “The engineer and the mathematician are involved 

in a joint effort in this particular field,” Lehmer stated, adding that “this symposium ought to 

record ... the possibility of cooperation between these two groups” (p. XX:2).  

Early editorial remarks in the Transactions of the PGEC provide further evidence 

regarding the more general position of engineers with respect to computing. For starters, the 

aforementioned emphasis on computer engineering and “hardware” by the editors of the 

publication was accompanied by efforts to frame programming and applications as largely 

beyond the bounds of the journal: “We may think of programming as relating to applications and 

being outside the sphere of interest of most computer engineers” (“Editorial,” 1953). Yet the 

same editorial acknowledged that the topic of programming might prove relevant to the journal's 

audience, particularly when it was clearly related to issues of computer design: 

It is a fairly recent discovery that, with general-purpose computers, we can 

replace hardware by programs [...] The design of suitable programs is analogous 

to the design of the computer circuits or the development of the internal logic. We 

might call it program engineering, for the existence of good programs to assist in 
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running a computer can be as vital to its success as good circuits. We plan to 

publish papers on a wide range of subjects, including circuits, components, 

systems, input and output, logic, and “program engineering” (“Editorial,” 1953). 

On the one hand, this statement is striking in that it subtly foreshadowed the much later 

development of “software engineering” as a new subfield of computing.49 But more importantly 

for the present analysis, the editorial revealed a central point of tension in the field's nascent 

social and technical boundaries. To whit, if hardware could be replaced by programs (and vice-

versa), to what extent were the boundaries around the areas of computer engineering and 

computer programming justifiable or maintainable? This tension, I contend, is a primary and 

persistent source of instability in ongoing efforts to bound off and define a field of computer 

engineering. 

Hopper and Mauchly also revisited the design-programming relationship in a 1953 article 

titled “Influence of Programming Techniques on the Design of Computers” (Hopper and 

Mauchly, 1953). In general, the article provides further evidence for the major divisions of labor 

that were increasingly common in the field. The authors described design engineers as being 

principally concerned with circuits and “hardware,” while programmers were mainly focused on 

“discover[ing] new ways of adapting the computer to particular applications” (p. 1250). 

Sketching out the relationship between these two groups, Mauchly and Hopper added: 

This relation between the programmer and the designer of computers is by no 

means a static one. While the engineer is developing new components and better 

ways of using such components, the programmer is likewise developing new 

techniques for the application of computers and is continually enlarging the range 

of applications as well. ... The development of new techniques in programming 

may have as profound an influence on computer design as would be produced by 

an entirely new type of memory or switching element (p. 1250). 

This rather taken-for-granted description of the two subfields is noteworthy, especially given that 

the tentative boundaries around these areas had only emerged a few years prior, largely in 

tandem with the advent of the first stored-program, general purpose computers.  

Yet Mauchly and Hopper's major concern in this article centered on the relation of the 

two groups, rather than on their definition or even existence. In fact, they followed in the 

                                                
49 On the history of software engineering, see the work of historian Michael Mahoney (1990; 2004b). 
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footsteps of earlier commentators as they pushed computer designers to grapple with the 

concerns and techniques of programmers. “Certainly the programmer must help the engineer in 

evaluating proposed engineering plans” they stated, adding that “he can often suggest 

possibilities for the engineer to consider. Sometimes a relatively minor design modification can 

result in savings in programming” (p. 1250). In the remainder of the article, Mauchly and Hopper 

outlined a number of specific areas where programming developments had informed – or could 

potentially inform – the design of computing machines.  

In a 1953 article on the topic of “compiling routines,” Hopper pushed in similar 

directions (Hopper, 1953). Noting that computers had already been designed with instruction sets 

of widely varying sizes – ranging from a total of about eight to eighty individual machine orders 

– Hopper explained that decisions about the composition of a machine’s instruction set were 

often linked to key design trade-offs, such as ease of programming versus machine complexity. 

Coming down in favor of relatively small instruction sets, Hopper described how various 

techniques – including the use of programmed subroutines – could be used to tailor general-

purpose computers for particular applications. She also stressed the need for close cooperation 

between programmers and engineers in the design and building of these machines: 

[I]t is desirable that programmers work side by side with logical designers and 

engineers at the time that the design of a computer, large or small, is begun. Thus, 

a computer will be delivered with its basic programs tested and proven, ready to 

be used flexibly and conveniently (pp. 1-2).  

Yet this call for reform seemed to be gaining little traction outside of a handful of outspoken 

commentators, many of whom happened to be mathematicians and programmers. Computer-

oriented engineers might acknowledge the relation between programming, applications, and 

computer design, but speaking of close cooperation with programmers was all but taboo. 

It is also worth noting that the influence of Hopper’s remarks was further blunted by the 

fact that she was one of only a handful of women in the computing field. Through the early-

1950s, it had become abundantly clear that while women might make their way into computer 

programming, their contributions in the area of computer design were almost entirely limited to 

documenting existing work, and perhaps even commenting on it. Hence, it is perhaps not 

surprising that Hopper’s 1953 article was relegated to Edmund Berkeley’s upstart computer 

journal Computers and Automation, while her article with co-author Mauchly – who, unlike 



www.manaraa.com

 65

Hopper, happened to be a member of IRE – was published in the more prestigious and 

technically-oriented Transactions of the IRE. No matter the impressive the technical expertise 

accumulated by pioneers such as Rhodes and Hopper, the early computer engineering field was 

all but impermeable to women, as well as to others without the appropriate credentials, 

experience, or identity. 

Conclusion  

In this chapter I have discussed the emergence of a more recognizable computer “field” 

from the mid-1940s onward, as reflected in the scope and scale of numerous meetings, symposia, 

publications, and computer development projects. Yet I also emphasize the countervailing forces 

that were simultaneously deepening the field’s social and technical boundaries, leading to an 

incipient tendency for fragmentation. These themes are brought into further relief as we look 

more specifically as the role and position of engineers and engineering knowledge in the early 

development of high-speed computing. As I have argued, electrical engineers made a number of 

early moves to bring computers into engineering, just as their predecessors had done with radio 

decades before. Authors such as Zadeh, for example, clearly painted the computing field as a 

new branch of electrical engineering. Further, the term “computer engineering” created an 

important semantic link between the pre-existing professional identities and practices of 

engineers, on the one hand, and the new activities and bodies of knowledge that were associated 

with computer design and construction, on the other. 

As this vision for a field of computer engineering started to materialize in the early and 

mid-1950s, it was also increasingly evident that the interests of electrical engineers were limited 

in scope. Events such as the first JCC were almost exclusively dedicated to the engineering 

aspects of computing, and the IRE-PGEC explicitly itself positioned at the intersection of 

computer design, engineering, and “hardware.” Early issues of the PGEC’s Transactions went so 

far as to explain that topics such as such as numerical analysis and programming were largely 

tangential to computer engineers, except where application and design were most directly and 

obviously related.50 As suggested by this historical account, parceling off computer design and 

                                                
50 By this time there were growing numbers of engineers who were interested in the use of high-speed 
digital computers for engineering problem solving, but these were rarely the same engineers who were 
doing computer design work. On the other hand, analog computing was an area where the users and 
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engineering as a distinct field required acts of boundary definition and negotiation that were as 

much social as they were technical. To put it another way, the proponents of this disciplinary 

project were engaged in extensive sociotechnical boundary-work. 

But just as the social and technical foundations for a more recognizable field of computer 

design and engineering were laid, large swaths of computing were being claimed by other 

interested individuals and groups, many of them without strong ties to engineers or engineering. 

This trend can be traced back to the prominent early role of mathematicians and scientists in 

computing, as well as to early conferences and publications where topics such as computer 

programming and applications were frequently separated from discussions of computer design 

and engineering. As I document in the following chapter, the major social and technical divides 

between the design and application dimensions of computing persisted through the 1950s and 

into the 1960s, as evidenced in the ongoing evolution of educational programs, professional 

groups, and university-industry relations, to name a few important themes. 

By the early 1950s, however, prescient commentators such as Lehmer, Mauchly, and 

Hopper were already recognizing some of the possible consequences of the field’s deepening 

social and technical boundaries. More specifically, they argued that closer cooperation between 

designers and programmers might be an important step toward making computer systems more 

flexible, reliable, and easy to use. While the vision offered by these pundits was both compelling 

and rather straightforward, it tended to obscure the challenging social and technical realities that 

were at the heart of the situation, and that would grow increasingly salient in subsequent years. 

                                                                                                                                                       
designers of computers were often one and the same. But as noted above, my primary focus here is on the 
field of high-speed digital computing. 
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Chapter 3 

A System of Professional Societies: 

Negotiating the Sociotechnical Settlements 

 

 

 
Professional societies often play important roles in the development of professional fields 

and academic disciplines. In fact, their activities often span and bridge the social and the 

technical – as well as the disciplinary and professional – such as in ongoing efforts to establish 

professional identities, define the scope of fields and subfields, codify relevant bodies of 

knowledge, set standards, and develop curricular recommendations. Professional society 

publications and activities can also help reveal major trends and issues in contexts that are 

otherwise difficult to access or assess, such as the private sector. The present chapter is largely 

focused on the internal development and relational interaction of three organizations that 

maintained interests in the computer field from the mid-1950s to mid-1960s, namely the 

Association for Computing Machinery (ACM), the Institute of Radio Engineers Professional 

Group on Electronic Computers (IRE PGEC), and the American Institute of Electrical Engineers 

Computing Devices Committee (AIEE CDC).  

Yet unlike other historical and social studies of disciplines and professions, my focus on 

these particular groups stems not from their unambiguous association with a single, common 

professional or disciplinary domain. Rather, these organizations maintained partially overlapping 

interests – or “settlements” – in various domains of technology, bodies of knowledge, and types 

of work. I therefore frame these three organizations as constituting a dynamic “system of 

professional societies.” Further, I document how a modicum of stability was achieved in this 

system through a long series of negotiations and compromises that were worked out both within 

and between these groups, often against a backdrop of rapid sociotechnical change. 

I place particular emphasis on the role of the Joint Computer Conferences (JCCs) in this 

process. As discussed in the preceding chapter, by the early 1950s a growing band of electrical 
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engineers was staking out territory in the expanding computer field. The first JCC – which was 

held in 1951 – provides important evidence for this movement. In fact, the proceedings from this 

event include some of the first published uses of the term “computer engineer,” revealing the 

emergence of a distinct professional identity for computer designers and related types of 

workers. Yet if the preceding analysis stressed the role of the joint conferences in the early and 

tentative emergence of “computer engineering” as a new field, the present chapter documents 

key shifts in the orientation and function of the JCCs through the 1950s and into the early 1960s. 

As I discuss below, the prominence of engineers in the early joint conferences gradually faded as 

these events became a common point of intersection for a more diverse assortment of actors and 

groups. In fact, the joint conference series and its associated joint committee both reflected and 

reinforced the respective sociotechnical settlements of the ACM, IRE PGEC, and AIEE CDC. 

Even more generally, this chapter sheds light on the interplay of both stabilizing and 

destabilizing forces in the context of a system of professional societies. Potential sources of 

instability in this system include technological developments, changes in the size and scope of 

organizations, and incursions from “outside” groups. Sources of stability, on the other hand, 

include relative homogeneity in the composition of a given group, joint committees and other 

activities between groups, and the mirroring of various social and technical boundaries in diverse 

contexts, ranging from professional groups and the workplace to educational sites. Ultimately, I 

argue in this chapter that the joint conference series and its associated organizing committee 

helped ameliorate the persistent risk of instability in this system of professional societies.  

The Early History of the ACM: “What Computers Do” 

In the preceding chapter I largely sidestepped the early position and role of the ACM in 

the computer field. And while the history of the ACM has to some extent been covered 

elsewhere, an overview is necessary to frame the evolving relation of the ACM, IRE, and AIEE, 

as well as to set the stage for later historical developments. To begin with, the ACM deserves 

credit as the first stand-alone professional group in the computing field. Originally dubbed the 

“Eastern Association for Computing Machinery,” the new group attracted 52 members to its first 

meeting at Columbia University in September of 1947 (Alt, 1962, p. 300). An early “Notice of 

Organization” outlined the organization’s rather wide-ranging purpose: “to advance the science, 

development, construction, and application of the new machinery for computing, reasoning, and 
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other handling of information” (Alt, 1962, p. 305).51 The broad scope of the ACM was also 

reflected in the composition of the group’s first governing councils, which included many of the 

individuals introduced in the previous chapter, ranging from physicist and ENIAC co-developer 

John W. Mauchly to engineers such as Charles Concordia, T. K. Sharpless, and Jay Forrester. A 

number of computer-oriented mathematicians – such as Franz L. Alt, Hans Rademacher, and 

Mina Rees – also took on early leadership roles in the ACM.52 

The group was renamed the “Association for Computing Machinery” in 1948 and it 

expanded rapidly thereafter, claiming roughly 250 members in April of 1948, more than 450 in 

early 1949, and more than 1100 in late 1951 (“News: Association for Computing Machinery,” 

1948; “News: Association for Computing Machinery,” 1949; Alt, 1962, p. 301). Until the 

Journal of the ACM was established in 1954, Mathematical Tables and Other Aids to 

Computation served as the primary publication outlet for ACM news and articles.53 Beginning in 

1947, the group also organized its own national meetings and conferences, and it published 

proceedings for many of these events. In contrast to the more engineering- and industry-oriented 

AIEE and IRE, the ACM attracted relatively large numbers of computer-oriented mathematicians 

and scientists, and the group gained an early reputation for both its theoretical leanings and its 

reasonably close ties to the academic sphere.  

In fact, the orientation of the Association toward science and computing – rather than 

engineers and computers – was evident in the proceedings for one of the group’s national 

meetings in 1952. This particular volume included a Forward, authored by outgoing ACM 

President Franz L. Alt, that restated the group’s purpose: “It is the purpose of the Association for 
                                                
51 A news item that appeared in Mathematical Tables and Other Aids to Computation included a 
statement of purpose for the ACM that was nearly identical to the one cited here, only differing in the 
replacement of the word “development” with “design” (“News: Association for Computing Machinery,” 
1948, p. 133). This modified version of the statement persisted well into the 1950s. The use of the word 
“science” in this statement also reflected the orientation and interests of many ACM members. 
52 Mathematician Mina Rees also served on the first ACM Council. Her early involvement with the 
computer field largely stemmed from her work at the Office of Naval Research from 1946 to 1953 (Green 
et al., 1998, p. 867). Rees’ position on the ACM council suggests that the Association provided a more 
hospitable environment for computer-oriented mathematicians, including those that happened to be 
women. The AIEE and IRE, on the other hand, largely restricted membership to those who held degrees 
in engineering or physics. This only reinforced the homogeneity of these groups since few women had 
these qualifications.  
53 Founded in 1943, the scope of this journal steadily expanded from the mid-1940s on to include various 
topics related to high-speed calculating and computing machines. In addition to serving the early 
publication needs of the ACM, this journal also referenced and reviewed many of the papers published 
and events held by other professional societies, including the AIEE and the IRE. 
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Computing Machinery to advance the science of numerical computation, in particular the design, 

development, construction, and application of modern computing machinery” (1952).54 As 

suggested by this passage, many in and around the field were beginning to frame large swaths of 

computing as a new type or branch of “science.” And while the term “design” also appeared in 

Householder’s remarks, there was no mention of “engineering.” 

In its early years the ACM enjoyed a relationship with the AIEE and IRE that was 

generally friendly and cooperative. By the early 1950s, however, new tensions surfaced, 

especially amid ongoing moves to define and clarify the orientation and jurisdiction of the major 

computer-oriented professional groups. As noted above, for example, in 1951 the ACM was 

officially listed as a “participant” in the first Joint Computer Conference (JCC), rather than as a 

full co-organizer. According to one more recent account, the first JCC was actually spearheaded 

by members of the AIEE, with the IRE accepting invitation as a joint sponsor (Armer et al., 

1986, p. 226). The ACM declined a similar invitation, wishing instead to be listed as 

“cooperating.” While larger political and financial motivations likely played a role in the ACM’s 

guarded participation in the first JCC, more practical concerns were also afoot, including 

questions about the appropriate schedule and scope of the various national computer meetings. 

Yet as Alt explains, these types of issues were largely smoothed out by 1953, when “an 

unwritten compromise was worked out between JCC [Joint Computer Committee] and ACM, by 

which the latter would hold one national meeting per year, normally in summer … while JCC 

meetings would be held in the East in late fall and West in spring” (1962, p. 302).  

The scheduling of conferences, however, was but one aspect of a more general process of 

professional and disciplinary negotiation that started to receive significant attention beginning in 

the early 1950s. In fact, it is somewhat ironic that Samuel B. Williams was in the middle of some 

of the earliest debates about the appropriate position of the ACM with respect to both the 

computer field generally and the computer-oriented groups of AIEE and IRE specifically. As 

noted in the preceding chapter, Williams was well-known for his involvement in the early design 

and construction of relay computers at Bell Labs. Yet he went on to serve as the ACM’s Vice-

President from 1950 and 1951 and President from 1952 to 1953.55 As Akera describes it, 

                                                
54 Alt, like many other ACM leaders, held a Ph.D. in mathematics. He was also a co-founder of the ACM. 
55 As suggested by this biographical sketch, the term “hybrid actor” is appropriate for Williams. In fact, I 
identify a number of such actors in this chapter, and through their individual histories I bring into further 
relief how personal experiences and background frequently come into contact, mesh, and/or clash with 
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Williams “turned to the ACM as a way of retraining himself, particularly with respect to 

electronic computers and computing techniques” (1998, pp. 578-579). This move followed his 

retirement from Bell Labs in 1946 after 41 years of service, as well as a brief but generally 

unsuccessful stint at the University of Pennsylvania’s Moore School in the mid-1940s 

(“Retirements: Samuel Byron Williams,” 1946; Akera, 1998, pp. 578-579). Looking beyond his 

career trajectory, Williams' engineering background and previous experiences in computing were 

quite unlike those of prior ACM Presidents such as Alt, and Williams’ loyalties were certainly 

tested as debates about the ACM’s scope and proper position in the field rose in prominence. 

As Akera explains, questions about the orientation of the ACM were surfacing by at least 

1952, when a Policy and Planning Committee established by the ACM’s governing council 

reported that areas of interest such as system requirements, logical design, and performance 

requirements should remain within the domain of the ACM (1998, p. 580). But an amendment 

proposed in 1953 pushed in a somewhat different direction as it called for the removal of the 

word “construction” from the ACM’s constitution. According to Alt, this motion was intended to 

“reduce the overlap between the ACM and the purely engineering organizations, IRE and AIEE” 

(Alt, 1962, p. 305). As documented by Akera, much of the original impetus for this amendment 

came from IBM engineer and IRE-PGEC chair Morton Astrahan. After taking over as the editor 

of the IRE-PGEC's Transactions, Astrahan wrote a letter to Williams in which he declared, “We 

feel the major emphasis of ACM activities should be on the theory of computing and the 

applications of computing equipment in the scientific and commercial field” (cited in Akera, 

1998, pp. 579-580). But in his response to Astrahan, Williams stood his ground: “I personally 

feel that the ACM has a very definite place in the engineering and scientific world” (cited in 

Akera, 1998, p. 580). In the end – and after much discussion and debate – the amendment was 

defeated by a slim margin of member votes.56 At least for the time being, the term “construction” 

was to remain in the ACM’s official statement of scope. 

Yet despite both the Council’s earlier recommendations and the failed constitutional 

amendment, from the mid-1950s onward Williams and other ACM leaders made their own 

                                                                                                                                                       
various technologies, social groups, institutions, and bodies of knowledge. Simply put, people frequently 
transcend and defy boundaries. 
56 According to Akera, this particular amendment was approved by the members of ACM's council. But 
as recounted by both Alt and Akera, it was ultimately defeated by ACM members (Alt, 1962, p. 305; 
Akera, 1998, p. 586). 
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strategic moves to distance the Association from the general sphere of computer hardware. In 

1953, for instance, Williams authored a position piece that appeared in a new magazine titled 

The Computing Machinery Field.57 In this short article, Williams noted that the AIEE, IRE, and 

ACM were all expressing “active interest in the field of computer machinery,” and he asked 

whether the presence of these three groups was leading to overlap, duplication, and/or confusion 

(1953, p. 21). On the one hand, Williams explained that “[p]art of the overlap and duplication is 

beginning to be avoided through the activities of the Joint Computer Conference Committee” (p. 

21). This was an important insight. As I note below, the joint committee and conferences were 

beginning to play an increasingly pivotal role in maintaining a balance between the ACM and its 

more engineering-oriented counterpart societies. 

On the other hand, Williams also went on to argue that more could be done to partition 

the field between the three professional societies in question:  

But some more of the overlap and duplication may be avoided, by allocating 

portions of the field of computing machinery according to main interest. As 

between the ACM and the other two organizations, there is one area which is 

preeminently in the area of the ACM: “What Computers Do”. This includes 

programming, logical design, problems to be solved, numerical and logical 

analysis of scientific and business problems, etc. (1953, p. 21). 

Williams concluded his editorial by suggesting that AIEE and IRE publications were the primary 

outlets for “technical papers on machinery,” and he noted that the division between these two 

groups would be worked out over time.58 He also explained that ACM meetings and publications 

were largely focused on “what computers do.” This allocation scheme clearly positioned the 

ACM as picking up where the more engineering- and machine-oriented IRE-PGEC and AIEE 

CDC left off. 

Williams also made it clear that his 1953 article reflected only his personal views. 

However, he was soon addressing many of these same issues in his officially capacity as 
                                                
57 Established by ACM co-founder Edmund Berkeley in the early 1950s, this magazine took the title 
Computers and Automation in March of 1953. This is the name by which it is most widely known. 
58 Reflecting the dominant image associated with each organization, Williams explained that “the division 
[between the AIEE and IRE] will be worked out in much the same was as the division has been worked 
out in the past: electronic, high frequency, communication, to the IRE; electrical, low frequency, power, 
to the AIEE” (1953, p. 21). As suggested by this remark, the IRE seemed to have a bigger potential stake 
in the computer field, including in areas such as the design of electronic components and systems.  In 
subsequent sections I discuss this point at length. 
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President of the ACM. In a speech that was delivered at the Association’s 1953 national meeting 

and published the following year in the inaugural issue of the Journal of the Association for 

Computing Machinery (JACM), Williams started with a brief history of the “automatic 

computing field” that included a number of details about the formation of the Association 

(1954). He added: 

The Association has become an important factor in the field of computing 

machinery. Until the engineering societies became sufficiently interested to 

struggle with the “hardware”, the Association provided a forum for all phases of 

the field. Now the Association can direct its efforts to the other phases of 

computing systems, such as numerical analysis, logical design, application and 

use, and last, but not least, to programming (p. 3). 

And in another part of his talk, Williams continued to build on this theme by incorrectly stating 

that the AIEE and IRE computer committees were both established in 1951.59  

As outlined above, the historical record reveals that electrical engineers in general – and 

the engineering societies in particular – were interested in computer hardware and other areas of 

computing by at least the mid-1940s. And while it is difficult to pin down the exact reasons for 

Williams’ somewhat inaccurate account, by this time the ACM was clearly facing jurisdictional 

pressure from both the AIEE and IRE. In addition, Williams’ framing opened the way for a more 

graceful exit to the debate, both by emphasizing the historical position of the ACM and by 

shifting the conversation toward a discipline-building agenda that centered on the ACM’s 

presence in less contested areas, such as numerical analysis, applications, and programming. Yet 

boundary work is rarely so simple or clear-cut, and one of the topics identified by Williams – 

namely logical design – was an increasingly important area of negotiation in ongoing debates 

over the boundaries the various computing groups, a point to which I will return.60 

                                                
59 As noted in the previous chapter, a computing subcommittee was established by the AIEE in 1946, and 
elevated to full technical committee status in 1948. The IRE’s computer committee was formed in 1948, 
and the PGEC in 1951. Yet even today, parts of the ACM web site include a subtitle that reads “The First 
Society in Computing” (“ACM: Association for,” n.d.). 
60 The concept of “logical design” can be traced back to at least the work of Alan Turing in the 1930s. 
The term was also featured prominently in the title of a well-known 1946 report titled Preliminary 
Discussion of the Logical Design of an Electronic Computing Instrument (Burks, Goldstine, and von 
Neumann, 1989). As nicely summarized in a more recent volume, “The term ‘logic design’ refers to the 
process of specifying an interconnection of logic elements in digital computer hardware so that a desired 
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Subsequent leaders of the ACM revisted many of the issues that Williams had addressed. 

In late 1955, for instance, the Association’s Presidency passed to Alston S. Householder, a 

mathematician who at the time was working for the Mathematics Panel at Oak Ridge National 

Laboratory. In a Presidential address delivered in 1955, Householder boasted that the 

membership of the group was approaching 2,000. Echoing Williams’ prior remarks, he added: 

“Today there are active groups in the IRE and the AIEE concerned with componentry and 

construction, and the ACM is restricting its sphere to that of the effective use and application of 

those machines” (1956a, p. 1).61 Yet in this same talk, Householder acknowledged that the field 

might be more aptly described as a spectrum rather than two distinct spheres:  

Design, construction, and use are but points on a continuous spectrum since 

clearly a designer must have a use in mind, and a user, if he is to be intelligent, 

must know something of the design. But ACM concerns now fall largely in the 

applications region of the spectrum (pp. 1-2). 

And in 1956, Householder stated even more directly that there was general agreement that the 

ACM “should no longer concern itself with hardware” (1957, p. 2).62 Householder’s remarks 

hinted at the difficulties that came with bringing the activities, mission, and scope of a 

professional society into alignment with the major social and technical boundaries that were 

growing up in the computer field. Just how does one partition a “continuous spectrum,” much 

less in ways that satisfy three professional groups? As I argue in this chapter, the concept of 

“sociotechnical settlement” helps us understand how this challenge was dealt with.  

Further, by the late 1950s it was evident that the ACM and its members were increasingly 

aligned with mathematics and programming, theory and applications. The group also maintained 

close ties to the academic context, especially through its leadership ranks. These trends were 

reflected in the election of subsequent ACM Presidents, including mathematics professor and 

                                                                                                                                                       
function is performed” (McCluskey, 1976, p. 809). This general meaning of the phrase has remained 
roughly constant from the earliest days of the field to the present. 
61 Householder also indicated that engineers were extensively involved with the ACM in its early days, 
and he noted that “[i]n 1949 there was much discussion of componentry and design, less of techniques 
and applications” (1956, p. 1). By the time of his talk, however, the area of “techniques and applications” 
had risen dramatically in prominence and importance, both within and beyond the group. 
62 Householder raised another notable concern in this talk, namely the increasing mathematical orientation 
of the group: “I have heard the complaint that too many papers, in the meetings and in the Journal, are too 
mathematical, and that, in particular, there are not enough papers dealing with business applications” 
(1957, p. 2). Similar concerns have periodically resurfaced throughout the history of the ACM. 
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computer researcher John W. Carr III, who headed the organization from 1956 to 1958. 

Mathematician Richard Hamming, on the other hand, took the post from 1958 to 1960. In fact, 

Hamming emphasized in his inaugural Presidential address that the group had given up its 

interest in computing machinery, and was instead largely acting as a point of common ground for 

mathematicians, logicians, and users (Akera, 1998, p. 593). As documented by Akera, the ACM 

was also attracting large numbers of programmers to its ranks, and the group’s membership rolls 

more than doubled from approximately 2,300 members in 1956 to more than 5,000 in 1959 (Alt, 

1962, p. 301).  

Perhaps not surprisingly, the ACM Conferences tilted accordingly. As reported in 

Computers and Automation, only about 15% (11 of 75) of the papers presented at the 1958 ACM 

National Meeting were focused on computer design, while 38% dealt primarily with computer 

mathematics, 20% with computer applications, and 19% with computer programming (“Is the 

Computer Field,” 1958). As the editors noted, this data raised questions about whether the 

computer field “will stay together or come apart into pieces.” On the other hand, evidence for the 

ACM’s leanings toward mathematics and the sciences came in 1958, when the organization 

secured official representation in the Mathematical Sciences Division of the National Academy 

of Sciences – National Research Council (Alt, 1962, p. 304). 

By some accounts, the ACM looked like a healthy and expanding organization as the 

1950s drew to a close. However, it faced a growing roster of concerns. Paul Armer – who was 

defeated by Hamming in the group’s 1958 Presidential run-off – identified many of these issues 

in an editorial published in early 1959. Complaining that the ACM was in “a state of complacent 

lethargy,” Armer urged the leaders and members of the group to “think big” (Armer, 1959, p. 2-

3). He also posited that the ACM might one day become “the professional society unifying all 

computer users” (p. 3, my emphasis). Armer went on to offer a number of more specific 

suggestions, including the establishment of a special interest group system and a change of venue 

for the ACM’s national meetings from universities to hotels.63 An ad-hoc committee led by 

ACM Vice President Harry Huskey made a number of similar recommendations in a 1959 

                                                
63 As Akera explains, the latter suggestion was an important challenge to the long-standing academic 
orientation of the group and its leadership (1958, p. 596). The idea was implemented in 1961, when the 
ACM’s 16th annual national conference was held at a hotel in Los Angeles. This was also the first ACM 
meeting to feature manufacturer’s exhibits, which was another significant change for an organization that 
had long resisted industrial or commercial influences (Huskey, 1961a). 
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report, including the special interest group idea. As described by Akera, this report recommended 

many organizational and representational changes, especially in light of the group’s ongoing 

movement beyond “scientific computing” and into the realm of business data processing (Akera, 

1998, pp. 597-598). 

But even as the wheels of organizational change were starting to turn, outspoken ACM 

members continued to complain about the group’s scope and orientation. Philip R. Bagley of 

MIT’s Lincoln Laboratory noted in 1959, for example, that “[i]t is not at all clear to me what the 

ACM’s actual sphere of interest is. If one were to judge from the Journal, it appears to be largely 

in mathematical techniques suitable for computers, and includes a smattering of programming 

techniques” (Bagley, 1959). Pointing to a disconnect between the ACM’s constitution and its 

actual activities and publications, Bagley went on to note that many areas of possible interest to 

the ACM were “being staked out by other societies, principally SIAM, AIEE, and IRE-PGEC.”64 

He called on the ACM to clarify its interests, and to carefully consider how these interests 

overlapped with other, “adjoining” societies. 

Questions about the scope of the ACM were also paralleled by a sort of identity crisis 

among many of the group’s members. Early evidence for this theme can be found in 

Communications of the ACM (CACM) a monthly publication that was established in 1958 as an 

outlet for news, notices, letters, and other materials not suitable for the more technical Journal of 

the ACM. In a letter that appeared in one early issue of Communications, representatives of the 

ACM’s Los Angeles chapter asked: “What is your reply when someone asks your profession? 

Computing Engineer? Numerical Analyst? Data Processing Specialist?” (Editors of DATA-

LINK, p. 6).65 Noting a lack of suitable alternatives, the authors added:  

It would help our profession to be widely recognized if it had a brief, definitive, 

and distinctive name. This should be general enough to cover a variety of 

subfields – from numerical analysis to data processing, but specific enough to 

                                                
64 The Society for Industrial and Applied Mathematics (SIAM) was formally established in 1952. While 
largely beyond the scope of my analysis, “Looking Back, Looking Ahead: A Siam History” (2002) 
provides a summary overview of this organization’s history. 
65 It is worth noting the intentional use of the phrase computing engineer rather than computer engineer. 
The former suggests a concern with applications and hence computing, while the latter implies an 
individual who designs or engineers computers. In the following chapter I document the use of these 
terms as occupational designations. 
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imply that computing applications are involved. Consider the solid professional 

sound of such terms as “Petroleum Engineer” or “Nuclear Physicist.” 

In addition to revealing a perceived lack of disciplinary identity and unity among many 

computer-oriented workers, this letter also reflected concerns about “professional” recognition. 

Further, the authors hinted that other domains, such as engineering or the sciences, might provide 

inspiration in their quest for a suitable professional identity.  

Responding to this letter, ACM members put forward a number of creative suggestions. 

One letter defined the obvious yet awkward term “comptology” as “[t]he science of computers, 

computation, and computer control. Also of computer application” (Correll, 1958). The author 

also included a number of more specific variations of the term, including “electrical engineering 

comptologist.” And a subsequent writer, noting inspiration from the Greek hypologi (“to 

compute”) suggested “‘hypologist’ for the man and ‘hypology’ for the field,” (Zaphyr, 1959). 

And while these terms never came into widespread use, the underlying issues were clearly 

important. In fact, below I discuss the emergence of some other titles that ultimately proved 

more successful. 

In the early 1960s the ACM continued a general pattern of growth and expansion, and 

debates over the identity and scope of the group temporarily took a backseat to other pressing 

matters. In fact, many of the issues addressed around this time were at least partially skewed 

toward the interests and agenda of ACM President Harry D. Huskey. After serving as Vice 

President under Hamming, Huskey took over the ACM’s top spot from mid-1960 to mid-1962. 

In terms of background, Huskey followed in the footsteps of other “hybrid” actors, such as the 

aforementioned Samuel Williams. He held M.S. and Ph.D. degrees in mathematics – an 

appropriate pedigree for an ACM leader (Lee, 1995, pp. 390-391). Yet Huskey was also well-

known for his early work and many contributions in the area of computer design, and he 

maintained close ties with the IRE-PGEC, having served as Review Editor for the group’s 

Transactions from 1953 to 1957.66 Even Huskey’s joint appointment at Berkeley – in 1954 he 

took the title Professor of Mathematics and Electrical Engineering – reflected his somewhat 

ambiguous position with regard to the computer field’s major boundaries (Huskey, 1991, p. 294). 

                                                
66 Huskey was involved with the ENIAC project from 1943 to 1946, and he worked on the early logical 
design of the EDVAC. He also played a leading role in the design and construction of the well-known 
Standards Western Automatic Computer (SWAC) in the late 1940s and early 1950s, and he was the 
principal designer of the commercially produced Bendix G-15 computer (Lee, 1995, pp. 390-391). 
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Huskey’s frequent “Letters from the President” column reveals that the early 1960s were 

a time when the leaders of the ACM were dealing with new publications and publication 

policies, new institutional membership and student chapter programs, and the formation of the 

American Federation of Information Processing Societies (AFIPS). The group’s membership 

also continued to expand, with the membership count breaking through 10,000 barrier around 

1962 (Huskey, 1962a). But perhaps just as importantly, changes to the ACM bylaws that were 

passed in 1960 opened the way for the official formation of Special Interest Committees (SICs) 

and Special Interest Groups (SIGs) (Huskey, 1960a; Gilchrist, 1961a). The former were smaller 

and more exploratory in nature, while the latter required a larger membership and were viewed 

as “miniature professional societies” that operated under the auspices of the ACM.67  

As other groups such as the IRE had demonstrated, the SIG strategy could better 

accommodate rapid growth in the size and scope of a professional organization, especially by 

allowing various special interests to segment, but not secede. In fact, for the ACM the success of 

this structural change was reflected in the rapid establishment groups and committees. By late 

1964, three SICs were active in the areas of Computer Installation Management, Computer 

Languages, and Digital Computer Programmer Training (Forsythe, 1964b). Five SIGs were also 

established by this time, including SIGBDP (Business Data Processing), SIGIR (Information 

Retrieval), SIGMAP (Mathematical Programming), SIGUCC (University Computer Centers), 

and SIGBIO (Digital Computing in Medicine).  

The titles of these groups also suggest that the ACM’s sociotechnical settlement in the 

areas of computer applications and programming – or “What Computers Do” – was reasonably 

well-established. The existence of the SIGUCC, on the other hand, hinted at the group’s 

continued ties to the academic sphere. Additional evidence for these trends can be found in 

membership surveys that were conducted in the early 1960s. Data collected in 1961, for instance, 

revealed that 85.5% of members were primarily interested in “programming and using 

computers,” while just 12.6% expressed a major interest in the “design of computers” (Gilchrist, 

1961b).68 As ACM Secretary Bruce Gilchrist concluded, “[T]he major interest of present ACM 

                                                
67 The phrase “miniature professional societies” was used in a 1961 call for members from the ACM SIG 
for Mathematical Programming (“ACM Special Interest Group,” 1961). 
68 A follow-up survey that was conducted in 1962 provided a more detailed breakdown of these numbers 
(Gilchrist, 1962). It indicated that 13.7% of members were primarily interested in design, followed by 
18.6% in “Systems Programming” and 37.2% in “Applications Programming.” Those interested in 
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members is very definitely the programming and use of computers, rather than the construction 

and design of computers.” Yet as suggested by the preceding overview, Gilchrist’s remarks are 

not entirely surprising, as they reflected pre-existing trends that were rooted rather deeply in the 

history of the ACM. 69 In subsequent sections I follow these trends into the 1960s, when the 

ACM and many of its members became increasingly engaged with educational issues and 

aligned with the emergent field of “computer science.” Before doing so, however, it is necessary 

to review the history of the IRE-PGEC and AIEE CDC from the mid-1950s to early-1960s. As I 

discuss in the following sections, these organizations evolved in tandem with both one another 

and the ACM, and an overall stability of this system of professional societies was maintained. 

IRE-PGEC: The Voice of the Computer Engineering Profession 

As discussed in the preceding chapter, the IRE’s Professional Group on Electronic 

Computers (IRE-PGEC) was established in 1951, and both the group’s size and range of 

activities ramped up quickly thereafter. In fact, by 1954 the membership of the PGEC had 

swelled to over 2500 members, making it the IRE’s largest professional group (“News,” 1954). 

But just who were these members? A series of surveys provide important evidence regarding the 

make-up of the IRE-PGEC in the mid-1950 to early-1960 period. More specifically, this data 

reveals the extent to which the group was largely composed of individuals who held engineering 

degrees and were employed in the private sector. A 1956 survey indicated, for instance, that a 

vast majority of the more than 2500 respondents were affiliated with private industry in either 

the commercial (40%) or military (37%) sectors, and 54% of all members noted that they were 

involved with computers as “producers” (Martin and Olson, 1957, p. 49). With regard to 

educational background, a vast majority of this same pool of members held engineering degrees, 

and a question about the “nature of work most actively engaged in” revealed three leading 

responses: electronic design, technical management, and logical design (p. 54). The work area 

labeled “programming” followed a distant fourth.  
                                                                                                                                                       
“Installations” and “Marketing” respectively made up 7.6% and 6.1% of all respondents, and “Education” 
was a major interest for another 2.9% of members. The remaining 13.9% of members indicated “General” 
or did not respond. 
69 Gilchrist also noted that “19 per cent [sic] of ACM members reporting ten years or more of experience 
in the computing field must mean, even allowing for reporting errors, that the Association for Computing 
Machinery numbers among its members a very high percentage of the people who were in the computing 
field in its early days” (Gilchrist, 1961b). Such remarks clearly emphasized both the historical and 
contemporary importance of the group. 
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On the other hand, individuals with interests in education, computer applications, and 

programming were clearly in the minority of the group’s members. Only 22% of those surveyed 

in 1956 claimed that their primary involvement with the field was as computer “users,” and 

approximately 18% indicated that they were actively engaged in the “applications” phase of the 

computer field (pp. 49; 54). Further, roughly 15% of respondents indicated “programming or 

mathematics” as their primary work activity (p. 54). In terms of employment, only 12% indicated 

that they worked for an educational institution or research group, and a mere 67 individual 

respondents (out of more than 2500 total) identified themselves as “educators” (p. 49) And 

finally, the survey revealed the extent to which IRE membership overlapped with other 

organizations, with about 23% and 15% of those surveyed also claiming membership in the 

AIEE and ACM, respectively (p. 54).70  

These data show that professional engineers with interests in computer systems, 

electronic design, and related subjects largely filled out the ranks of the IRE-PGEC. A second 

membership survey that was conducted in 1958 reinforced the earlier findings, albeit with a 

larger sample size (Uncapher, 1959). One data point worthy of note centers on a revised “nature 

of work” question where large numbers of respondents classified their primary work activities as 

most closely related to “engineering” (about 65% of responding members) and “research” (about 

25% of members) (p. 61).71 Conversely, “programming/math” and “education” were respectively 

selected by about 6% and 5% of respondents (p. 61).  

In 1959, IRE-PGEC chairman Willis Ware boasted that the group’s membership had 

topped 7000 (Ware, 1959, p. 90). Yet even in light of this impressive growth, a survey conducted 

the following year suggested that the overall composition of the group was changing very little 

(Uncapher, 1961). Based on nearly 4000 responses, the collected data indicated that employment 

of members in the private sector had risen slightly to 86%, including 44% and 42% in the 

defense and commercial sectors, respectively (p. 84). In addition, 58% of respondents specified 

that their work was primarily in “engineering,” while another 15% indicated “research” and 10% 
                                                
70 Perhaps even more suggestively, those respondents who indicated that they “usually” attended the 
ACM National and AIEE National meetings numbered a mere 7 and 18 individual members, respectively. 
However, approximately 34% of all responding members regularly went to the IRE National Meeting, 
26% to the Eastern Joint Computer Conference (EJCC), and 11% to the Western Joint Computer 
Conference (WJCC) (Martin and Olson, 1957, p. 55). 
71 These percentage values are my own approximations, based on published bar graphs of the 1958 survey 
data. Unfortunately, this summary of the survey did not include numerical totals or percentages for most 
of the results. 
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selected “administration” (p. 83). Conversely, just 3% indicated that their primary work activities 

were in the area of “education,” while 4% opted for “programming/math” (p. 83) Those 

employed by educational institutions jumped to 7%, although this clearly still represented a 

rather small segment of the group (p. 84). 

In the 1950s the PGEC was repeatedly framed as the organization of choice for those 

whose interests centered on the “the theory and practice of computer engineering” and “the allied 

arts and sciences” (“Constitution,” 1955). Yet the group also developed additional strategies and 

policies to help bolster its position in the field. An “affiliate” plan was proposed, for instance, 

that allowed an interested individual to become a member of an IRE professional group without 

first having to join the IRE, although they did need to belong to an “accredited organization 

approved by that group and the IRE Executive Committee” (Baker, 1957). As documented in a 

historical retrospective authored by former PGEC chair Walter Anderson, this idea emerged in 

the mid-1950s when it was increasingly clear that 

some of the best logic designers in the computer field were physicists who 

normally would not participate in IRE publications. The Computer Group wanted 

to relate to such companion professionals as these and to the mathematicians 

engaged in programming (Anderson, 1976, p. 48). 

While the idea of affiliate membership initially received a lukewarm reception when pitched to 

the top leadership of the IRE, persistent lobbying helped lead to the implementation of the 

program in 1957.72 And by 1960, a total of 15 societies had been approved as affiliates, including 

the AIEE and ACM (“Affiliate Status,” 1960). This was an important change, as it enabled 

greater potential participation in the PGEC by those who might not otherwise qualify for IRE 

membership, including many individuals who did not hold engineering degrees.73  

                                                
72 As Anderson recounts, when PGEC chair Harry Larson pitched the affiliate member concept to the 
IRE’s Groups Committee “it found little support from a roomful of men 10 to 20 years his senior, who 
gravely explained the dire effect this would have on the IRE and solemnly questioned the value of the 
concept” (1976, p. 48). As suggested by these remarks, professional societies often maintain membership 
gate-keeping functions that are difficult to change. 
73 According to Ryder and Fink (1984), the IRE was historically more liberal than the AIEE with respect 
to membership requirements (pp. 214-215). However, even the IRE restricted access to voting member 
grades to graduates of “schools of recognized standing,” while a non-voting “Associate” grade was 
reserved for those who had an interest – but not the appropriate educational credentials – in radio 
engineering. The ACM, on the other hand, had an early history of open membership, but this ended in 
1965 when the group made four-year degrees mandatory for new members (Ensmenger, 2001, p. 63). 
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And as the winds of change started to sweep through the ACM in the late 1950s and early 

1960s, so too did the IRE-PGEC enter its own phase of reflection and evaluation. In fact, by the 

late 1950s numerous discussions about the scope and position of the group were appearing in 

publications such as the group’s Transactions. In a 1959 editorial, for instance, PGEC chair 

Willis Ware explained: 

The PGEC also needs to review its domestic position; with other PG’s 

[Professional Groups] critically reviewing their areas of interest in view of 

technological advances and the opening of new fields, it is time for the PGEC to 

introspect and determine which position it wants to have in the U.S. computing 

fraternity and to move in that direction. It might even be desirable to consider 

modifying the name of the group (Ware, 1959, p. 91). 

Ware’s remark revealed the extent to which the scope and position of the PGEC required two 

types of jurisdictional negotiations, one centering on other Professional Groups within the IRE, 

and the other involving various organizations outside of the IRE, such as the ACM. The rapid 

“technological advances” referenced by Ware only further complicated these processes. 

In light of these challenges, the IRE PGEC worked to both secure and expand its 

sociotechnical settlement. In 1961, for instance, PGEC chairman Arnold A. Cohen followed in 

Ware’s footsteps by suggesting that the name of the group might be changed to the Professional 

Group on Information Processing Systems, or PGIPS (Cohen, 1961). As Cohen explained, this 

new title carried a broader connotation and included the important word “systems.” He added:  

The combination gives recognition to the long established fact that our attention is 

not confined to components and techniques internal to computers. Further, it is 

certainly our responsibility, whether as PGEC or as PGIPS, to serve the increasing 

interest in system engineering of computer-centered systems (p. 845). 

As suggested by Cohen’s remark, it was increasingly evident that computers were being 

used with increasing frequency as components in larger technological systems. Hence, 

explicitly recognizing this new area of activity and claiming it looked like a sound 

strategy for the PGEC, although Cohen’s letter provided little in the way of additional 

details about this expansionist agenda. 

On the other hand, around this same time Cohen and other PGEC leaders were 

working on a suggestive update of the group’s official statement of scope. Through 
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September of 1961, a statement that appeared in each issue of the Transactions on 

Electronic Computers declared that the scope of the journal “includes the design, theory, 

and practice of electronic computers and data-processing machines, digital and analog, 

and parts of certain related disciplines such as switching theory and pulse circuits” 

(“Information for Authors,” 1961a). But beginning in December of 1961, this relatively 

simple declaration was replaced by a new statement of scope that identified and described 

five subject areas in substantial detail: 

a) all aspects of design, theory and practice relating to systems for digital and 

analog communication and information processing; 

b) components and circuits for digital and analog systems, including techniques for 

accomplishing the functions of logic, arithmetic, storage, control, mass data 

storage, input, output, and external communication in such systems; 

c) relevant portions of supporting disciplines, including switching theory, symbolic 

logic, numerical methods, codes and number representation systems, abstract 

machine or automation theory, symbolic logic, bio-sciences, machine learning, 

pattern recognition, and other extensions of logical machine capabilities; 

d) production, testing, operation, and reliability of digital and analog systems; and 

e) those aspects of application, use, and programming of digital and analog 

computing devices and information systems that relate to their design and 

operation (“Information for Authors,” 1961b). 

While this passage was ostensibly framed as the scope of a journal, to some extent it clarified the 

PGEC’s settlement in the computer field. In fact, and as I note below, much of this statement was 

incorporated into one of the group’s later constitutions. This passage is also striking in that it 

identified and intertwined many different bodies of knowledge and types of technology, 

especially through the use of terms such as design, theory, practice, components, circuits, 

systems, and techniques. As a part of the IRE-PGEC’s ongoing efforts to “critically review” its 

position, this statement of scope spelled out the group’s settlement in rather extensive detail. 

A number of additional points are worth noting with regard to this passage. First, the use 

of terms and phrases such as “systems,” “information processing,” and “information systems” 

reflected Cohen’s prior remarks about increasing the group’s presence in the area of “systems” 

and perhaps even renaming the PGEC accordingly. And second, some of the subject areas 
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outlined in this statement were clearly in overlapping areas of interest, even if many of the 

“core” areas had long been viewed as the province of computer designers and engineers. Section 

(c), for instance, acknowledged some of the areas where the settlement of the PGEC tended to 

overlap with other fields. 

Yet the use of the phrase “supporting disciplines” rather than “related disciplines” in this 

statement of scope framed these other (and unidentified) fields as secondary – and perhaps even 

subservient – to the PGEC’s major area of settlement. Further, describing this wide range of 

special interest areas as “extensions of logical machine capabilities” clearly emphasized the 

importance of the “machine,” even in those phases of computing that were more application- or 

user-oriented. And on another closely related note, this new statement reiterated the assertion – 

which was first made in the early 1950s – that the areas of “application, use, and programming” 

were of particular relevance to the PGEC and its members when they impinged on machine 

design and operation.74 Of course, this point remained significantly open to interpretation, 

especially given that the boundaries around design and use are rarely so clear-cut. 

In the midst of ongoing efforts to clarify the scope of the PGEC, chairman Cohen also 

indicated that the group was considering the establishment of new “Technical Activities 

Committees” (or “TACs”) as another way for the group to focus on special-interest topic areas. 

As Cohen explained, these committees might spearhead various types of activities, such as 

planning symposia, organizing conference sessions, reviewing papers, and cooperating with 

other IRE technical committees (Cohen, 1961). He added that each TAC would function as a 

“vigorous steering committee for organizing technical activities,” especially in light of the 

ongoing growth of “specialties within specialties.” By April of 1962, it was announced that the 

first two TACs would be dedicated to “analog and hybrid computing” and “logic and switching 

theory” (Cohen, 1962b). These developments were something of a throwback to the late 1940s, 

when the IRE’s Technical Committee on Electronic Computers was first established. And while 

the IRE’s technical committee and associated subcommittees gradually faded in the 1950s as 

professional group structure rose in prominence, this revival of the committee structure in the 

                                                
74 As indicated in the previous chapter, a 1953 editorial in the PGEC’s Transactions on Electronic 
Computers explained that “[w]e may think of programming as relating to applications and being outside 
the sphere of interest of most computer engineers” (“Editorial,” 1953). However, in light of the fact that 
the same journal issue included a paper that discussed a particular programming technique, the authors 
qualified that this topic “should be of concern to the engineer because such programs offer an alternative 
to designing auxiliary equipment for the same purpose.” 
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early 1960s revealed how the PGEC was looking for new ways to cope with its own expanding 

size and settlement. 

But despite the PGEC’s increasingly expansive settlement, other prominent 

spokespersons reaffirmed the group’s traditional identity. In a 1961 editorial, for instance, 

University of Michigan electrical engineer and incoming PGEC Transactions editor Norman R. 

Scott noted that the expanding page count of the group’s flagship journal was “evidence not only 

of the growth of the computer engineering profession but also of the growth of the PGEC as a 

voice of that profession” (Scott, 1961). Membership rolls were also expanding, and by 1960 the 

group boasted about 9000 members, bringing into rough parity with the 8900 members that the 

ACM claimed the following year (Anderson, 1976, p. 49; Huskey, 1961b). Yet whether stability 

could be maintained between the ACM and PGEC – or the “computer users” society and the 

“computer engineering organization” – remained an open question, especially into the 1960s. 

Further, the PGEC was not the only engineering organization that had a stake in the computer 

field. I now turn to the remaining organization in this triad of professional societies. 

The AIEE CDC: Committee-Bound and Power Industry-Oriented 

As indicated in the preceding chapter, the larger and more influential IRE-PGEC casts a 

rather long shadow over the history of the AIEE’s Computing Devices Committee (CDC). This 

tendency was only exacerbated in the 1950s by the persistent orientation of the AIEE toward 

power engineering, as well as the concomitant tendency of the group to focus much of its activity 

on the analog and application aspects of computing. Yet it is worth reviewing the history of the 

CDC from the mid-1950s onward, both in the interest of rounding out this system of professional 

systems and in order to set the stage for other developments.  

To begin with, through much of the 1950s the CDC continued many of the activities that 

the group had initiated in the late 1940s and early 1950s. For example, CDC committee members 

were responsible for contributing short summaries of progress in computing devices for an 

annual “engineering developments” feature article, which was published each January in the 

AIEE’s widely-read Electrical Engineering magazine. The committee also continued to review 

papers for AIEE publications and organize panels for AIEE conferences. Yet by 1954, an annual 

report summarized that “much of the committee’s effort has been exercised through its 

participation in the Joint Computer Conferences” (“Report of the Board,” 1954). In fact, this 
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same report explained that the joint conferences “provide a much needed forum for concentrated 

discussion of particular phases of computer activity and have the tremendous advantage of 

concerted action on the part of AIEE, IRE, and ACM rather than dispersing this activity in 

several places” (p. 774). Below I discuss in more detail the pivotal role of the JCC in maintaining 

stability in this system of professional societies. However, this passage clearly hinted at the 

perceived importance of the joint conferences and its associated committee in uniting the diverse 

phases of the field. In addition, the “Institute Activities” section of Electrical Engineering 

regularly covered the JCCs, providing further evidence for the perceived importance of these 

events, even for the AIEE writ large.  

The composition and direction of the CDC remained largely consistent in the mid-1950s. 

In fact, many of the leaders of the group had much in common with their predecessors. Frank 

Maginniss, chairman of the group from 1953-1955, was as an electrical engineer in General 

Electric’s Analytic Engineering Department (“AIEE Officers,” 1954, p. 852). Like his General 

Electric colleague Charles Concordia – who was the first chair of the AIEE’s original 

subcommittee on Large-scale Computing Devices – one of Maginniss’ main areas of interest 

centered on using computers to solve engineering problems that were relevant to the electrical 

utilities (“New Attendance Record,” 1956, p. 1111). Edwin L. Harder, who chaired from 1955 to 

1957, was similarly an engineer in the “Analytical Section” of Westinghouse Electric. Harder’s 

expertise in and orientation toward analog computing was reflected in his earlier position as chair 

of the CDC’s Analog Computer Subcommittee, as well as his leading role in the design and 

construction of the well-known ANACOM analog computer in the late 1940s (Aspray, 1993). 

And while Harder gained familiarity with the use of digital computers through his position at 

Westinghouse, his expertise in the area of computer design was limited to the analog domain.75  

Under the leadership of Maginniss, the number of CDC members hovered around 30, and 

the activities of the group were clustered around six active subcommittees.76 Harder’s tenure as 

chair, however, was accompanied by a noticeable expansion of the CDC’s member rolls. By 
                                                
75 In 1991, Harder recounted his early involvement with the AIEE CDC. As he explained, “[t]here was a 
digital subcommittee and an analog subcommittee all in the Computer Committee. My part with it was 
analog at first. And as Westinghouse never really did build digital computers, why, I remained a user all 
my life” (Harder, 1991). 
76 A total of 31 members were listed on the committee’s official roster in 1954, and 30 members were 
listed in 1955 (“AIEE Officers,” 1954, p. 852; “AIEE Officers,” 1955, p. 846). The subcommittees during 
this time included the Digital Computers, Analog Computers, Computer Bibliography, Digital Computer 
Comparisons, Analog-Digital Converters, and West Coast (“AIEE Officers,” 1954, p. 852). 
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1956 the membership roster stood at 42, and in 1957 it listed 58 affiliated individuals (“AIEE 

Officers,” 1956, p. 851; “AIEE Officers,” 1957, p. 844). Through this same time period the CDC 

also appeared poised to both lead an expanded array of activities and assume a more prominent 

position in the AIEE. An annual report published in 1956, for instance, indicated that the CDC 

was reviewing its organizational structure in light of “rapid expansion in the computing devices 

field” (“Report of the Board,” 1956, p. 752). And a 1957 committee report noted that the 

increasingly diverse activities of the CDC might eventually lead to the formation of an entirely 

new AIEE division dedicated to computing devices (“Report of the Board,” 1957, p. 737). 

While this was certainly an ambitious and forward-looking proposition, the group’s 

expansion remained closely linked to member interests in computer application and use. In a 

1955 report, for instance, it was noted that the CDC “may have an important part to play in a 

combined educational and application function to aid the industry in bringing into play the 

rapidly increasing power of the digital computer” (“Report of the Board,” 1955, p. 730). It was 

reasonably clear that the use of the phrase “the industry” in this passage primarily referred to the 

power industry. In fact, this same report indicated plans for collaborative activities with the 

AIEE Committee on System Engineering, with particular emphasis on surveying how electric 

utilities were using digital computers to handle accounting and other business problems. AIEE 

interests in the use of computers received more formal recognition in 1956, when an 

Applications Subcommittee was added to the CDC. In addition to serving as a liaison with other 

AIEE committees with interests in computer applications, the scope of this subcommittee 

centered on the “treatment of all phases of the application of computers in which the dominant 

factors are the design, construction, selection, installation, and operation of computing and 

related devices” (“Report of the Board,” 1956, p. 752).77 The increasing relevance of computing 

and data processing in the AIEE was also reflected in the establishment of a “Joint Division 

Committee on Automation and Data Processing.” In 1957 this committee consisted of 21 

                                                
77 As this statement suggests, the involvement of many electrical engineers in the area of computer 
applications remained significantly oriented toward the physical “hardware” of computing. That is, even 
if not directly interested in machine design, engineers might be called upon to specify, select, and install 
computer equipment, perhaps even as part of a larger technological system. By contrast, organizations 
such as the ACM were developing a reputation for their “top-down” orientation toward theory, languages, 
algorithms, and applications. These two very different ways of looking at computers and computing set 
the stage for new conflicts of culture and interest among the major sociotechnical factions of the field. 
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members, including the outgoing and incoming chairmen of the AIEE CDC (“AIEE Officers,” 

1957, p. 845). 

While serving as head of the CDC Harder authored a two-part article on “The Computing 

Revolution” that was published in Electrical Engineering in 1957 (Harder, 1957a; 1957b). 

Harder’s focus in this piece tended toward applications, as suggested by his leading remark that 

“[c]omputing progress in electrical engineering is an integral part of a revolution in information 

processing” (1957a, p. 476). And while the author reviewed some major “Advances in 

Machines,” Harding devoted much of the article to reviewing the state of the programming art 

and surveying how computers were being used in research, engineering, business, and 

manufacturing. Other papers, conference panels, and news items revealed that interest in 

computing among AIEE members often clustered around two more specific areas of engineering 

application, namely aeronautics and power systems. Both of these areas had high demands for 

computational power, especially for design and simulation. In fact, the organization of an AIEE 

Power Industry Computer Application Conference in Toronto in 1958 revealed the rapidly 

expending use of computers in even this relatively conservative and old-guard province of 

electrical engineering (“AIEE Power Industry,” 1958). In fact, the conference program indicated 

that many of the conference papers discussed how computers were being used to design power 

machinery, and to analyze and simulate power networks (p. 848). 

The CDC continued a modest pattern of growth as it entered the late-1950s, and by 1958 

the committee boasted 65 members (“AIEE Officers,” 1958, p. 882). Even more importantly, 

from 1957 to 1959 the chairmanship of the CDC was taken over by Morris Rubinoff, whose 

background was quite unlike that of Maginniss and Harder. Affiliated at the time with both the 

University of Pennsylvania’s Moore School and Philco Corporation, Rubinoff held academic 

credentials in mathematics and physics, and he had worked with Aiken at Harvard on the Mark 

series of computers (“Alumni: Obituaries,” 2004; Rubinoff, 1971, pp. 4-6). From 1948 to 1950 

he was also involved with computer design work at Princeton’s Institute for Advanced Studies 

(Rubinoff, 1971). 

Evidence suggests that Rubinoff’s particular interests inflected his agenda while serving 

as chair of the CDC. As retrospectively noted by Willis Ware, for instance, Rubinoff was an 

“upstart” who was trying to change the direction of CDC, especially in terms of shifting its 

emphasis from analog to digital computers (Ware, 2005). In 1959 – at the end of his tenure as 
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CDC chair – Rubinoff similarly explained that “[t]he primary objective of the AIEE in the last 

few years has been to do that job of education” (“Is it Overhaul,” 1959a, p. 30). Describing the 

success of these efforts, Rubinoff added that “in the power industries, for example, there has 

been a big increase in the use of digital computers in the last few years. This is because we in the 

AIEE went hammers and tongs at the problem of educating the power engineers to the use of 

computers” (p. 30). Given the early prevalence of analog computing devices in the power 

industry, promoting digital computers was likely one of Rubinoff’s major goals as CDC chair. 

Even more generally, the AIEE fell into a pattern of slowed growth in the mid and late 

1950s, and by 1957 the total IRE membership for the first time surpassed that of the AIEE 

(Ryder and Fink, 1984, pp. 215-216). The leaders of the AIEE were increasingly concerned 

about the future of their Institute, and a special task force was convened in 1957 to evaluate the 

state of the organization and its objectives (pp. 219-220). This group concluded that the AIEE 

had largely failed to enter new fields, did not have sufficient appeal to student members, and did 

not adequately cover the whole field of electrical engineering (pp. 219-220). The task force also 

critiqued both the AIEE board and its technical committee structure for perpetuating these 

problems, and it recommended the establishment of national-level “Institute Technical Groups” 

(ITG). These were to be similar in form and purpose to the IRE’s SIGs (p. 220). 

Around the time of ITG proposal, a growing body of evidence also revealed the extent to 

which AIEE members maintained some level of interest in many different phases of electrical 

engineering, including computers and computing. For instance, in 1959 Rubinoff claimed that, of 

the AIEE’s roughly 50,000 members, “some two or three thousand have indicated that their 

primary or secondary interest is in computers” (“Is it Overhal,” 1959a, p. 30). Yet Rubinoff 

indicated that that in light of these statistics, there remained “47,000 engineers who could use 

computers and who should be made aware of computers if only someone would only take the 

trouble to do it” (p. 30). Rubinoff’s comment once more revealed the extent to which the leaders 

of the CDC viewed the activities and future growth of their committee as linked to the use and 

application of computers rather than computer engineering and design. 

Rubinoff’s rough statistical estimates were likely based on survey and reader response 

data that was collected and published in the late 1950s and early 1960s. A survey conducted in 

1960 and published in 1961, for example, revealed that only about 3.6% (1,608 of 44,308) of 

responding AIEE members indicated that their “primary interest” was in the area of computing 
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devices, while about 4% (1,555 of 38,515) noted a “secondary interest” (“Progress of Institute,” 

1961, p. 373). On the other hand, this same survey revealed the persistent dominance of the 

Power Division, which captured an impressive 36% of all primary and almost 38% of secondary 

member interests. Other significant areas of interest included electronics (4.6% primary and 

6.1% secondary). In addition, various Industrial Division sub-fields, including Feedback Control 

Systems, Industrial and Commercial Power Systems, and Industrial Control received reasonably 

high response rates. 

This same survey also reported on member preferences with regard to technical groups 

(“Progress of the Institute,” 1961, p. 373). For starters, about 5% (or 114 of 2298) of responding 

members expressed an explicit interest in the formation of a “Computing Devices” technical 

group. By contrast, more than 10% of respondents called for the formation of an ITG dedicated 

to “Power Transmission and Distribution,” and sizable numbers of members also recommended 

the creation of groups in areas such as Electronics (6.2%), Power Generation (5.1%), and Basic 

Sciences (4.5%). Other popular ITG proposals included Data Communication and Feedback 

Control Systems, which garnered about 5% each. In light of these results, by September of 1961 

the new ITG program was being built up around eleven proposed technical groups (“Which 

Institute Technical Groups,” 1961, p. 704). One of the ITGs was dedicated to “Computing 

Devices,” and was situated in a Science and Electronics Division along with the Basic Sciences 

and Electronics groups. As suggested by this development, computers and computing were well-

established areas interest for many AIEE members. In fact, the prospects for a larger and more 

vibrant computer-oriented technical group was likely encouraging for those who had worked 

hard in the 1950s to maintain and expand the scope and activities of the CDC. On the other hand, 

computing was still a somewhat peripheral extension of the AIEE, especially in light of the 

continued dominance of power and electric industry interests in the organization writ large. 

But even more importantly, the initial momentum of the ITG proposal was quickly 

subverted as high-level moves toward an AIEE-IRE merger gained traction. By the time that the 

merger announcement and resolution appeared in Electrical Engineering in December of 1961, 

the technical groups plan was essentially obsolete (Chase, 1961). As many surely recognized at 

the time, grafting technical groups onto the AIEE was a good idea that had come too late, both 

for the organization generally and for those members who maintained significant interests in the 

area of computing devices. As summarized by Ware, Rubinoff and his successors “gradually got 
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things turned around a little bit, but it never got turned very markedly before the merger of AIEE 

and IRE” (Ware, 2005).  

The AIEE Winter General Meeting in 1961 featured an impressive roster of thirty seven 

computer papers in seven sessions (Kagan, 1961). And in 1963, an ad-hoc subcommittee of the 

CDC produced a paper that outlined recent advances in the computer field. In addition to being 

presented at the 1963 Winter General Meeting of the newly-formed Institute of Electrical and 

Electronics Engineers (IEEE), this paper appeared in near-verbatim form in both Electrical 

Engineering and Computers and Automation (Ad Hoc Group, 1963a; 1963b). Yet these activities 

were clearly something of a last hurrah, as the final two CDC chairs – namely Ruben Imm (1961 

to 1963) and Claude Kagan (1963 to 1964) – were primarily focused on representing the interests 

of the CDC in the merger of the IRE and AIEE and in the formation of the American Federation 

of Information Processing Societies (AFIPS). 

Merger, Identity, and Scope: Forming the IEEE Computer Group 

As noted above and documented by historian A. Michal McMahon, various factors 

contributed to persistent tensions between the IRE and AIEE in the 1940s and 1950s, including 

the ebb and flow of membership numbers and questions about the scope of each group’s 

activities.78 Yet in the 1950s, the two groups started to grow closer, including through a Joint 

AIEE-IRE Coordination Committee that was established in 1952 (McMahon, 1984, p. 240). Joint 

activities in areas such as student groups and standardization were also increasingly common 

through the 1950s, and in 1956 a reciprocal AIEE-IRE membership plan was established (IEEE 

Center, 1984). The groups continued to move closer until the AIEE and IRE Boards agreed to 

work toward a merger in 1961 (McMahon, 1984, p. 241). Of course, there remained countless 

details to hash out, in areas ranging from publication outlets and the format of conferences to the 

appropriate geographic scope of the organization (i.e. American or International). Further, 

melding the AIEE’s technical committee structure with the IRE’s professional group system 

loomed as a particularly large challenge as the merger progressed.  

Ultimately, a professional group structure – which was such a pivotally important 

ingredient in the IRE’s post-war growth and vitality, and which also inspired the AIEE to 

                                                
78 My historical overview of the merger is largely a summary of the accounts developed by McMahon 
(1984, pp. 239-243) and Ryder and Fink (1984, Ch. 12). 
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propose its own technical group system – quickly emerged as a defining feature of the new 

organization. However, these groups were rechristened as “professional technical groups,” 

thereby representing the legacy of the AIEE technical committees. But as McMahon explains, 

“[s]ome of the AIEE’s Technical Committees were immediately absorbed into Groups; others 

retained their committee status, to be later merged into the Groups system” (1984, pp. 242-243). 

As suggested by this summary, the technical committees were quickly engulfed by and 

integrated into the professional groups, which were larger in size and largely self-governing. 

Following a member vote that approved the AIEE-IRE merger by a relatively large 

margin, the completion of the merger at the “headquarters” level was officially complete by 

January of 1963, resulting in the official establishment of the Institute of Electrical and 

Electronics Engineers, or IEEE (Ryder and Fink, 1984, p. 225).79  Ongoing efforts to merge the 

various committees and groups of the prior parent organizations took somewhat longer to 

complete. In fact, this process proceeded with some variability from group to group, as reflected 

in the unique amalgamation that brought together the AIEE CDC and the IRE PGEC. One early 

step in this process involved the late 1962 formation of a four-member Joint Study Committee, 

consisting of representatives from both the AIEE CDC and the IRE PGEC. As retrospectively 

explained by Anderson, the merger process required the working out of many subtle and not-so-

subtle differences in the traditions and preferred approaches of the two groups, ranging from the 

processes by which leaders were selected to the use of different rules for peer review (Anderson, 

1976, p. 49). 

Following a mandate from IEEE headquarters, by early 1963 the PGEC was officially 

renamed the IEEE Professional Technical Group on Electronic Computers, or “PTGEC” 

(Anderson, 1963b). The Joint Study Committee subsequently prepared a plan for the merger of 

the group and the committee. This plan was approved in mid-1963, leading to the formation of a 

four-member Constitution of and Bylaws Committee (Anderson, 1963c). By February of 1964 

PTGEC Chairman Walter Anderson noted the “careful design work” thus far involved with the 

merger, an apt description given that the process was being led by engineers (Anderson, 1964a). 

                                                
79 Ryder and Fink describe this process under a heading that reads “The IEEE is Born” (1984, p. 225). 
However, I prefer the more nuanced – and perhaps more accurate – framing presented by McMahon: 
“The makers of the IEEE had drawn copiously on its tangible past and, so, in a real sense, this new 
national engineering society was formed, not founded. Its technical fields, publications, and convention 
habits were only the most obvious components of a rich and detailed inheritance” (1984, p. 243). 
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And while Anderson also complained that the merger was progressing with “more rigor than 

vigor,” in April of 1964 the merger of the CDC and PTGEC to form the “IEEE Computer 

Group” (or “IEEE CG”) was officially announced (Uncapher, 1964a). As incoming Chairman 

Keith W. Uncapher pronounced, “The event marked the culmination of a long effort to create an 

effective organization whose service to its members and to computer technology would be 

greater than the sum of the prior independent contributions of the CDC and PTGEC” (Uncapher, 

1964a, p. 184).  

One major aspect of the merger processes that appears to have advanced relatively 

smoothly involved the development of a committee structure for the two groups. As noted above, 

the AIEE CDC was organized around a number of subcommittees, and the IRE-PGEC launched 

its own technical committee structure in the early 1960s.80 In fact, PGEC Chairman Anderson 

announced the formation of the first TAC in 1962 (1962). Dedicated to the area of Logic and 

Switching Theory, from the start the new group was recognized as a joint AIEE-IRE committee. 

By early 1965 the twelve Technical Committees of the newly-formed Computer Group were 

listed in the IEEE Transactions on Electronic Computers (“IEEE Computer Group,” 1965).  

Yet a closer examination of the merger reveals some key variations in the framing of the 

new group’s identity and scope. As noted above, PGEC chair Arnold A. Cohen proposed in 1961 

that the PGEC be renamed the Professional Group on Information Processing Systems (PGIPS), 

which tended to emphasize the group’s broad interests in all phases of information processing. 

On the other hand, during the lead-up to the merger Cohen emphasized that “the combined 

computer wings of the two Institutes contain the ingredients for a strong, effective computer 

engineering organization” (1962a). Cohen reiterated this statement verbatim in a second letter, 

also published in early 1962 (1962b). As merger activities continued to ramp up, ongoing 

discussions about the name of the group hinted at further questions about the extent to which the 

group’s interests extended beyond the domain of “computer engineering.”  

In a 1963 letter published in the PTGEC’s Transactions, Louis Fein picked up where 

Cohen’s prior PGIPS suggestion had left off (Fein, 1963). Fein started by asserting that any new 

name for the organization should be broad enough to cover its full range of activities and 

interests, yet not so broad that it “includes the principal activities and interests of other groups of 
                                                
80 Through the 1950s and into the early 1960s, the IRE continued to maintain technical committees at the 
top level of the organization, largely outside the purview of any single professional group. However, these 
were primarily dedicated to standards (Chase, 1961, p. 912). 
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engineers and scientists.” As I discuss in more detail below, by this time Fein was acutely aware 

of the professional and disciplinary politics that were in play. Further clarifying his view of the 

PTGEC’s scope, Fein posited that the membership was primarily concerned with “the theory and 

practice of the design, construction, test, operation and maintenance of reliable components, 

circuits and equipment to be used by itself or as part of a larger system.” He also emphasized the 

importance of selecting a name that included or implied terms such as “equipment,” “systems,” 

and the associated “purposes” thereof. After declaring that a variety of existing and new names 

were inadequate, the author ultimately proposed “Professional Technical Group on Synnoeta.”81 

Referencing his own 1961 article that proposed the establishment and development of a new 

field that he dubbed “synnoetics” – or the “computer-related sciences” – Fein explained that the 

Greek-derived term “synnoeta” referred to the use of systems or equipment in the performance 

intellectual tasks. He concluded his letter by noting that organizations such as the ACM might 

also “get around to changing their names to more adequately describe their scope of interest and 

activity.” 

While Fein’s proposal generated little in the way of follow-up commentary or discussion, 

the leaders of the PTGEC were nonetheless toying with other naming possibilities during this 

important transitional period. By early 1963, for example, PTGEC Chairman Anderson started 

using the simple phrase “Electronic Computer Group” to refer to the organization (1963a), and in 

June 1963 he both commented on the group’s “alphabet soup” name and suggested that it might 

be more appropriate to adopt a more simple title such as the “Computer Group” (1963c). He 

even signed his letter as the chairman of the “IEEE Computer Group,” even though the group 

was still officially known as the PTGEC. In early 1964, however, Anderson noted that moves 

were afoot to adopt the name “Society for Electronic Computers,” which was intended to reflect 

the organization’s true size and scale (1964a). And indeed, many commentators around this time 

were quick to point out that the organization’s membership had topped 10,000. 

But as the merger progressed, yet another possible name surfaced. In an April 1964 letter, 

chairman Anderson explained that the newly drafted constitution included “a new name for the 

group, the Society for Computer Sciences” (Anderson, 1964b). And the following month, the 

                                                
81 The other names discussed by Fein included the Professional Technical Group on Intellectronic 
Systems (with the term Intellectronics borrowed from Simon Ramo), Professional Technical Group on 
Information Processing Systems (with an explicit reference to Cohen’s PGIPS suggestion), and 
Professional Technical Group on Automata (Fein, 1963). 
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trade magazine Datamation carried a news item that referenced this same name (“SJCC Society 

Gleanings,” 1964). Later in the year, ad hoc Secretary and former PGEC chair Arnold A. Cohen 

cautioned that the group should be referred to as the IEEE “Electronic Computer Group” until 

the name change was approved more formally (1964). And by the end of 1964, Uncapher 

indicated that the official name of the organization was the “IEEE Computer Group,” but he 

added that the name was subject to revision in light of a more general overhaul of the IEEE’s 

naming conventions that was planned for 1965 (Uncapher, 1964b). At least for the time being, 

the IEEE’s interests in the computer field would remain under the purview of a group rather than 

a more autonomous society.  

Published at the beginning of 1965, the group’s new Constitution and Bylaws proclaimed 

that “[t]he name of this organization shall be the Computer Group of the Institute of Electrical 

and Electronics Engineers” (“IEEE Computer Group Constitution and Bylaws,” 1965, p. 2). Yet 

the phrase “computer sciences” was also featured prominently in this document. In contrast to 

earlier PGEC constitutions – which emphasized the group’s orientation toward “computer 

engineering and allied arts and sciences” – the new constitution explained that “[t]he group shall 

strive for the advancement of the theory and practice of computer sciences” (p. 2). As I discuss 

in more detail below, the term “computer science” was coined in the late 1950s, and it entered 

wider circulation in the 1960s. As suggested by the Computer Group’s new constitution, the 

phrase had broad appeal among computer professionals, including many computer-oriented 

engineers. In fact, it was so appealing that it displaced any reference to engineering in the 

Computer Group’s statement of objective. 

The group’s scope, as outlined in the second article of the new Constitution, also hinted 

at possible shifts and expansions in the organization’s agenda (“IEEE Computer Group 

Constitution and Bylaws,” 1965, p. 3). In most general terms, this declaration closely followed 

the statement of scope that was established in 1961 for the PGEC’s Transactions on Electronic 

Computers. In fact, the first four sections of the new scope mirrored items (a) through (d) of the 

prior statement in near verbatim form. The fifth section, however, was suggestively revised. As 

noted above, part (e) of the original statement declared that “application, use, and programming” 

were within the scope of the journal, but only as long as these subjects were related to issues of 

“design and operation.” Yet the new statement declared that the group’s scope more generally 

encompassed “[a]pplications, use, and programming of digital and analog computing devices and 
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information processing systems and the use of computers in electrical and electronic 

engineering” (p. 2). While this statement placed particular emphasis on computer applications in 

electrical engineering – perhaps not surprising given the historical orientation of the parent 

Institutes – the first part of this passage removed the “design and operation” qualifier. At least 

hypothetically, this change expanded the computer field’s settlement to cover an even wider 

swath of sociotechnical territory.  

The Constitution more clearly spelled out certain parts of the group’s settlement via 

specific statements of scope that were written for each of eleven technical committees.82 In fact, 

many of these statements spelled out both “included” and “excluded” subjects, topics, and 

technologies, suggesting that the committees were being positioned with respect to one another, 

as well as other groups within and beyond the IEEE. And while many of these committees were 

dedicated to areas that had long been associated with computer design and engineering – to name 

a few, Logic and Switching Theory, Computer Systems, Computer Elements, and Reliability – 

others were in more contested areas. In fact, the committees that impinged most directly on other 

fields and groups were described in rather strategic terms. The scope of the Programming 

committee, for example, was framed as including: 

Treatment of the theory and development of generalized computer programs, 

especially those falling in the categories of assembly programs, compiler 

programs, executive programs and processors for problem-oriented programming 

languages which are used in the writing of working programs by a broad segment 

of users (p. 6).  

As suggested by this passage, the interests and activities of this committee were described as 

reaching only so far into the domain of programming. More specifically, both the categories 

listed and the use of phrases such as “generalized computer programs” reveal that the 

committee’s scope included “system software” and “programming software,” but largely stopped 

                                                
82 While a total of twelve “Technical Committees” were listed in the IEEE Transactions on Electronic 
Computers in early 1965, the “Standardization” group was reclassified in the Constitution as one of ten 
“Standing Committees.” The eleven technical committees included Logic and Switching Circuit Theory, 
Computer Systems, Computer Elements, Programming, Reliability, Applications in Management Data, 
Applications in Automation Processes, Design Automation, Data Acquisition and Transformation, Design 
Evaluation and Simulation, and West Coast Committee. 
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short of end user applications. This statement of scope therefore revealed a point of overlap and 

perhaps even conflict with the ACM, which maintained wide-ranging interests in software.83 

The formation of the IEEE Computer Group was a significant development, as it 

combined the activities of the two major electrical engineering groups that maintained 

settlements in various areas of the computer field. Further, the establishment of this group 

provided its members and leaders with opportunities to revisit and refine the relation of electrical 

engineers, computer technology, and computing. From a more systems-oriented perspective, the 

formation of the Computer Group was a potential source of disciplinary and professional 

instability. That is, bringing computer-oriented engineers together in a single organization 

demanded a renegotiation of settlements with other groups, such as the ACM. As I discuss in the 

following sections, unifying bodies such as the National Joint Computer Committee and its 

historical successors played important roles in maintaining a measure of stability in a dynamic 

and rapidly evolving system of professional societies. 

Stabilizing the System: The Joint Computer Conferences and Committees 

As discussed in the preceding chapter, the early Joint Computer Conference series 

provide early evidence for the emergence of a distinct field of “computer engineering.” Yet 

through the mid and late 1950s, the joint conferences were an increasingly important point of 

intersection for all of the major phases of the computer field. In addition to being both well-

known and well-attended by a reasonably wide variety of computer professionals, the JCCs 

tended to cover an array of topics, even if many of the individual conferences were topically 

skewed toward particular phases of the field. Further, it is worth emphasizing that these 

conferences were not “co-located.” Rather, these were true joint meetings, organized, executed, 

and attended by members of the ACM, AIEE, IRE, and later the IEEE. Taking a closer look at 

the history of these events reveals the role they played in helping to balance the computer field’s 

competing forces of integration and fragmentation. 

To begin with, the orientation of the Joint Computer Conferences toward engineering and 

design topics remained particularly strong in the early years of the event. In a summary review of 
                                                
83 The Constitution also identified and described committees that were dedicated to specific domains of 
application, such as “Applications in Management Data” and “Applications Automation Processes.” Yet 
these groups were also qualified accordingly. The former, for example, was framed as being primarily 
focused on the selection of “desirable equipment and systems characteristics” (“IEEE Computer Group 
Constitution and Bylaws,” 1965, p. 6). 
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the 1953 Eastern Joint Computer Conference (EJCC), for example, Householder noted that the 

joint conferences tended to emphasize computer design and construction, while ACM meetings 

were often focused on applications (1954). Yet he also observed that the computer field “is on 

the way to disintegration into a hundred little field of specialization” (p. 6), and he argued that 

future ACM and JCC meetings might be organized in ways that countered this tendency. Indeed, 

the official addition of the ACM as a full sponsor and participant in the joint conferences in 1953 

looked like an important step toward greater collaboration and cooperation among the AIEE, 

IRE, and ACM. The three-way composition of the joint committee was codified in one of the 

group’s first official organizational documents. Titled “Organization of the Joint Computer 

Committee” (1954) and published in the proceedings of the 1954 EJCC, this document explicitly 

specified that the JCC was “jointly and equally” sponsored by the ACM, AIEE, and IRE.84 This 

same document also made it clear that the principle activity of the group centered on planning 

and running the joint conferences, thereby mitigating against the possibility that the joint 

committee might take over the territories or activities of the three participating societies. 

This same statement of organization also specified a fifteen-member governing body for 

the committee, composed of five members from each of the participating groups. This 

composition clearly favored the engineering organizations over the ACM.85 The tilting of the 

joint committee toward engineering was also reflected in this document. A rather suggestive 

“statement of object,” for instance, indicated that “[t]he Committee shall aid in the promotion of 

close co-operation and co-ordination in the activities of the sponsoring societies related to the 

field of computer engineering and allied arts and sciences” (p. 91). And while the “general 

scope” of the Joint Computer Committee was described as principally stemming from the scope 

of each participating society, a subsequent passage on the committee’s “major interests” 

suggestively declared: “The major field of interest of the JCC shall be the engineering aspects of 

the design, development, manufacture, and use of computers, but shall also include an interest in 

                                                
84 However, subsequent commentators recognized the secondary position of the ACM in the early years 
of the joint conferences. For example, in 1959 Paul Armer explained that, with respect to the early joint 
conferences, “the ACM was a second class citizen for a period of time” (Is it Overhaul,” 1959b, p. 19). 
85 More specifically, the fifteen-member committee included three ex-officio members, namely the 
president of the ACM, chairman of the AIEE CDC, and chairman of the IRE PGEC. Four additional 
members from each group filled the remaining twelve spots. Further, each group’s four representatives 
were evenly divided between East and West Coasts. 
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the various activities that contribute to this field or utilize the products or techniques of the field” 

(p. 91). Such statements clearly place primary emphasis on engineering over applications. 

By the mid-1950s, however, shifts in the orientation of the joint conferences were 

becoming more evident. In a foreword published with the proceedings for the 1955 Western 

Joint Computer Conference (WJCC), for example, conference manager William L. Martin noted 

that “[t]he Conference has changed in character from a meeting of small groups of specialists 

discussing problems of mutual interest to large meetings involving people from many phases of 

engineering, management, business control” (1955, p. 1). The 1955 EJCC, on the other hand, 

was topically dedicated to “Computers in Business and Industrial Systems,” and conference chair 

John G. Brainerd explained in a keynote address that this topic area “should be of major interest 

to both [computer] creators and users” (1955, p. 6). Brainerd also noted in his talk that the Joint 

Computer Committee was dedicated to organizing conferences and carrying out other relevant 

work, “so as to avoid duplication of effort on the part of its sponsors” (1955, p. 6).86 

The pendulum swung back to the “engineering phases of computers” for the 1956 WJCC 

(Whitby, 1956), and in mid-1956 ACM President Householder generalized that the joint 

conferences “relate mainly to hardware” (1957, p. 1). Yet when the joint computer committee 

revised its statement of organization in 1956, a number of minor revisions revealed ongoing 

changes in its orientation and identity (“Organization of the National,” 1956). In addition to 

being renamed the National Joint Computer Committee (NJCC), this document included a 

revised statement of “major interests” that omitted the phrase “engineering aspects” (p. 1). 

Instead, it indicated that the “major field of interest of the NJCC shall be the design, 

development, manufacture and use of computers, but shall also include an interest in the various 

activities that contribute to this field or utilize the products or techniques of this field” (p. 1). On 

the other hand, this same document reiterated that the committee was dedicated to promoting 

cooperation and collaboration among those sponsoring societies “related to the field of computer 

engineering and allied arts and sciences” (p. 1). This revised document once again placed subtle 

emphasis on “computer engineering” over computer use and applications.  

In the late 1950s, industry trade magazines periodically carried commentaries about the 

computer field’s major professional societies and conferences. In 1958, for example, Datamation 
                                                
86 More than three decades later, IBM’s Morton Astrahan similarly recalled that one of the primary, 
original purposes of the NJCC was “[t]o promote cooperation instead of duplication of effort” 
(“Reflections on a Quarter-Century,” 1986, p. 228). 
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published a series of candid remarks from attendees at the most recent WJCC. Commenting on 

the ongoing shift of the joint conferences away from issues of engineering and design, Eric 

Weiss explained that “there are fewer design people and many more ‘users’ at this conference. 

… Unfortunately, there’s not much in the way of new things here for engineers” (quoted in “Post 

Conference Feedback,” 1958, p. 20). And while many factors likely contributed to this trend, 

others were quick to note that the increasingly commercialized and competitive computer field 

was having an impact on the content and climate of the joint conferences. In fact, Weiss himself 

noted the “ultra cautious” attitude of many conference speakers, and he added that “[t]hese 

conferences could be much more effective if a freer exchange at panel discussions and technical 

sessions were possible” (p. 20). Another conference attendee noted the possibility that many 

companies were holding back information for competitive reasons. He went on to describe the 

conference presentations as “a kind of game played with information. On the one hand, a firm 

doesn’t want to tip its hand but in a year they would like to say that a year ago they presented a 

paper on a new development” (p. 20). As these remarks reveal, the close relation of computer-

oriented engineers with industry was having a negative impact on their ability to participate fully 

in some professional activities.  

A 1959 Datamation editorial expressed further concerns about the increasingly 

fragmented character of the joint conference series. Authored by Rand Corporation employees 

Keith Uncapher, Malcolm Davis, James Babcock, and Shirley Marks – the former two explicitly 

identified as engineers, the latter as “programmers” – the article argued that “[t]o stress the joint 

aspect of a joint computer conference, subjects should transcend the divisions between engineers, 

programmers, and users of computers” (Uncapher, et al., 1959). These authors clearly recognized 

the potential for the joint conferences to help unify the field. In fact, the authors noted in this 

same piece that a number of speakers at the recent December 1958 EJCC had clearly 

“recognized that professional personnel, occupied in diverse branches of the computing industry, 

must one day come together in a unified effort.” While this call stood in tension with many of the 

sociotechnical schisms that were growing up in the field, other outspoken commentators 

expressed similar views, a point to which I will return. Further, the types of concerns expressed 

in this editorial revealed that many questions remained about the future potential of the joint 

conferences to promote what the authors called a “unity of purpose” for the computer field. 
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In subsequent years the JCC pendulum continued to swing between two ends of a 

sociotechnical spectrum. According to Datamation, some complained that the 1959 EJCC 

“seemed too hardware oriented with not enough emphasis on applications” (Grems, et al., 1960, 

p. 25). Yet countervailing tendencies prevailed at the 1960 EJCC, as reflected in one 

commentator’s claim that “the relative emphasis on usage problems as opposed to hardware 

papers was greater than at any EJCC since the 1955 Boston Conference” (Heising, 1961 p. 36). 

Attempting to explain these trends, the author suggested that “new usage techniques are required 

to keep pace” with advances in computer design and construction generally, and faster machines 

specifically (p. 36). As suggested by this commentator’s remark, the destabilizing forces of rapid 

technological change were making it difficult for the joint conference organizers to plan 

programs that spanned the broad sweep of the field. 

Still other conference review articles revealed the relative extent to which the JCCs were 

attracting attendees from each of the main participating societies. Registration data for the 1960 

WJCC, for instance, revealed strong attendance from ACM and IRE members, who respectively 

made up about 38% and 26% of all registrants (Barnard, 1960). However, those who maintained 

affiliations with the AIEE and neither the ACM nor IRE made up only about 3% of registered 

attendees (p. 23).87 The 1961 EJCC, on the other hand, was clearly dominated by ACM 

members. According to a post-conference report by ACM President Harry Huskey, “Of those 

who registered, 60 per cent [sic] were from ACM, 30 per cent from IRE, and 3 per cent from 

AIEE” (1962b). Not only do these data highlight the relatively marginal role of AIEE members 

in these events, they also suggest that the ACM and its members were moving to the forefront of 

a joint conference series that was originally initiated and dominated by engineers. 

In summary, the NJCC and its conference series were a well-established institution by the 

late 1950s and early 1960s, despite the ebb and flow of individual conferences. The three 

participating organizations had settled into stable and effective patterns of cooperation, and the 

joint conferences were characterized by expansive programs, large crowds, and healthy financial 

returns. In fact, by 1959 RAND’s Paul Armer quipped, “If the JCC meetings get any larger there 

                                                
87 While these statistics excluded those AIEE members who were also members of the IRE and/or ACM, 
the data nonetheless suggests AIEE members were relatively sparse at many of the joint conferences. 
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will be damn few places where they can be held just because of their size” (“Is it Overhaul,” 

1959a, p. 33).88 

On the other hand, this period of apparent stability and vitality was threatened by at least 

three major challenges. First, concerns persisted about the purpose and scope of the joint 

conferences, especially in light of ongoing tendencies toward fragmentation and deepening 

specialization, within both the participating societies and the field writ large. Second, other 

professional groups with interests in the broad domain of “information processing” were 

clamoring to participate more formally in the joint committee and conferences. For example, the 

National Machine Accountants Association (NMAA) – which later became the Data Processing 

Management Association (DPMA) – lobbied for this type participation through a 1959 

presentation to the leaders of the NJCC, but with little success (“Reflections on a Quarter-

Century,” 1986, p. 235). Members of Simulation Councils, Inc. also tried to become formal 

participants in the NJCC in the 1950s, and they were similarly rebuffed (“Reflections on a 

Quarter-Century,” 1986, p. 235). Using terminology originally developed by Callon (1999), the 

joint conferences and committee had become an “obligatory passage point” that was exclusively 

controlled by representatives of the AIEE, IRE, and ACM (Latour, 1987).89  

A third major challenge to the stability of the field stemmed from growing demands for a 

single and more cohesive organization that could represent all phases of the computer field, 

especially on the international stage. By the late-1950s, these and other undercurrents were 

threatening to upset this system of professional societies, as well as the stabilizing agent known 

as the NJCC. For additional perspective and background on these trends, I turn to a well-known 

symposium that was held at the RAND Corporation in 1959. 

                                                
88 Armer was well-qualified to make such a remark, as around this time he served both as an ACM 
representative to the NJCC and as a vice-chair of the NJCC. 
89 That is, achieving full participation and recognition in the computer field required participation in the 
joint conferences, but the joint committee made moves to block the expansion of the committee beyond 
the original three groups. In fact, former NJCC members have recounted how the representatives of the 
NMAA were treated “incredibly rudely” when they made their 1959 request to join the joint committee. 
As Armer summarized, the NMAA “wasn’t considered a professional society. They were punched-card 
people, and we looked down our noses at them” (“Reflections on a Quarter-Century,” 1986, p. 235). 
Rubinoff noted yet another important reason for why the NMAA was turned away: “[T]here was already 
enough internecine warfare” (“Reflections on a Quarter Century,” 1986, p. 235). 
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“Is It Overhaul or Trade-In Time?”: The 1959 Rand Symposium 

In 1958, the RAND Corporation hosted the first in a series of invitational symposia that 

were scheduled in tandem with the annual WJCC. These events typically involved small groups 

of prominent computer professionals who engaged in candid discussions about some of the 

pressing issues that faced their field. The second such event, held in March of 1959, brought 

together seventeen individuals to explore a number of topics that are particularly relevant to the 

present analysis. Many of these persons were affiliated with commercial interests, but four hailed 

from universities or university labs, one came from the Department of Defense, and three were 

employed by RAND. The group also included at least one individual with close ties to each of 

the major organizations in the computer field, namely the NJCC, ACM, IRE, and AIEE.  

Not only was the resulting discussion provocative and wide-ranging, it was recorded, 

transcribed, and partially published in Datamation (“Is it Overhaul,” 1959a; 1959b). And as 

these transcripts revealed, the participants spent significant time on one specific agenda item that 

queried, “What Can Be Done to Increase the Effectiveness of our Professional Organizations?” 

The Datamation editors more creatively captured the essence of the discussion via their own 

headline: “Is It Overhaul or Trade-In Time? Perennial Professional Society Question Worked 

Over by Computer Specialists” (1959a, p. 24). As participant Paul Armer later explained, the 

attention heaped on this particular topic was significantly stimulated by ongoing questions about 

whether and how to allow other professional groups to join the NJCC (“Reflections on a Quarter 

Century,” 1986, p. 230). Armer also noted that questions about how to represent U.S. interests in 

information processing at the international level also loomed large, a point to which I return. 

In most general terms, few could disagree with one participant’s assertion that the major 

groups in the computer field were united by a common interest in “that big box of stuff sitting in 

the middle of the room” (“Is it Overhaul,” 1959a, p. 24). Yet in discussing how interest in this 

boundary-object was – or should be – parceled up among the relevant professional societies, the 

attendees painted a rather discordant picture. Participant Herb Bright – at the time a 

Westinghouse engineer who was also affiliated with the ACM– characterized the relation of the 

AIEE, IRE, and ACM as an “impossible jurisdictional mess,” and he added that the three 

organizations “pretend to be working together when actually they’re fighting each other tooth 

and nail” (“Is it Overhaul, 1959a, p. 30). And as aptly summarized by well-known computer 

pioneer and instigator Herb Grosch, “we have two warring hardware groups and one poor 
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moribund user’s group, all trying to work together in this JCC farce” (“Is it Overhaul,” 1959b, p. 

26). Even  

Providing further insights regarding these apparent jurisdictional conflicts, other 

participants hinted at persistent tensions between the “gentlemanly” ideals of computer 

professionals and the expansionist agendas of the major computer groups. For example, 

aforementioned Bright explained: “Each one of them [the ACM, IRE, and AIEE], in a way 

which it piously hopes is gentlemanly and forward-looking is trying to cover some of the same 

ground as the other two” (“Is it Overhaul,” 1959b, p. 25). Pointing to the seemingly unique 

nature of the situation, Bright added the three groups were “trying to make believe their interests 

don’t conflict” (“Is it Overhaul,” 1959b, p. 25). And in a later part of the discussion that was 

focused on the persistent schisms in the field between hardware and applications, Willis Ware 

put a slightly different spin on the issue when he explained that “[t]here seems to be a 

gentlemen’s agreement between the ACM and the PGEC to keep the division that way” (“Is it 

Overhaul,” 1959b, p. 23).90 These statements reveal that ongoing jurisdictional negotiations 

between the ACM, IRE, and AIEE were often characterized by an outward appearance of 

stability and civility but with many persistent undercurrents of instability and conflict. 

Still other participants expressed more specific concerns about the relevant professional 

societies, while also proposing various approaches to reorganizing the field. Philco Corporation 

employee and outgoing AIEE CDC Chairman Morris Rubinoff, for instance, noted that a 

relatively small fraction of IRE and AIEE members had a primary interest in computers, and he 

concluded that “the IRE and the AIEE should recognize that they are primarily electrical 

engineers with a side interest in computers as such” (“Is it Overhaul,” 1959b, p. 26). And at 

another point he noted that those interested in “hardware” should get involved in the AIEE or 

IRE, “which should be merged in any case” (Is it Overhaul, 1959b, p. 19).91 And while Rubinoff 

clearly recognized the role of designers and engineers in the field, he also put forward the idea 

that “all computer activities should filter through the ACM. All other groups should then affiliate 

                                                
90 At the time, Ware was employed by the RAND Corporation and serving as chair of the IRE-PGEC. 
91 In another suggestive passage, Rubinoff noted that the IRE and AIEE tended to publish the same types 
of material. Indicating that he was serving on editorial boards for both groups, he explained, “If a paper is 
submitted to me in my capacity with Society X then I’m going to place it in the publication of Society X. 
But, actually, the man [sic] really doesn’t know where to send it, because we haven’t defined what is 
going to be published” (“Is it Overhaul, 1959a, p. 27). 
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with the ACM” (“Is it Overhual,” 1959b, p. 26).92 Indeed, many participants noted that the ACM 

appeared best-suited to take on such a role, especially given its size, scope, and independence. 

However, this proposal stood in tension with Rubinoff’s own assertion that the ACM had 

largely failed to take a leadership role in the field, and he suggested that “the ACM should have 

some new blood injected intravenously” (“Is it Overhaul,” 1959b, p. 26). Rubinoff also quite 

correctly noted that if the ACM moved to the forefront of the field, “[a] lot of people are going to 

feel that they have had the rug pulled out from under them” (“Is it Overhaul,” 1959b, p. 26). In 

light of these and other concerns, Rubinoff’s idea gained little traction. Saul Gorn, who had ties 

to the ACM, was also sympathetic with the idea of “reformulating” the Association so that it 

could take on more of a leadership role. Yet even Gorn acknowledged the inflexibility of the 

group‘s constitution, and at one point he added that the “ACM is in the throes of trying to find 

out the extent of its own amorphousness and decide what its justification is” (“Is it Overhaul,” 

1959b, p. 19). Others offered even more forceful critiques. UCLA’s Curtis B. Tompkins, for one, 

suggested that the Association “doesn’t have any status goals that are adequate at the moment” 

(“Is it Overhaul,” 1959a, p. 24). Grosch, on the other hand, referred to “[t]he void left by the 

ACM” (“Is it Overhaul,” 1959a, p. 25), and he later disparaged the Association and its leaders 

for focusing on the scientific and academic side of computing while ignoring the growing 

importance of computers in the business sphere (“Is it Overhaul,” 1959a, p. 33).  

In light of such concerns, participants put forth a number of additional ideas for 

reorganizing the field. One approach centered on expanding the role of the NJCC, although 

participants acknowledged that the committee’s form and charter limited its ability to do 

anything but organize conferences.93 Other options proposed at the symposium included the 

creation of either a new membership-based organization or an “Institution of Societies.” 

Ultimately sympathetic toward the latter idea, the discussants proposed the formation of an 

“American Association for the Advancement of Computing” (AAAC), with explicit reference to 

the American Association for the Advancement of Science (AAAS) as a prototype organization 
                                                
92 While Rubinoff’s sympathy with this idea may appear unusual, the interests of the AIEE CDC in the 
1950s often tilted toward the application of computers in various areas of engineering. And the CDC – 
unlike the IRE-PGEC – was a relatively small group that stood to lose relatively little if the ACM rose in 
prominence. But as noted below, control over the lucrative joint conferences was a sticking point for all 
of the groups involved, including the AIEE. 
93 As Grosch noted, the NJCC was “reaching for responsibilities which their charter really prohibits. … 
Most of the people who get in there really want more responsibility, but this is withheld from them by the 
nature of the committee charter” (“Is it Overhaul,” 1959a, p. 25). 



www.manaraa.com

 106 

(“Is it Overhaul,” 1959b). As suggested by some attendees, such an Association could 

accommodate broad participation by users groups, manufacturers, and a wide range of 

professional societies, including those with both direct and indirect interests in the field.  

The discussants clearly recognized the challenges and difficulties that came with bringing 

such an Association to fruition. As Bright summarized, “Each of these organizations wants a 

solution which fits the area which it has carved out for itself, which overlaps the other areas. 

You’ve reached a real impasse here” (“Is it Overhaul,” 1959a, p. 27). But in an important sense, 

commentators such as Bright failed to recognize the extent to which the stability of this system 

of professional societies was maintained not via rigid jurisdictional claims, but rather through the 

ongoing negotiation of sociotechnical settlements. Hence, the overlapping and interpenetrating 

interests of these groups were not by definition problematic, as evidenced by the ability of these 

organizations to work together and co-evolve through much of the 1950s. However, maintaining 

balance and stability both within and between these professional societies was made more 

difficult by the many currents of change that increasingly pervaded all aspects of the field. 

And in the end, the participants in the 1959 RAND symposium offered little in the way of 

hard and fast recommendations regarding how this system of professional societies might be 

reformed or reorganized. Yet the publication of parts of their conversation clearly drew attention 

to many of the issues that were play, and some of the ideas discussed at the meeting were later 

realized in the early 1960s transformation of the NJCC into the American Federation of 

Information Processing Societies (AFIPS).  

From the NJCC to AFIPS: Preserving Stability in the System 

Understanding the ultimate fate of the NJCC demands that we take a step back to 

examine the formation of the International Federation of Information Processing Societies 

(IFIPS). And indeed, tracing out this development requires that we look at some of the earliest 

efforts to organize an international conference on information processing, an idea that can be 

traced back to at least 1955 (Auerbach, 1986a, p. 180). After the concept for such a conference 

was presented to the NJCC by Isaac Auerbach – an engineer who at the time was working for 

Burroughs Corporation – an ad hoc committee composed of AIEE, ACM, and IRE 
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representatives was formed to pursue the idea (p. 180).94 This led to the 1957 submission of a 

proposal to UNESCO (United Nations Educational, Scientific, and Cultural Organization) that 

called for the organization of a conference “to promote a freer exchange of technical information 

among leading scientists and engineers of many nations” (p. 181), especially in the area of 

information processing systems. UNESCO support was garnered through a series of meetings 

involving an array of international experts in many areas of computing and information 

processing, and two important developments followed. The first of these involved the 

organization and execution of a series of international conferences, as originally envisioned by 

Auerbach. The inaugural event, held in Paris in 1959, was dubbed the International Conference 

on Information Processing (p. 184). As recounted by Auerbach, it attracted 1,800 participants 

and attendees from 38 countries and 13 international organizations.  

A second important development involved the formation of the International Federation 

for Information Processing (IFIP) in 1960. This so-called “society of societies” gained primary 

fame for organizing and executing subsequent international conferences, although the group was 

also involved in other important activities, such as in the area of standardization (Auerbach, 

1986a, pp. 186-187).95 The Federation has also been credited with helping to usher in the new 

terminology of “information processing,” which gradually started to displace alternative terms 

such as “computers” and “computing.” But even more importantly for the present analysis, the 

initial formation of IFIP required that just one professional society from each participating nation 

could join the Federation. Hence, the process for approving the formation of IFIP in the U.S. was 

rather convoluted, with the ACM, AIEE, and IRE separately approving the IFIP statutes and 

authorizing the NJCC to report these decisions back to IFIP. As Auerbach explains, “all hell 

broke loose” when the statutes started to make their rounds for approval, as many claimed that 

                                                
94 According to Auerbach, this committee consisted of Samuel N. Alexander of the National Bureau of 
Standards representing the AIEE and Alston S. Householder of the Oak Ridge National Laboratory 
representing the ACM. Auerbach, who at the time was employed by Burroughs Research Laboratory, 
represented the IRE. 
95 The formation of IFIP significantly trailed the 1956 founding of the International Association for 
Analogue Computation (AICA). While initially focused on analog computing, the scope of the group 
expanded in subsequent years, and in 1976 it was renamed the International Association for Mathematics 
and Computers in Simulation (IMACS). The AICA founding was also shortly followed by IFAC in 1957 
(Automatic Control), IMEKO in 1959 (Measurement), IFORS in 1959 (Operations Research), and IFIP in 
1960. The activities of the five groups were coordinated under the purview of FIACC (Five International 
Associations Coordinating Committee), which was established in 1972 with UNESCO support (“Call for 
Papers,” n.d.). 
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the NJCC possessed neither the adequate legal status nor authority to deal with an international 

body (“Reflections on a Quarter-Century,” 1986, p. 230). 

The statutes were ultimately approved by the ACM, IRE, and AIEE, but the process 

helped push the leaders of the computer field to develop a more unified national voice. An NJCC 

committee chaired by Harry Goode was charged with addressing the major issues in play, such 

as determining how to involve other professional groups in the NJCC or its successor, as well as 

establishing representation for the United States in IFIP (Auerbach, 1986b, pp. 258-259). Goode 

and his committee approached their task with both rigor and caution, and by 1959 they had 

developed a “Proposed Constitution for a Federation of Information Processing Societies.” This 

document that directly modeled on the constitution for another Federation, namely the American 

Institute of Physics (“Reflections on a Quarter-Century, 1986, pp. 235-236). After various 

adjustments were made to this document, support was garnered from each of the participating 

societies, and at a meeting in mid-1961 the NJCC was officially replaced by the “American 

Federation of Information Processing Societies” (AFIPS).96  

In general, the orientation, scope, and purpose of AFIPS pointed in a number of 

important directions. For instance, the organization’s new constitution indicated that “[t]he 

purpose of this Federation shall be the advancement and diffusion of knowledge of the 

information processing sciences and for literary and scientific purposes … These sciences 

include, but are by no means restricted to, the computer sciences and their applications to 

Society” (252). This statement stood as yet another reflection of the increasingly widespread use 

of the term “science” – rather then “engineering” – to describe wide swaths of activity in the 

computer field. This was also a significant departure from the NJCC’s prior statement of 

organization, which emphasized the group’s orientation toward “the field of computing 

engineering and allied arts and science” (1956, 1). Further, AFIPS was conceived so that its 

activities could potentially extend beyond the organization of joint conferences. As Ware later 

explained, AFIPS was intended as “the preeminent national single spokesperson for the 

                                                
96 While the influence of the aforementioned RAND Symposium on this process is not entirely clear, at 
least three of the participants were in some way involved with the drafting and approval of the AFIPS 
constitution.  And one of these individuals, namely Willis Ware, was elected the first Chairman of AFIPS. 
More recently, Armer has claimed that the NJCC committee recommendations – which in turn led to the 
AFIPS constitution – were “essentially the consensus of the participants in the Rand symposium” 
(“Reflections on a Quarter-Century,” 1986, p. 231). 
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computer,” and to some extent its constitution was tailored accordingly (1986, p. 304, author’s 

emphasis). 

Yet in other ways, the formation of AFIPS involved a rather conservative transition from 

the NJCC. For example, AFIPS was established as a “society of societies” that was headed by 

twelve directors, four each drawn from the ACM, AIEE, and IRE. The structure of AFIPS was 

also largely synergistic with IFIP, its international counterpart. As succinctly described by 

Robert Rector, who was closely involved with the formation of AFIPS, “IFIP provided a 

working model of a federation, and the NJCC was a readily available structure to do the 

building” (1986, p. 262). Of course, many other factors impinged on the ultimate form and 

function of AFIPS. Ware, for instance, has noted that time pressures were a major issue, 

especially for those who preferred the much more difficult task of either forming a new 

membership-based professional group or moving an existing group to the forefront of the field 

(1986, pp. 303-304).  

It is also worth noting that AFIPS was intentionally organized in a “non-threatening” 

manner. That is, the constitution of the group largely preserved the delicate balance of power that 

had been worked out by the three major constituent groups over roughly a decade-long period. In 

fact, Rubinoff has noted that the ACM was particularly “nervous” about the extent to which 

AFIPS might take over its “turf” (“Reflections on a Quarter-Century, 1986, p. 231). This feeling 

of vulnerability was likely heightened by the different characteristics of the ACM – which was 

largely composed of programmers, computer users, and academics – and the IRE and AIEE, 

which were large organizations with membership rosters and activities that extended well beyond 

computing (p. 231). If AFIPS somehow displaced the IRE-PGEC, for example, the IRE would 

surely persist. But if the ACM was similarly challenged, it might ultimately face decline and 

even dissolution. As Rubinoff has argued, “The organization that stood to lose most was the 

ACM” (p. 231). 

As a result of such concerns, various protections were written directly into the AFIPS 

Constitution. It stated, for example, that “the Federation shall do nothing that is in direct 

competition with the activities of its member societies” (“Reflections on a Quarter-Century,” 

1986, p. 231). This particular issue was further mitigated as a result of the AIEE-IRE merger, 

which led to the replacement of the eight total AIEE and IRE slots on the AFIPS board with just 
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four IEEE positions, in parity with the four already held by the ACM (Rector, 186, p. 263).97 In 

addition to reducing the chances of an AFIPS-led coup, the structure and constitution of the 

Federation also helped mitigate against outside encroachments. This issue was of particular 

salience given both the steadily increasing financial magnitude of the joint conferences and the 

numerous prior requests from outside organizations to participate formally and officially in the 

NJCC and its associated conferences.98 In order to address these issues, the AFIPS constitution 

mandated that the “full members” of AFIPS – namely the AIEE, IRE, and ACM – retained full 

control over the joint conferneces. Organizations approved as “affiliate members,” on the other 

hand, remained locked out of the JCC finances, but they were given a vote on the AFIPS board. 

In 1962, The Simulation Councils, Inc. was approved as the first such affiliate member (“AFIPS 

Appoints,” 1962; Ware, 1963, p. 42). 

Many of these themes were evident in a 1964 article that outlined both the position of, 

and prospects for, AFIPS. As explained by Willis Ware, who at the time was serving as the chair 

of the Federation, “AFIPS represents the intellectual activity of the entire field of information 

processing. There is no other organization with such a universal goal” (Ware, 1963, p. 42). The 

author went on to use the emergent discourse of “software” and “hardware” to outline the unique 

territories that had been claimed by the two major constituent societies: “The IEEE is largely the 

hardware population of the computing field, and the ACM, largely the software population 

which has grown into information processing through scientific computing” (p. 42). Ware also 

cautiously described the prospective future role of AFIPS. For instance, he indicated that it might 

be appropriate for AFIPS to take the lead in certain areas, such as in coordinating educational 

matters, interfacing with the public and other disciplines, or acting as a clearinghouse on 

standardization issues. Yet he noted that “AFIPS must serve its member societies,” and “AFIPS 

activities will be fully coordinated with and agreeable to is members” (p. 43).99 Like the NJCC 

                                                
97 As further evidence for the relatively good relationship between the ACM and AFIPS around this time, 
in 1964 a small ad-hoc committee that was charged with reviewing the structure and purpose of the ACM 
concluded that “[n]o substantial change in ACM-AFIPS relations seems to be called for” (Perlis, 1964, p. 
508). 
98 More recent accounts have identified a number of groups that at one time or anotherwanted to join the 
NJCC, including the NMAA (National Machine Accountants Association, which later became the 
DPMA), The Simulation Councils, and the Society for Industrial and Applied Mathematics (SIAM) 
(“Reflections on a Quarter-Century,” 1986, p. 235). 
99 Ware’s commentary also revealed ongoing anxieties about the appropriate role of other organizations in 
the information processing field. He indicated, for instance, that The Simulation Councils were 
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before it, AFIPS was clearly positioned at the center of a “system of professional societies” that 

had been carefully nurtured for more than a decade. Yet AFIPS was ultimately designed to 

preserve the stability of this system, and to protect the sociotechnical settlements that had been 

carved out by its constituent societies. As a result, the ability of the Federation to promote a more 

thoroughgoing “integration” of the field was limited. 

Conclusion 

In this chapter I have documented the historical trajectory of a number of professional 

societies that maintained major interests in the computer field. More specifically, I analyzed the 

internal development of these groups by discussing ongoing efforts to negotiate their respective 

identities and sociotechnical settlements. I also tracked trends the composition and activities of 

these groups, and I emphasized how they interacted with one another in a larger “system of 

professional societies.” Through the 1950s the Joint Computer Conference series and its 

associated joint committee came to play centrally important roles in this system, especially as the 

JCCs shifted from being a locus for computer-oriented engineers to a common point of 

intersection for diverse phases of the field, including the members and leaders of the ACM, IRE-

PGEC, and AIEE CDC. Hence, one of my main arguments in this chapter centers on the claim 

that the joint conferences and committees helped stabilize this system of professional societies, 

despite persistent tendencies toward specialization and fragmentation. Further, I contend that the 

JCCs in part reflected and enabled the overlapping and interpenetrating character of the 

sociotechnical settlements claimed by each of its constituent groups.  

My analysis also highlights the impressive overall stability of this system of professional 

societies. In fact, this stability was preserved through the late 1950s and early 1960s, which was 

a period marked by rapid technological development, major increases in the number of 

professionals working in the field, and ongoing expansions in relevant bodies of knowledge. This 

system also weathered a number of major organizational changes, including the merger of the 
                                                                                                                                                       
recognized as an “affiliate” member of AFIPS through their coverage of the “analog and mixed analog-
digital aspects of computing” (p. 42). The author also identified two other major organizations with 
relevant interests, namely the Business Equipment Manufacturers Association (BEMA) and the Data 
Processing Management Association (DPMA). The former represented manufacturers of office and data 
processing equipment, while the latter was a membership-based organization composed of individuals 
(such as accountants) who were interested in computer applications in business (p. 42). Ware 
acknowledged that the DPMA, as a “society of individuals,” was eligible for membership in AFIPS and 
“may, one day, decide to join” (p. 42). 
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AIEE and IRE and formation of AFIPS. Yet these changes were also gradually reconfiguring the 

field in important ways, and by the mid 1960s we find the emergence of new points of parity 

between the ACM and the IEEE Computer Group. These two professional societies claimed 

roughly equal numbers of members, they were evenly represented in AFIPS, and they had a 

balanced stake in the lucrative Joint Computer Conferences.  

Further, the dominant image of the ACM had largely coalesced around mathematics, 

programming, and applications, while the Computer Group was primarily aligned with 

engineering, design, and “hardware.” In many ways, this balance both reflected and reinforced 

the larger social and technical boundaries that pervaded the computer field. In subsequent 

chapters, I document how the boundary between computer engineers and other computer-

oriented professionals evolved in the commercial sector and educational sectors. I also discuss 

the ongoing evolution of the divide between hardware and software. As I contend, these 

“mirrored dichotomies” helped perpetuate and stabilize the unique and evolving structure of the 

computer field in the United States. 

It is also worth noting that there were tentative signs that the ACM was starting to move 

into a more prominent position in the field, especially in the early and mid 1960s. As noted 

above, for example, the ACM members and interests were gaining prominence in the JCCs, and 

in early 1963 the editors of Datamation quite directly asked, “Are the Joint Conferences overly 

software oriented to a point of diminishing returns for the hardware registrant?” (“The Great 

Conference Debate,” p. 25). They went on to note that attendees affiliated with the “software-

oriented” ACM were beginning to “far outweigh representation for the IEEE at the JCC” (p. 26). 

The editors pointed to a number of factors that were contributing to these trends, including rapid 

growth in the “programmer population” and an expanding gulf between engineers and 

applications (p. 25). The hardware-oriented sessions at the JCCs were therefore bringing in 

relatively few attendees, while other engineering conferences seemed to be attracting many of 

the better hardware papers.100 Still another editorial that appeared in the upstart trade magazine 

                                                
100 J. Don Madden, the chairmen elect of AFIPS, responded to this concern in a follow-up piece, also 
published in Datamation. As Madden argued, more could be done to tailor conference papers, sessions, 
and programs to mixed audiences of engineers and programmers. As Madden explained, “The software 
and hardware aspects of computers are becoming so closely interrelated that it is increasingly important 
for specialists in one area to understand the other” (1963, p. 45). Yet as my analysis suggests, realizing 
these reciprocal types of understanding proved perennially difficult in actual practice, even though similar 
calls for “intercommunication” had been surfacing since at least the early 1950s. 
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Computer Design complained about the lack of “‘hardware-oriented’ design engineers among 

the attendees” of the 1963 SJCC, as well as the overall tilt of the program toward “software” and 

applications over design techniques (Sacks, 1963). This same editorial called for the joint 

conferences to become a common meeting place for designers and users. 

These were interesting developments indeed, especially given that the early joint 

conferences were strongly linked to both engineers and the electrical engineering societies. And 

while some of the subsequent joint conferences started to tilt back toward “hardware,” it was 

clear that the landscape of computing had changed dramatically since the field’s early years. The 

Computer Group that emerged out of the AIEE-IRE merger occupied a prominent position on 

this landscape, especially in light of its large membership and somewhat expansive agenda. Yet 

the leaders and members of the IEEE-CG also faced an increasingly segmented field and 

ambitious ACM. As I discuss in subsequent chapters, a host of developments and negotiations 

helped preserve an overall balance of forces in the computer field from the mid-1960s onward, 

but not without implication or cost. Before tracing this history forward, however, it is necessary 

to step back to fill out the rest of this segmentation story. As I argue below, reaching a better 

understanding of the historical trajectory of the “system of professional societies” described in 

this chapter requires engagement with other contexts of sociotechnical negotiation, including 

various places of employment, a number of different educational arenas, and even the sphere of 

computer technology itself. 
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Chapter 4 

Dichotomous Developments in the Early Computer Field:  

Profession, Technology, and Education, c. 1955-1963 

 

 

 

“Although there is considerable mutuality of concern in their ultimate objects, ‘the 
advancement of computer technology and application,’ hardware personnel and 
their software peers have long been widely separated by geography, education and 
interest, and all that is written and said has not as yet made one head out of Humpty 
and Dumpty. … Perhaps, when the seemingly insurmountable hurdles are charged 
for the last time, it may suddenly appear that Humpty Dumpty is after all, a single 
entity and must be fitted properly together to continue sitting high on the wall.” 

(“A Datamation Staff Survey,” 1961, p. 36) 
 

As indicated in the epigraph above, in 1961 the editors of the trade magazine Datamation 

cleverly described the state of the computer field with an analogy to Humpy Dumpty, the well-

known nursery rhyme. And despite its whimsical character, this editorial remark carried more 

than a grain of truth. As discussed in the preceding chapter, the pervasive divide between the so-

called “hardware personnel and their software peers” was both reflected in and reinforced by the 

“system of professional societies” that emerged and evolved through the 1950s and into the 

1960s. Yet these groups and their relation stand as pieces in a much larger historical puzzle. In 

the first part of this chapter, I analyze how the major social and technical dichotomies of the 

computer field were mirrored and partially stabilized in other sites and contexts, including within 

both corporate worksites and the sphere of technology itself. My analysis also leads into a 

discussion of how various actors called into question the dichotomies that separated the field, 

leading them to articulate alternative visions for the future of computer technology and 

computer-oriented professional work that were more “integrated” than fragmented. 

The second major part of this chapter is focused on still another context – namely the 

educational sphere – where computer-oriented courses and degree-programs remained largely in 

flux through the 1950s and into the 1960s. In addition to tracing out the early emergence of new 
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discipline-building movements in the computer field, I document the evolving role of electrical 

engineering departments in various spheres of computer design and use. The latter parts of this 

chapter begin to point to the rising importance of university faculties and departments in ongoing 

debates over the appropriate relation of the Humpty and Dumpty of computer technology and 

application, while also hinting at the importance of the academic context as a crucially important 

site for the formation and development of new disciplines. 

Part I – Mirrored Dichotomies: Hardware/Software and Engineer/Programmer 

While one can overemphasize the historical evolution of specific words and phrases, 

tracing out the development of the term “computer engineer” and its variations provides 

important insights into a number of major currents and trends. In fact, such an analysis reveals 

how these terms both reflected and reinforced the links between various educational pathways, 

professional and disciplinary identities, and jurisdictions of knowledge, work, and technology.101 

As noted in Chapter 2, calls for “computer engineers” and “computer designers” started to 

appear in private-sector employment ads by 1952. In the present section, I follow the use of the 

term “computer engineer” through the remainder of the 1950s and into the early 1960s. In doing 

so, I look at how job advertisements for computer-oriented engineers proliferated in the 1950s, 

especially as the computer industry expanded. My analysis shows how “computer engineer” and 

a number of closely related terms went through a period of “interpretive flexibility” before 

moving toward a more stable set of meanings. In doing so, I also emphasize how formal 

education in electrical engineering was increasingly viewed as a prerequisite for computer design 

work, thereby promoting the dominant image of computer engineering as both a branch of the 

engineering profession generally and subfield of electrical engineering specifically. In summary, 

my account reveals the establishment and normalization of a distinct professional jurisdictions 

and set of educational requirements for computer designers and engineers. 

In subsequent sections, I use a variety of advertisements and other sources to discuss both 

the divisions of labor that were expanding within the domain of computer engineering and the 

growing schisms between computer engineers and other types of computer-oriented workers. 
                                                
101 As Stuart Shapiro quips, “What’s in a name? Plenty.” He goes on to argue that many of the labels that 
have been associated with various aspects of computers and computing “have not been applied as merely 
post-facto descriptions but as prescriptive models for shaping the IT [Information Technology] 
profession” (1994, para. 7). This tendency to use disciplinary labels in a prescriptive manner is perhaps 
most evident in the academic context, but Shapiro’s point has salience in the commercial sector as well. 
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These themes provide a convenient segue to a more general discussion of the computer field’s 

evolving sociotechnical boundaries. More specifically, I juxtapose the fragmentary tendencies of 

the emergent “software/hardware” dichotomy with a variety calls for the “integration” of the 

computer field’s major divisions of labor, technologies, and bodies of knowledge. 

Computer Engineering Identities: From Interpretive Flexibility to Stable Jurisdictions 

In Chapter Two I discussed how early employment openings for computer engineers 

were frequently described as involving design-oriented engineering work in circuits, logic, and 

systems. Yet in tandem with this trend, variations in the use of the term “computer engineer” 

started to surface. A 1954 ad from Bendix Aviation Corporation, for instance, called for a 

“computer engineer” with an engineering degree who was “capable of handling programming in 

the simulation and study of jet and reciprocating engine fuel systems, and aircraft shock strut and 

brake systems” (Bendix, 1954). Quite contrary to the “computer designer” role suggested by 

other ads from around this time, this opening clearly demanded a worker who could effectively 

use computers in the solution of engineering problems. As additional evidence for this 

interpretation, the ad provided an appropriate disclaimer: “no maintenance ability necessary.” 

Bendix announcements in 1955 and 1956 for “Senior Computer Engineer” and 

“Computer Engineer” positions further muddied the waters, as the former called for experience 

with “analog computers with control applications,” and the latter demanded a “digital computer 

programmer” (Bendix, 1955b; 1956). This occupational nomenclature was further refined in a 

1955 Bendix ad that was headlined “Analog Computer Engineers.” This posting briefly 

described three work positions, namely for “Senior Analog Computer Problem Analyst,” “Senior 

Computer Problem Engineer,” and “Analog Computer Problem Engineer” (Bendix, 1955a). 

Once again, the ad revealed that these positions involved wide-ranging job responsibilities and 

educational requirements, and they were focused on analog rather than digital technology.102  

A further canvas of the literature reveals that while many companies were using 

variations of the term “computer engineer” around this time, the aircraft industry led the way. A 

1956 ad from Northrop Aircraft, for example, explained that “applied mathematicians and 
                                                
102 The first of these positions involved the most extensive experience and responsibility in areas ranging 
from problem analysis to computer set-up and operation. The latter two openings, however, were focused 
on computer set-up and operation, suggesting that the company was making rather broad use of the term 
“engineer.” In fact, one of these positions stipulated a degree in math or physics, and the other in math, 
physics, or electrical engineering. 
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engineers are needed as computing analysts” (Northrop, 1956). The ad listed a series of more 

specific job titles, ranging from “computing engineers” and “computing analysts” to “electronics 

engineers” and “applied mathematicians.” And while the use of terms such as “computing 

engineer” drew on established distinctions between “computers” and “computing,” 

advertisements such as this one were vague about how the listed job titles were linked to specific 

types of work, expertise, or educational prerequisites. The body text for this same ad also 

indicated that technicians, electronic engineers, and mechanical engineers were needed for 

design and development work in Northrop’s Computing Center. Companies such as Northrop 

and Bendix were clearly seeking employees with a wide variety of backgrounds for computer-

oriented work. And since more precise classifications for these types of employees had not yet 

emerged, these companies crafted their own partially unique sets of terminology. 

Along similar lines, a 1956 series of announcements from Autonetics – a division of 

North American Aviation, Inc. – indicated many opportunities for “engineers and scientists” to 

fill openings as “computer specialists,” “computer programmers,” and “computer application 

engineers” (Autonetics, 1956). And Temco Aircraft Corporation announced in 1957 that it was 

looking for “analog computations engineers” who possessed analysis and programming 

experience (Temco, 1957). Douglas Aircraft Company, on the other hand, called for those with 

formal training in mathematics, science, or engineering to work as “expert programmers” or 

“computing engineers” (Douglas, 1957). While this laundry-list of positions was clearly oriented 

toward programming and applications, still other openings blurred the boundaries between 

computer design and use. A 1957 ad from Westinghouse-Baltimore, for example, explained that 

“Digital Computer Engineers” were needed “[f]or the extensive application of present and future 

digital techniques to military problems. Applicants with background and interest in digital 

coding, digital programming, and in the necessary hardware to implement such systems” 

(Westinghouse-Baltimore, 1957). 

The many variations of the term “computer engineer” surveyed here can be accounted for 

in a number of ways. To begin with, many of these examples are from aircraft and aerospace 

companies, which by the mid-1950s had established major interests in both the design of special-

purpose computers for major aerospace projects and the use of general-purpose computers for 

solving a wide variety of engineering problems. Hence, terms such as “computer engineer” were 

sufficiently flexible to capture professional work involving both the design and application 
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dimensions of computer-oriented work. And as reviewed above, number of more descriptive and 

specific variations helped clear up some definitional ambiguities, at least until better alternatives 

emerged. In addition to the aforementioned examples of “computer problem engineer,” 

“computing engineer,” and “computations engineer,” other companies invoked terms such as 

“computer applications specialist” (Hughes, 1954), “computer programmers” (Autonetics, 1956), 

and “computing analyst” (Northrop, 1956).  

On the one hand, these latter terms – which avoided the engineering appellation 

altogether – appeared with increasing frequency through the 1950s. On the other hand, many of 

the companies highlighted above were probably using variations of the term “computer 

engineer” for good reasons. For example, a number of these advertisements clearly pandered to 

computer-oriented engineers who might otherwise avoid openings that carried titles such as 

“programmer” or “analyst.” Further, engineers were likely a preferred pool of employees for 

many of these companies, for at least two major reasons. First, there was a growing perception 

around this time that training an engineer or other specialist how to use a computer for problem 

solving was far easier than the reverse approach, namely teaching a programmer or analyst the 

necessary knowledge to undertake domain-specific work in engineering and design. And second, 

employer demand and average salaries were spiraling upward for computer programmers, 

operators, and applications experts, and new questions were being raised about both the quality 

and motivations of the diverse individuals who were taking these types of positions. Engineers, 

by contrast, were a well-established occupational pool with comparatively high stability, 

predictability, and homogeneity (i.e., white and male).103 

A further canvas of employment listings from the mid-1950s onward reveals other 

relevant trends. First, the use of the term “computer engineer” in its more design-oriented sense 

                                                
103 A 1957 ad from Burroughs Corporation provided a rather lengthy description of the company’s “ideal” 
prospective engineer. Headlined “That Certain Man,” the ad copy explained that “good engineers” often 
shared a number of common characteristics: “He’s ambitious, he’s inquisitive, and if he’s still a young 
man he’s been out of college only a few years, has a wife and possibly one or two children. He likes his 
job and the company he works for … but he’s a little restless. He knows he is a good engineer but wants a 
chance to prove it. In many cases, he’s bogged down with too much paper work, – not enough 
responsibility. Or perhaps doing the job of a trained technician. He needs a change of pace. He needs 
creative work to still his restlessness and prove his ability. He wants recognition, and a chance to 
advance” (Burroughs, 1957). Weaving together themes of masculine socialization and identity, this ad 
stands as a potent example of the “dominant image” of the ideal engineer. The emergent identity of the 
computer programmer or analyst, on the other hand, was comparatively vague, ill-defined, and of lower 
professional status. 
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persisted throughout this period, and by the late-1950s most of the ambiguities evident in earlier 

ads were starting to fade. A 1955 Republic Aviation ad, for example, complemented its call for 

an applications-oriented “Senior Computing Engineer” with an opening for a “Computer 

Engineer” to “supervise maintenance and to design special circuitry for computers” of either the 

digital or analog variety (Republic, 1955). Notices from National Cash Register (NCR) published 

in 1956 prominently displayed the terms “Computer Engineers” and “Digital Computer 

Engineers,” as well as more specific associated titles, such as “Senior Electronics Engineers,” 

“Transistor Circuitry Engineers,” and “Senior Digital Computer Engineers” (National Cash 

Register, 1956a; 1956b).  According to the copy for the second of these two ads, the “Senior 

Digital Computer Engineer” position involved “advanced computer design, development, and 

application,” and required a “thorough knowledge of digital computer logic and circuitry, input-

output devices, programming” (1956b). Noting that employees would “enjoy the freedom of a 

small, select research group – operated by engineers for engineers,” the ad hinted at NCR’s ideal 

prospective employee, as well as the company’s dominant culture of research and design. 

NCR’s depiction of the digital computer engineer – which tended to emphasize hardware 

and design over applications and programming – captured both the formative image and 

jurisdiction of this emergent professional domain. And from the late-1950s onward, other uses of 

the term that both drew on and reinforced this image appeared with increasing frequency. 

“Experienced analog or digital computer engineers” were needed at North American Aviation in 

1956 (North American Aviation, 1956), while a 1957 ad from Librascope – a “computers, 

controls, components” company – called for “Digital Computer Engineers,” including in sub-

fields such as “Logical Design” (Librascope, 1957). And throughout 1958, Hughes indicated 

immediate openings for engineers in many areas, including “Computer Engineering” (Hughes, 

1958a) and “Digital Computer Engineering” (Hughes, 1959b).  

A 1960 ad from Hughes, on the other hand, displayed the labels “circuit designers,” 

“logical designers,” “systems analysts,” and “programmers” beneath a larger heading that read 

“digital computer engineers” (Hughes, 1960). In 1960, the Kearfott Division of General 

Precision, Inc. listed similar types of work under the banner of “Digital Computer Engineers,” 

including “Digital Circuit Design and Development” and “Computer System Synthesis and 

Logic Design” (Kearfott, 1960). NCR also returned with a 1960 posting for “Digital Computer 

Engineers” that called for applicants with EE degrees who were experienced in areas such as 
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logic design, circuit design, product engineering, and systems engineering (National, 1960). The 

major areas of expertise outlined in these ads – which had been tentatively linked to computer 

engineering earlier in the decade – were becoming more widely recognized as core domains of 

knowledge and practice for the field. To put it another way, these advertisements both described 

and prescribed a preferred educational background for computer designers and engineers, as well 

as the types of work tasks, bodies of knowledge, and technologies that were within their purview. 

Further evidence for these trends can be found in advertisements from International 

Business Machines (IBM), which through the 1950s emerged as a dominant player in the 

commercial computer industry. To begin with, many early IBM ads emphasized the role of 

engineers and engineering in the development of the company’s best-known machines. A 1954 

ad for “electronic and electro-mechanical engineers,” for example, pitched that prospective 

employees would “be working with the great terms of engineers that created and developed the 

world’s most advanced digital computers” (IBM, 1954). And in 1955, one personnel ad 

described IBM as an “outstanding engineering organization,” and it encouraged applications 

from “[m]en with BSEE degrees and some experience in design” (IBM, 1955a). And later in the 

same year another IBM posting carried a headline that read “The Challenge of Creative 

Engineering” (IBM, 1955b). Text that appeared directly beneath a picture of two men – who 

were surrounded by electronic equipment, and who were presumably engineers – explained: “At 

IBM, engineers are continually exploring the frontiers of man’s knowledge in the expanding 

field of electronics.” In addition to framing IBM as an engineering organization, these 

advertisements portrayed cutting-edge work in electronics and computer development as a 

jurisdiction that was claimed by engineers and engineering. 

 Through the 1950s IBM also regularly advertised openings for electrical, electronic, and 

“electro-mechanical” engineers. And while these ads generally did not make general reference to 

“computer engineers,” more specific variations of the term were plentiful. A 1957 ad for the 

company’s military products division, for example, listed openings for “computer circuit design 

engineers” and “computer logical design engineers,” as well as “systems evaluation engineers,” 

“systems engineers,” and “systems analysts” (IBM, 1957). Each of these five positions was 

accompanied by a profile of an existing IBM employee, and all but one of these individuals held 
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an electrical engineering degree.104 In 1961 IBM similarly announced immediate opportunities 

for “Systems Engineers” and “Computer Engineers,” as well as for various programmers, 

analysts, and other specialists (IBM, 1961). As suggested by these ads, IBM followed many 

other companies in linking the profession of computer engineering with both formal education in 

electrical engineering and design-oriented expertise in circuits, logic, and systems.  

 Still other sources suggests that what was happening at IBM was largely the norm in the 

commercial sector. In a 1959 Computers and Automation article on the demand for college-level 

computer training, Penn State’s Frank Hartman concluded that “[t]raining in computer design is 

at present deemed to be almost entirely the prerogative of the electrical engineers” (Hartman, 

1959, p. 13). As additional evidence for this claim, Hartman presented data on the demand for 

computer-oriented personnel based on survey results from 325 companies (Hartman, 1959, p. 

13). With regard to a total of 191 employees who were hired in 1958 with a “[b]ackground in the 

engineering problems associated with computers (maintenance, modification, design, etc.),” a 

total of 155 of these individuals (or 81%) had backgrounds in electrical engineering. The vast 

majority of the remaining employees in this category (34 of 191, or 18%) were trained as 

mechanical engineers. Similarly, these same companies reported a total of 44 vacancies for 

individuals who had this same type of background, and it was expected that 43 of these positions 

would be filled with graduates of electrical engineering programs. While pockets of definitional 

ambiguity surely persisted, by the early-1960s the assumed educational prerequisites – as well as 

the professional identity and jurisdiction – of the “computer engineer” had largely stabilized.105 

Divisions of Labor and Hierarchies of Design: Bounding and Segmenting Computer 

Engineering 

In addition to revealing the historical trajectory of the term “computer engineer” in the 

commercial sector, many of the personnel advertisements that appeared in the mid 1950s to early 

                                                
104 In fact, the exceptional individual on this list did hold an engineering degree, but in the area of 
mechanical rather than electrical engineering (IBM, 1957, p. 79A). 
105 One pocket of definitional ambiguity was evident in a series of 1960 postings from Philco for 
“computer engineers.” In addition to associating these positions with rather typical types of computer 
design and engineering work, these ads called for “[e]xperienced computer engineers … to install, start 
up, and maintain large-scale, high speed digital computer systems” (Philco, 1960). The required 
qualifications these positions were not entirely clear, but an associated heading that read “Customer 
Service Engineers” suggested that lower-status technical work was involved. However, my survey 
suggests that these types of ambiguities were increasingly rare in subsequent years. 
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1960s period reveal two closely related trends. The first of these involves the various divisions of 

labor that were emerging and expanding within the domain of computer engineering, especially 

as computer development became increasingly complex, commercialized, and even routinized. A 

second relevant trend centers on the ongoing demarcation of computer engineering, design, and 

related activities from other domains of knowledge and practice. In addition to documenting and 

analyzing these trends in the context of various worksites, in subsequent sections I follow these 

themes into other contexts, including the sphere of technology and the domain of education. 

As indicated above, 1950s era personnel advertisements for “computer engineers” were 

frequently accompanied by more detailed lists of subject areas, job responsibilities, and 

occupational titles. These ads hinted at the extent to which the development of computer systems 

and related equipment during this time period involved expanding “hierarchies of design,” to use 

terminology developed by Vincenti (1990). One early discussion of these divisions of labor can 

be found in a 1955 talk by Charles W. Adams, who identified component design, logical design, 

system design, and the “development of automatic coding techniques” as some of the main areas 

that fell under the larger umbrella of computer design (Adams, 1957, pp. 139-140). 

 

 

Figure 4.1 – Functions and Responsibilities of Computer Design Groups 
(Phister, 1958, p. 3) 

 
In his 1958 textbook titled Logical Design of Digital Computers, electrical engineer 

Montgomery Phister worked along similar lines.106 Early in the book, Phister outlined how 

computer system design projects were frequently carried out through the cooperative efforts of 

three major engineering groups, as shown in Figure 4.1. The “system analysis” or “system 

design” group, to begin with, was largely responsible for developing system specifications in 

                                                
106 Phister was well-qualified to write on these divisions of labor. In fact, this textbook grew out of his 
experiences teaching graduate-level logic design courses to electrical engineers at UCLA in the mid-
1950s. Phister’s perspective was also enriched by his first-hand experiences as an engineer in the 1950s, 
including at Hughes Aircraft and Ramo-Woolridge (Phister, 2005). 
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light of the intended applications of a particular machine (p. 2). The circuit design group, on the 

other hand, was primarily concerned with using basic circuit elements – such as resistors and 

vacuum tubes, diodes and wires – to develop various sub-components that could perform specific 

operations (p. 2-3). And finally, the logical design group was positioned between the other two 

groups, and was charged with assembling sub-components into larger subsystems and systems in 

order to realize desired machine specifications and functionality. 

While Adams and Phister provide us with a glimpse of the design hierarchies that were 

emerging within computer design groups in the mid and late 1950s, additional support for these 

depictions can be found in personnel ads from this same time period. The aforementioned 1957 

ad from IBM’s Military Products division, for example, showcased the activities of five different 

types of engineers that roughly fit into Phister’s categories. More specifically, these job 

classifications included: Computer Circuit Design Engineers, Computer Logical Design 

Engineers, System Evaluation Engineers, Systems Engineers, and Systems Analysts (IBM, 

1957). And while this particular ad tended to emphasize the importance of systems analysts and 

designers, by the early 1960s other companies were framing logical designers as a pivotal part 

the commercial computer development equation. In fact, Phister explained that “the experienced 

logical designer is a Jack-of-all-trades,” whose expected knowledge often spanned from machine 

operation, maintenance, and application to understanding different approaches to the design of 

systems, subsystems, and components (1958, p. 3).  

A 1963 Honeywell advertisement, on the other hand, explained that “[c]omputers are 

born in the mind of the Logic Design Engineer” (Honeywell, 1963). In addition to claiming that 

logical design work was “engineering in the truest sense,” this same ad noted that the 

responsibilities of the Logical Design Engineer cut across several disciplines.107 And a 1965 

Honeywell employment posting added that “[s]ome of the most challenging engineering being 

done at Honeywell is hidden behind the job title Logic Design Engineer” (Honeywell, 1965). Yet 

by 1966, this same company was pandering to circuit and systems engineers in a similar manner. 

“Computers are realized in the mind of the Circuit Design Engineer” (Honeywell, 1966a), one 

                                                
107 It is also worth noting that this Honeywell ad appeared in an early issue of Computer Design. 
Established in 1962, this trade publication was oriented toward both industry generally and digital circuit 
and system designers specifically. Clearly aimed at practicing engineers, an editorial in the first issued 
indicated that the magazine would publish articles and reports that would help “bridge the gap between 
textbook theory and the practical rule-of-thumb principles that guided designers to a successful product” 
(“Editorial Prospectus,” 1962, p. 3). 
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advertisement proclaimed, while another explained that “[c]omputers are conceived in the mind 

of the system design engineer” (Honeywell, 1966b). While these statements may initially appear 

contradictory, each holds a grain of truth. That is, circuit, logic, and system design engineers all 

played important roles in a design hierarchy that had emerged and coalesced through roughly the 

first decade of commercial computer development. Further, the evidence presented above 

suggests that all of these positions were located within the domain of computer design or 

computer engineering, with each claiming a jurisdictional sub-segment of the larger field. 

On the other hand, there were clearly other types of actors who were to some extent 

involved in computer design, such as programmers, applications specialists, and even end users. 

This issue points to a second major theme that is evident in many of the advertisements 

published during this time period, namely the growing divide between two major professional 

jurisdictions, one focused on design and the other on applications. This tendency was nicely 

summarized by mathematician Franz Alt in his 1958 textbook: “At least two such fields of 

specialization have come into prominence: computer machine engineers, concerned with the 

design, construction, and maintenance of these machines, and the programmers and numerical 

analysts, who prepare problems for them” (1958, p. v). In fact, by the late 1950s many 

companies were more frequently making employment pitches that were exclusively aimed at 

“computer programmers.” As a result, ambiguous terms such as “computing engineers” and 

“computations engineers” were displaced, and “programmers” were increasingly associated with 

a partially distinct assortment of work locations, skill sets, bodies of knowledge, educational 

backgrounds, and technologies.  

Evidence for this theme can be found in a number of advertisements. A 1959 posting 

from System Development Corporation (SDC), for example, was explicitly and exclusively 

aimed at “Computer Programmers.” And by 1962, IBM was running a series of appealing 

advertisements for “Programmers.” One of the first ads in this series described programmers as 

part of a “young but rapidly growing profession,” and it went on to note that “programmers are 

creating new concepts in software, and contributing to the design of new systems” (IBM, 1962). 

Such advertisements described and prescribed the emergent occupational niche of the computer 

programmer, just as prior ads had contributed to the establishment of the dominant image and 

jurisdiction of the computer engineer. However, ads for programmers were often comparatively 
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vague about educational prerequisites, as evidenced by one IBM ad that simply sought 

applications from those with “experience in computer programming” (IBM, 1962). 

A 1962 Honeywell advertisement provided further evidence for the divides that were 

growing up between programmers and engineers. A tall vertical pane on the left side of a split-

page spread carried the headline “Engineers,” and it provided an overview of both the system 

specifications and performance benchmarks of the company’s new H1800 computer system 

(Honeywell, 1962c, p. 10). The same vertical pane also listed professional opportunities at 

Honeywell for circuit designers, logical designers, electrical engineers, and product designers. A 

similar box on the far left of this layout – which was separated from the rest of the ad by two 

columns of unrelated magazine content – was headlined “Programmers” (p. 11). This panel listed 

job openings in areas such as automatic programming, operational programming, compiler 

development, and systems analysis (p. 11). This advertisement provided a potent visual metaphor 

for the computer field’s major sociotechnical boundaries. That is, engineers and programmers 

were framed as being interested in different aspects of computer technology, and they were 

sought for distinct types of professional positions.108  

A further canvas of ads reveals that the major divisions of labor and hierarchies of design 

outlined above were firmly established by the mid-1960s. Advertisements for computer 

engineers frequently required electrical engineering or physics degrees, and were often focused 

on circuit design, logic design, and systems engineering. Programmer positions, on the other 

hand, often stipulated an education in mathematics or science, and involved work in areas such 

as numerical and systems analysis, systems and applications programming, and software 

development. Of course, questions remained about the extent to which existing educational 

programs provided adequate preparation for these and other types of computer-oriented 

professional work, a point to which I return below. But before doing so, it is necessary to analyze 

how the negotiation of these professional and disciplinary boundaries became deeply intertwined 

with another emergent dichotomy, namely that of “hardware” and “software.”  

                                                
108 In 1962, the personnel consulting firm Dataman Associates similarly split out its listing for engineers 
and programmers, each of which appeared in separate advertisements on separate pages (Dataman, 1962a; 
1962b). 
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The Hardware/Software Ensemble: Constructing and Questioning the Dichotomy 

On the surface, one might presume that the distinction between computer hardware and 

software is largely or even wholly a technical matter, especially in light of contemporary, 

popular uses of these two terms. Yet in this section, I use a discourse-oriented approach to assert 

that ongoing efforts to both define the meaning of these two terms and delineate their relation 

was – and remains – a multi-dimensional and sociotechnical process. Drawing on concepts and 

terminology developed by Paul Edwards, the body of discourse surrounding hardware and 

software can usefully be viewed as a “heterogeneous ensemble” that melds technologies, social 

identities, practices, and bodies of knowledge (1996, p. 40). Further, framing hardware and 

software in this manner helps shed light on their dichotomous yet relational character. 

It is first worth briefly reviewing some important background details that were introduced 

in preceding chapters and sections. While the term “hardware” was first used in reference to 

computing machinery in the 1940s, the term gained momentum through the 1950s as convenient 

shorthand for the “physical components of which computers are made” (“Editorial,” 1953, p. 

1).109 And as noted above, the jurisdiction and identities of computer designers and engineers 

became closely linked to the physical machinery of computing, especially in the 1950s. On the 

one hand, these developments reveal the extent to which the emergence of new professional and 

disciplinary identities is often sociotechnical, in that can involve intertwined social markers, 

bodies of knowledge, and domains of technology. Yet this process was also significantly 

relational, in that it involved the definition and negotiation of interrelated terminology and 

concepts. Through much of the 1950s, for example, the term “hardware” was frequently 

juxtaposed with other terms that described the more ethereal “internal” aspects of computers, 

such as the digital bits and bytes that ultimately comprised all programs and routines. 

By the late 1950s, however, commentators such as Paul Armer were complaining that the 

term “program” and its many variations were overused. As Armer explained, “[O]ur field is 

badly in need of a new set of generic terms. In particular, we need replacements for all forms of 

the word ‘program’” (1959, p. 3). Snidely adding that “it’s even possible these days to discuss 

‘the Dynamic Programming programming program,’” Armer suggested that this issue might be 

                                                
109 According to the Oxford English Dictionary Online, the term “hardware” was first used in the context 
of computing machinery in Douglas Hartree’s 1947 book, Calculating Machines (“Hardware,” 2006; 
Hartree, 1947). 
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addressed via a contest or committee. Yet such measures were ultimately unnecessary, as the 

term “software” surfaced with increasing frequency in the early 1960s. Credit for coining this 

term often goes to scientist John W. Tukey, who in a 1958 journal article explained: 

Today the ‘software’ comprising the carefully planned interpretive routines, 

compilers, and other aspects of automative programming are at least as important 

to the modern electronic calculator as its ‘hardware’ of tubes, transistors, wires, 

tapes and the like (quoted in Shapiro, 2000, p. 69).  

While Tukey followed prior commentators by juxtaposing “programming” and “hardware,” he 

attached the former to an appealing new term. “Software” was a clever catch-all expression that 

captured an increasingly expansive sub-domain of computing, and its general meaning was 

easily discerned by those already familiar with the term “hardware.”  

By the early 1960s it was clear that the definition and use of this new term often varied 

significantly from author to author and text to text. In a 1962 letter, for example, mathematician 

Bernard Galler noted that the meanings associated with the term “software” were proliferating. 

He also tried to clarify matters by explaining that “[t]o each user of a computer, the total 

computing facility provided for his use, other than the hardware, is the software” (1962).110 As 

suggested by Tukey’s definition, the precise definition of the term was perhaps not as important 

as its relation to “hardware.” Around this same time, still others were predicting the demise of 

the amorphous term. In an interview published in Datamation, for example, IBM executive 

Warren C. Hume suggested that “the term software – as a catchall word – is going to become 

less and less meaningful as time goes on” (Bergstein, 1962, p. 35).  

Commentators such as Hume clearly underestimated the valuable discursive niche that 

this term filled. In fact, many other computer companies were eagerly embracing the dualistic 

discourse of software and hardware. IBM rival Honeywell, for instance, provided prospective 

customers with a basic definition for software in a 1962 advertisement: “Software is a new and 

important addition to the jargon of computer users and builders. It refers to the automatic 

                                                
110 Further hinting at the flexibility of the term, Galler noted that its meaning could shift as a function of 
both time and user. He more specifically explained that “[t]o the systems programmers of an installation 
just receiving a computer, software means that which the manufacturer supplies which is not actual 
hardware. … to a user of that same computer one year later, software means the system available to him, 
including all of the additions to the library, new translators, utility programs, etc., which his systems 
group has added to the delivered software” (p. 6). As this passage reveals, the meaning of a given 
technical term can be highly dependent on context, especially when the term tends toward generality. 
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programming aids that simplify the task of telling the computer ‘hardware’ how to do its job” 

(Honeywell, 1962a, p. 46).111 And in another advertisement published the same year, Honeywell 

emphasized that “Good software makes good hardware better – and vice versa” (Honeywell, 

1962b, p. 2-3).112 This was a timely pitch, as a growing roster of pundits was pointing out that 

hardware development had largely settled into stable patterns of ongoing, incremental 

improvements in reliability and speed, while major advances in the realm of programming were 

comparatively sparse. Further, proclamations about the so-called “complimentarity” of software 

and hardware were surfacing more frequently, although they often appeared in tandem with 

critiques of the software-hardware relationship. I revisit this theme in more detail below. 

Other formal definitions for “hardware” and “software” appeared in print in subsequent 

years, revealing the extent to which these terms had quickly become a widely recognized part of 

the computing lexicon. For instance, a glossary that was originally developed by an ACM 

committee and published in abbreviated form in the CACM put forward these definitions: 

hardware 

The physical equipment such as the mechanical, magnetic, electrical and 

electronic devices from which a computer is fabricated; the material forming 

a computer, as distinct from the routines. Contrast with: software (Fritz, 1963, 

p. 155) 

software 

The totality of programs and routines used to extend the capabilities of 

computers, such as generators, compilers, and operating systems. Contrast 

with: hardware (Fritz, 1963, p. 157). 

Once again, hardware and software were defined as counterparts, with the former referring to the 

“material” or “physical” aspects of the machine, and the latter representing the associated 

“internal” programs and routines.  

In the early 1960s, the trade magazine Datamation also picked up this new terminology 

and ran with it. The always provocative Herb Grosch, for instance, authored a 1961 editorial 

titled “Software in Sickness and Health.” And a 1961 survey article on computer components 

                                                
111 This same ad also identified three sub-categories of software, namely assembly systems, compiler 
systems, and operating systems (pp. 46-47). 
112 The ad went on to explain that “Honeywell software is designed to capitalize on, and complement the 
advanced capabilities of Honeywell hardware. Each extends the power of the other” (p. 3). 
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suggestively juxtapositioned the terms “software” and “hardware” in order to comment on the 

computer field’s major boundaries, which were framed as neither simply nor merely technical: 

Although there is considerable mutuality of concern in their ultimate objects, ‘the 

advancement of computer technology and application,’ hardware personnel and 

their software peers have long been widely separated by geography, education and 

interest, and all that is written and said has not as yet made one head out of 

Humpty and Dumpty. … Perhaps, when the seemingly insurmountable hurdles 

are charged for the last time, it may suddenly appear that Humpty Dumpty is after 

all, a single entity and must be fitted properly together to continue sitting high on 

the wall (p. 36). 

While it is not clear whether the “Humpty Dumpty” analogy used in this passage referred to 

computer systems, computer-oriented workers, or perhaps even the computer field as a whole, 

the allusion was particularly effective because it hinted at the full range of “sociotechnical” 

dynamics that were in play at the time. That is, this editorial remark linked two general spheres 

of technology – denoted by the terms “hardware” and “software” – with two distinct classes of 

computer professionals, who often worked in different locations and possessed different 

educational backgrounds and interests. 113 Yet the editors also challenged these boundaries by 

hinting at the benefits of somehow unifying or integrating these two sociotechnical spheres. 

Many period advertisements from major computer companies similarly invoked the 

software/hardware schism while simultaneously calling it into question. A 1962 ad from 

Burroughs Corporation, for example, queried: “When will a computer manufacturer design a 

system so that hardware and software – including operating system, programming languages and 

compilers – are completely integrated?” (Datamation, August 1962, p. 14).114 The 1964 

                                                
113 In a 1961 Datamation editorial, Grosch worked in similar directions when he noted that “a few miles 
between software and hardware boys is healthy, but a hundred is too much” (1961, p. 33). While it was 
clear that Grosch was referring to the increasing geographical distance between software and hardware 
experts – who were increasingly segmented in different corporate divisions and even different companies 
– it also suggested a more general schism between the domains of software and hardware. 
114 On a closely related note, a 1959 advertisement from System Development Corporation (SDC) carried 
a large headline that queried: “Computer Programmers: Seen any new horizons lately?” (System 
Development Corporation, 1959). The ad copy outlined a number of major SDC research projects, one of 
which centered on the “investigation of computer design from a standpoint of programmability rather than 
engineering.” In addition to revealing the ongoing expansion of a divide between the perspectives of 
computer programmers and computer programmers, this ad once more suggested that the computer 
industry was trying to design computers that were more responsive to end-user needs and applications. 
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advertisement from Mesa Scientific Corporation shown in Figure 4.2, on the other hand, even 

more suggestively declared that “Mesa Men now come in two convenient types: Software… and 

Hardware!” (Mesa Scientific Corporation, 1964). In addition to calling attention to a perceived 

gulf between these two domains, the ad emphasized the ability of Mesa’s “integrated 

software/hardware team” to “reduce software/hardware interface problems” and “optimize 

software/hardware trade-offs.” While this passage echoed other calls from around this time for 

more “integrated” approaches to computer development, it also forcefully revealed the extent to 

which the boundaries around software and hardware were as much about “men” as they were 

about machines. In addition, the rhetoric presented in these ads revealed a fundamental tension, 

namely that if software and hardware were truly integrated, the terms might not be needed. 

“Software” and “hardware” also appeared with increasing frequency in conference 

programs and in the remarks of leading figures in the computer field. At the FJCC in 1963, for 

instance, separate panel sessions were dedicated to “Software for Hardware Types” and 

“Hardware for Software Types.” These events, which were reportedly well-attended, hinted at 

the extent to which the discourse of software and hardware were becoming closely linked to pre-

existing professional and disciplinary identities, worksites, bodies of knowledge, technologies, 

and cultures of design.115 Along similar lines – and as noted in the previous chapter – in 1964 

Willis Ware suggested that the IEEE largely represented the “hardware population” of the 

computer field, and ACM the “software population.” Yet as suggested by many of the examples 

cited above, others were questioning the apparent and ongoing tendency of the field to cleave 

into two major parts. In the section that follows I take a closer look at some of these more critical 

alternative perspectives. 

                                                
115 A pre-published description of the “Software for Hardware Types” session was especially revealing. It 
noted, for instance, that “[t]he role of programming and the programmer in the computer field is growing 
rapidly in recognition and importance but is still widely or poorly misunderstood” (53). The same 
overview noted the historical tendency for programmers to hold a “second class status” to hardware 
people, and they emphasized that programmers were becoming more widely accepted as “partners” in the 
planning and design of computers. 
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Figure 4.2 – “Mesa Men” (Mesa Scientific Corporation, 1964) 

Advertisement Furnished Courtesy of Northrop Grumman Corporation 
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Artificial Barriers versus Integration: Carr and Gorn on the Boundaries 

As noted in the preceding chapter, by at least the late 1940s a handful of commentators 

were calling for improved approaches to the development of computing machines and systems. 

In a 1949 conference presentation, for instance, Jay Forrester advocated additional research in 

the area that he called computer “systems engineering.” Still other writers – such as Lehmer, 

Mauchly, and Hopper – extolled the benefits of close cooperation and open communication 

between computer designers and programmers. As these authors argued, increasing the cross-talk 

between these two groups could lead to relatively small design changes that would greatly 

improve the functionality and usability of computing machines. Yet these types of calls for 

cooperation were largely confined to a small circle of thoughtful critics, many who happened to 

lack engineering credentials. In the present section I focus on John W. Carr III and Saul Gorn as 

two important actors who helped carry this tradition of critique through the 1950s and into the 

1960s, especially as they discussed the justifications for – and implications of – the computer 

field’s major sociotechnical divides. 

I begin with Carr, who in the 1950s surfaced as an outspoken proponent for expanded 

university involvement in computer-oriented research and education, especially in areas such as 

computer design. After earning a Ph.D. in mathematics at MIT in 1951, Carr spent much of the 

1950s as a professor and research mathematician at the University of Michigan (Lee, 2001). 

From 1959 onward, he assumed a variety of academic posts at both the University of North 

Carolina and the University of Pennsylvania’s Moore School of Engineering. On the surface, 

Carr might appear a somewhat unlikely commentator on the topic of computer design, especially 

given his background in mathematics and computer applications. However, Carr’s research 

interests and experiences provided him with a nuanced understanding of the computer field’s 

evolving social and technical landscape. In fact, he stands in a longer line of mathematicians and 

programmers whose in-depth familiarity with the first generations of computing machines 

provided them with the ability to insightfully comment on and critique the contemporary state of 

computer design and engineering. 

Early evidence for Carr’s engagement with these types of issues can be found in the 

Proceedings of the first JCC, which included a summary report by Carr on a series of hastily-

convened conference sessions that were focused on various “problems of programming” (Carr, 

1952, p. 113). These short reports suggest that the meeting sessions provided opportunities for 
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Carr and other participants to discuss the evolving relation of machine design and operation at an 

event that was ostensibly and more narrowly focused on the “engineering aspects” of computer 

design and construction. Carr went on to engage with many related issues at the EJCC 1956, 

where he took advantage of his role as “conference summarizer” to develop a rather forthright 

commentary on the contemporary state of education, research, and employment in the computer 

field. More specifically, he highlighted three intertwined problems. The first of these centered on 

“the problem of manpower” (Carr, 1956, p. 147). In light of impressive growth in both the total 

population of computers and the number of different system models, Carr asked: “Where are the 

people to come from who will develop, maintain, and use these new monsters, devourers of both 

information and personnel?” (p. 147). This issue was receiving a great deal of attention around 

this time from a growing roster of commentators, and I discuss some of their proposed solutions 

in more detail below. 

A second and closely related problem discussed by Carr centered on the “preservation 

and rehabilitation of the universities in the area of computer circuits, design, and logic” (p. 147). 

On the one hand, Carr acknowledged that a handful of schools remained active in computer 

design research, yet he described these as “isolated cases with tenuous futures” (p. 147).116 As 

further evidence for this claim, Carr noted that the EJCC at which he was speaking featured few 

presentations from university researchers, which was a marked change from prior joint 

conferences. And at another point in his talk, Carr complained that high salaries in industry were 

luring many professors and graduate students into the commercial sector, and he suggested that 

government funding for university research in computer design and development was being 

neglected, especially in areas such as “over-all systems design” (pp. 147-148). In light of these 

challenges and trends, Carr suggestively asked, “In the area of computer design, are we letting 

the wells run dry at the source?” (p. 147). He also warned his audience: “When university 

research in computers disappears, university teaching in that area crumbles” (p. 148).  

The third major point of concern discussed by Carr centered on the so-called problem of 

“intercommunication.” As the author explained, various “artificial barriers” were isolating 

computer users from designers, as well as “logical program designers” from the “logical 

hardware designers” (pp. 147-148). Carr claimed that this problem was more serious than ever, 

                                                
116 More specifically, Carr identified computer design and development activities that were being carried 
out at Purdue, the University of Michigan, the University of Pennsylvania, and the University of Illinois. 
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as evidenced by the weak coverage of programming topics at the very EJCC at which he was 

speaking (pp. 147-148). And while these types of concerns clearly echoed the prior comments of 

Muachly and Hopper, Carr pushed into new territory when he asked: “How is a discipline 

organized so that it can intercommunicate?” (p. 148). In response, Carr framed the computer 

field as a single discipline, and he emphasized potential commonalities and possible points of 

contact between hardware designers and programmers. 

Such comments might make it look like Carr was out of touch with existing commercial 

and professional realities. Yet he went on to argue that universities and their associated personnel 

and students could play a pivotal role in ameliorating all three of the major problems identified in 

his talk. He noted that university professors, for example, tended to approach the task of 

intercommunication as a “labor of love,” and he explained that they frequently “pass the 

discipline on” through various activities, including through the development of various 

textbooks, glossaries, and “treatises” (p. 148). Carr also suggested that university professors and 

researchers were uniquely positioned to act as both critics of existing computers and sources of 

imaginative new machine designs, even if they lacked the resources to build their own 

components, much less entire systems (pp. 147-148). And finally, he argued that establishing 

new “professional” graduate programs could provide the types of employees that the marketplace 

was demanding. 

Toward the end of his talk, Carr discussed some of the specific ways in which the 

computer field’s extant social and technical boundaries might be blurred. In the technical sphere, 

he described how cutting-edge computers such as the Univac-Larc and IBM STRETCH were 

being designed as “integrated systems,” from the “outside in” (p. 149). As Carr explained, this 

“integrated systems approach” took “the external language of communication as the starting 

point,” and used “automatic programming techniques in carrying the language into the middle of 

the machine” (p. 149). This alternative model of computer design – which was driven by 

applications and higher-level programming languages – was quite unlike the mode of computer 

development that had become dominant in the commercial sector, where manufacturers were 

increasingly adept at building faster and more reliable general-purpose, stored-program 

computers, while failing to realize more significant or imaginative changes in overall machine 

design and functionality.  
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With regard to the social aspects of the field, Carr revisited the issue of 

intercommunication. He more specifically recommended the organization of small meetings that 

brought together diverse types of computer-oriented workers. As Carr explained, events 

composed of roughly ten to thirty persons might be scheduled as complements to larger meetings 

such as the JCCs. Further, he suggested that these small meetings could potentially transcend 

extant organizational and occupational boundaries by bringing together “logical designers with 

programmers, circuitry personnel with automation specialists, language specialists with 

programmers, and so on” (p. 150). It is no stretch to describe Carr’s remarks as an argument for 

the “integration” of the field’s social and professional spheres, just as he had described and 

championed “integrated” approaches to computer system design.  

When Carr took over at the President of the ACM in 1956, he used his inaugural address 

to hint once more at the theme of intercommunication. As Carr explained: 

The A.C.M. stands as a common meeting ground for a variety of interests. … We 

must continue to interpret our many interests one to another – administrators to 

mathematicians, programmers to logical designers, educators to members of 

industry – all linked by this common use of a remarkable set of machines of 

which we have not yet seen the final limitations (Carr, 1957, p. 7). 

While Carr’s rhetoric was rather optimistic, the preceding chapter revealed that the ACM 

continued to tilt toward the needs and interests of only some of these factions – namely 

mathematicians, programmers, and educators – through much of the 1950s and into the 1960s. 

The IRE and AIEE, on the other hand, already key centers of activity for large numbers of 

computer engineers and “logical designers,” as well as many members of industry. 

Through this same time period mathematician Saul Gorn of the University of 

Pennsylvania’s Moore School of Electrical Engineering also called into question the computer 

field’s major boundaries, although he placed particular emphasis on the relation of “machines” 

and “programs.” In a 1958 letter that appeared in the newly-established CACM, for example, 

Gorn noted the “equivalence of hardware and programming” (p. 2). And in a 1959 conference 

paper pre-print, he similarly explained: 

The point of view expressed in this paper makes more tangible two principles 

accepted intuitively by many programmers and logical designers. They are a) the 
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equivalence of formal languages and machines, b) the equivalence of 

programming and hardware (Gorn, 1959, p. 25-1). 

Yet despite this hypothetical equivalence, Gorn acknowledged an important associated design 

question, namely: “how much [structure] should be in the hardware and how much the job of 

programs?” (1958, p. 3).117 Indicating his preference for more flexible machine structures, Gorn 

provocatively added: 

Since it is a user’s world, the combination of machine and compiler is the 

“machine” we are really interested in. The designers of automatic coding systems 

must therefore be considered among the machine designers, and should be 

involved before the hardware designers have finished their plans. The pioneers in 

automatic coding were well aware of the identity of compilers and machines. 

Others need constant reminding (1958, pp. 3-4). 

Gorn’s argument for explicitly including the development of compilers within the province of 

the “machine” clearly challenged the dominant position of engineers as vanguards of computer 

design. Further, his remarks suggested that shifting from a “machine-oriented” to “user-oriented” 

perspective might demand accompanying revisions in the computer field’s major social and 

technical boundaries. 

As I discuss in the following chapter, Gorn’s views on machine-program equivalence 

clearly informed his early efforts to champion a new discipline that he dubbed the “Computer 

and Information Sciences.” But for the present analysis it is worth returning to Carr, who 

resurfaced in the 1960s with an updated critique of the computer field and its technological state 

of the art. In a 1962 article titled “Better Computers” – which appeared in both in an early issue 

of International Science and Technology and in the German journal Elektronische 

Rechenanlagen (“Electronic Computers”) – Carr started with a pointed assertion: “Today’s 

mass-produced general-purpose digital computers are being designed and used almost wholly 

without imagination” (1962b, p. 157).118  

                                                
117 As noted in Chapter 2, this particular line of questioning had already been in play for at least a decade. 
As Mauchly noted in 1948, for example, “A decision must be made as to which operations shall be built 
in and which are to be coded into the instructions” (p. 205). 
118 It is worth noting that Carr’s critique appeared in two publication outlets that were relatively obscure 
and marginal at the time, at least for U.S. readers. However, it is not clear whether Carr ever tried to 
publish his this article in a more mainstream professional publication.  
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Yet Carr also acknowledged the efforts of the early computer pioneers, whose “early 

daring” helped lay the foundations for the field. In fact, he credited “electrical engineers and 

physicists” such as Aiken, Wilkes, Eckert, and Forrester for successfully “modeling in hardware” 

the theoretical concepts that had been developed by various “mathematicians and philosophers,” 

including Turing, Mauchly, von Neumann, Goldstine, and Burks (p. 157). While this type of 

historical framing was certainly oversimplified, it framed computer development in hierarchical 

terms, where engineers and scientists realized the ideas of mathematicians and philosophers. 

Further, this type of characterization was strategic in that it implicitly bolstered Carr’s legitimacy 

as a critic of computer design, given his own background as a mathematician. 

Much of the remainder of the article was dedicated to critiquing the computer field for 

failing to move beyond a general framework of machine design and application that originally 

developed in the 1940s. More specifically pointing to the problem of “designer conservatism,” 

Carr complained that computer users were “restricted almost completely to the original limited 

concepts of problem-solving capabilities bestowed on the machines by their designers, rather 

than a more global view of the problem” (p. 158). Suggesting that this problem was exacerbated 

by the tendency for computer designers and programmers to be working in very different 

physical locations, Carr added: 

Hardware specialists often propose solutions to important technical problems 

which involve a relatively small effort by the logical designer, but leave the bulk 

of actual implementation to the programmer. These men [sic] may never have 

met, and probably don’t even belong to the same organization (p. 159). 

Such complaints strongly echoed many of Carr’s earlier remarks. Yet in this particular paper, the 

author also stepped forward with a critique of programmers. He argued, for example, that the 

“vested interests” of programmers often led them to oppose changes in machine configuration 

that might threaten their job security. In other words, making machines easier to use might 

eliminate much of the detailed analysis and coding work that was at the heart of the 

programmer’s occupational niche. Once again, the problems identified by Carr clearly involved 

intertwined social and technical factors, ranging from the dominant model of computer design to 

the differing interests and worksites of various computer professionals. 

In a 1965 article published in Computers and Automation, Carr revisited and extended 

many of these same themes. Gorn’s influence on Carr is also evident in this piece. In addition to 
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referencing a 1961 article by Gorn on the topic of “Mechanical Languages,” Carr repeatedly 

trotted out phrases such as “machine-programmed systems” (p. 15) and even the “man-machine 

computer combination” (p. 15). And later in this same article he critiqued both computer 

programmers and designers for failing to recognize that “programming is equivalent to (not 

‘analogous to’ or ‘similar to’) building a machine, and not only that, to building a machine in a 

certain orderly fashion” (p. 16, my emphasis). Invoking a rather suggestive metaphor, Carr 

echoed his prior writings when he noted that future research and development was needed to 

meet the challenge of combining “stored algorithms (programs) and equipment algorithms 

(machines)” into a more “organic” whole (p. 17). He also issued complaints about problems of 

“intercommunication,” although he placed particular emphasis on the gulf that often separated 

theories of computer programming from its actual practice. 

In the early and mid 1960s, other commentators were raising related issues about the 

expanding gulf between programmers and machines. In a 1961 editorial, for example, Robert L. 

Patrick noted ongoing and dramatic improvements in the reliability and speed of computer 

hardware (Patrick, 1961). However, he complained that “it appears as though the hardware types 

are outstripping the programming types,” and he added: “[W]e have no new senior, machine 

oriented, programmers coming along (due to the emphasis on higher level languages).” For 

Patrick, this trend was especially problematic for computer installations, where diagnosing and 

troubleshooting machine faults and “bugs” required types of expertise that were in short supply. 

And five years later, this same writer trotted out a similar complaint: 

In the last few years we have begotten a whole new generation of programmers 

who have never come into intimate contact with a machine. They have 

programmed in a higher order language and have been insulated from the 

hardware by a solid phalanx of operations managers, machine operators and 

monitor programs (Patrick, 1966).  

In the remainder of this editorial, Patrick expressed further concerns that many programmers 

were developing software that was simply not in tune with the characteristics and capabilities of 

particular machines, and he claimed that performance often suffered as a result. And in the same 

year, a short and humorous Datamation piece further hinted at the extent to which good 

programming practice remained wedded to an in-depth understanding of various facets of 
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machine design. In his list of “Thirteen Programming Paradoxes,” writer Peter D. Jones quipped: 

“The world’s best programmer is also the world’s top computer engineer” (Jones, 1966). 

In 1962, Christopher J. Shaw came at this issue from a somewhat different angle in a 

short editorial that was aptly titled “Programming Schisms” (1962). After somewhat 

nostalgically noting that computer programmers and designers had often been one and the same 

in the early days of computing, Shaw went on to note the long trend toward specialization in the 

field. He placed particular emphasis on the growing schism between “the system programmers – 

who must tame the beast the computer designers build – and the applications programmers – 

who must then train the tamed beast to perform for the user.” The author also predicted that 

computer designers and systems programmers “will probably amalgamate into one, fairly 

homogeneous professional group,” while more user-friendly computers would contribute to the 

replacement of applications programmers with domain-experts working as so-called “problem 

specialists.” The author explained that such changes would “bring the computing profession back 

almost to its pristine beginnings, back when there was only one professional type: the all-around, 

computer specialist.”  

While reforms advocated by commentators such as Shaw and Carr may appear overly 

romantic and idealized, they clearly tapped into widespread concerns about the computer field’s 

major sociotechnical schisms. Cultivating more “integrated” or “organic” approaches to 

developing computer systems, applications, and even experts was therefore an increasingly 

appealing prospect in the early and mid-1960s. Still others were calling more specifically for 

radical innovations in computer structure, especially in terms of moving beyond the decades-old 

“von Neummann” style of the stored-program machine design. Engineer Lowell Amdahl, for 

example, used the phrase “gothic computer architecture” to describe the state of the art circa 

1965, while Franz Alt complained: “What revolutionary changes in computer design are ahead? 

Unorthodox answer” (Amdahl, 1965; Alt, 1965, p. 11). 

Yet the barriers that stood in the way of realizing such visions were formidable. Amdahl, 

for example, noted tendencies in the field toward “security and complacency.” And while neither 

he nor Alt clearly identified the underlying reasons for these trends, there were certainly 

commercial and competitive reasons for maintaining the historical status quo, especially given 

the dominance of a few big computer makers such as IBM. In fact, Alt noted that innovative 

machines such as the Univac LARC and IBM Stretch were not commercially successful, leading 
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manufacturers to retreat back to more conventional designs. Other pressures were also likely 

afoot. Major computer users in the military and business sectors, for example, have at times 

tended to preference reliable, standardized designs over more radical and potentially 

destabilizing innovations. In fact, Steven Usselman nicely summarizes that the history of 

American computing has been regularly punctuated by periods of relative stability, where “[t]he 

potential for more rapid and more radical change at the technical frontiers of the industry has 

been sacrificed in exchange for the perceived benefits of standardization” (1996, p. 30). As 

Usselman further elaborates, these tendencies were historically enabled by a distinct American 

political economy, as well as through the intersecting actions and policies of computer 

manufacturers, the government, and end-use consumers of both the commercial and military 

stripe.119 

Returning to the subject at hand, the rise of both the “hardware/software ensemble” and 

the designer-programmer schism from the mid-1950s to mid-1960s also revealed the extent to 

which the computer field was increasingly pervaded by major sociotechnical dichotomies that 

reached deeply into worksites, professional societies, and even technology itself. Yet many of the 

aforementioned commentators hailed from the academy, where the social and technical 

boundaries of computing were not quite so sharp, and perhaps easier to call into question. In 

addition, many writers such as Carr argued that universities in general and computer-oriented 

faculties and departments in particular could help stimulate the development of a new generation 

of computer professionals who possessed a less myopic outlook, and who could produce more 

innovative technologies. 

In his 1965 article, for example, Carr discussed how various curricular developments and 

reforms might provide students with a more in-depth understanding of the inter-relationship of 

computer programs, machines, and even the so-called “man-machine interface” (pp. 17, 54). As I 

discuss below, Gorn emerged in the 1960s as a champion for the emergent computer-oriented 

discipline that he called the “Computer and Information Sciences.” Yet these and many other 

reformers likely underestimated the extent to which both the dominant structure of the computer 

market and other types of sociotechnical dichotomies – such as engineering versus science or 

                                                
119 As evidence for these themes, Usselman places particular emphasis on the initial emergence and 
growing dominance of IBM in the commercial computer market, including through the 1950s and 1960s. 
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even profession versus discipline – stood as formidable barriers on the way to realizing a more 

integrated or unified field of computing. 

Part II – Education and Discipline: (Re)Negotiating the Boundaries of Computing 

In order to frame the emergence of a variety of discipline-building projects in the 

computer field, the second part of this chapter takes another step back to analyze the historical 

development of computer-oriented educational programs, especially from the early 1950s to 

early 1960s. I place particular emphasis on the role of electrical engineering departments, which 

were a major source of formal training for the first generations of computer designers and 

engineers. My analysis helps set the stage for tracing out the efforts of a growing cadre of actors 

to establish a variety of computer-oriented departments and degree programs at various 

universities, especially from the late 1950s forward. And as suggested by my discussion of 

historical trends in other contexts of activity, the outcome of these efforts were largely suspended 

between two poles of possibility. On the one hand, the educational sphere was potentially a site 

where the sociotechnical dichotomies that had come to pervade the workplace and the 

professional societies would be reproduced. In fact, the bifurcated jurisdictional claims and 

expanding divisions of labor that increasingly came to characterize the commercial computer 

field in the 1950s suggested that this type of reproduction was an altogether likely scenario.  

On the other hand, the prospect of developing a more “integrated” or “organic” approach 

to the training of computer-oriented professionals was an appealing alternative vision for many 

actors, especially as they pondered how this might stimulate more imaginative computer designs 

or new types of applications. Might the educational arena emerge as a setting where the Humpty 

and Dumpty of hardware and software could be put back together again? While this question 

clearly transcends the bounds of this chapter, the analysis that follows begins to reveal the 

pivotal importance of the educational arena in ongoing efforts to (re)negotiate the computer 

field’s major social and technical boundaries. 

Computer Education: An Inchoate Early Assortment of Courses and Curricula 

The development of computer-oriented courses and curricula can be traced back to the 

earliest days of the field. As documented by Aspray (2000) and noted in the preceding chapter, 

by the mid-1940s five major universities were significantly involved in computer development 
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and research, namly Columbia, Harvard, MIT, the University of Pennsylvania, and Princeton. By 

the early 1950s, research and educational activities at these and other schools were frequently 

focused on topics related to computer design and construction, although there were also a 

number of pockets of interest in application-oriented subjects such as numerical analysis. Yet 

from the mid-1950s and into the 1960s, questions about how to train or otherwise educate a wide 

range of experts in computer applications, programming, and related areas emerged as a pressing 

concern. In fact, this period was marked by the rapid expansion, diversification, and 

commercialization of the computer field, and few could ignore the rising demand for workers 

with many different types of computer-related expertise. 

The aforementioned John W. Carr III authored one of the earliest commentaries on the 

computer field’s looming employment and educational challenges. Titled “Who Will Man the 

New Digital Computers?” and published in the upstart trade magazine Computers and 

Automation in 1953, Carr started his brief article by explaining that the computer field was 

entering a stage of “runaway growth,” and he noted an “immediate and pressing need for people 

to man the machines” (Carr, 1953, p. 1). As suggested by these remarks and the article title, the 

author’s primary focus was on both the demand for and education of the various “engineers, 

mathematicians, and associated trained technical personnel” who were needed to operate and 

maintain a rapidly growing number of computer systems and installations (p. 1). Carr also noted 

rising demand for trained professionals in the area of machine design and construction, yet this 

was clearly a secondary issue for the author.  

In addressing the paper’s central topic, Carr identified some of the major types of 

computer training that were either in use or in development, including short courses offered by 

computer manufacturers, on-the-job training at computer installations, and intensive summer 

courses offered at universities (pp. 1-2). But Carr ultimately emphasized the value and 

importance of a fourth type of training, namely “regularly scheduled graduate and undergraduate 

courses and programs in universities” (p. 2). He added that such programs could produce “a 

steady stream of mathematicians, computer engineers, assorted scientists, accountants and 

business school graduates, all trained in several or many aspects of automatic digital computers” 

(p. 2). On a closely related note, this same article reveals Carr as one of earliest advocates for the 

establishment of graduate-level programs that would “give specific degrees in computation or 

else to give degrees in older fields with specialization in the use or design of computers” (p. 3), 
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and the author added that mathematics and electrical engineering departments might play a 

leading role in such programs. For Carr, the former were optimally positioned to teach subjects 

such as numerical analysis, while the latter were best able to focus on “machine design, logic, 

and construction” (p. 3). The topic of “machine programming,” on the other hand, was described 

as an area that frequently involved several different kinds of experts, including mathematicians 

and engineers. Here we find an important early attempt to map some of the computer field’s 

major domains of knowledge and work onto the pre-existing disciplinary structure of the 

academy. Further, the authors’ boundary-spanning depiction of programming revealed some of 

the difficulties that came with such a project. 

A host of closely related themes received considerable attention at the First Conference 

on Training Personnel for the Computing Machine Field, held at Wayne University in June of 

1954 (Jacobson, 1955a). With co-sponsors including the ACM and the Detroit chapter of the 

IRE-PGEC, the event brought together an impressive array of individuals from the commercial, 

governmental, and educational sectors.120 The chairman of the meeting, Wayne University 

mathematician Arvid W. Jacobson, explained that the idea for the conference went back at least 

three years, when it was first becoming apparent that developments in the computer field were 

bringing about fundamental changes and challenges with regard to education and employment 

(Jacobson, 1955b). He added that a major goal of the gathering was to “find out about the 

manpower requirements of all areas relating to automatic computing and data processing” 

(Jacobson, 1955c, p. 3).  In addition to assessing prerequisite skill levels and overall demand in 

this new employment sector, Jacobson stated that the participants at the event were charged with 

reviewing existing training programs and probing the relationship between educational needs and 

existing curricula (1955c, pp. 3-4).  

As Jacobson explained, the computing machine field embraced “many basic sciences and 

all manner of practical arts” (1955c, p. 3). Yet other attendees followed Carr by specifically 

emphasized the role of electrical engineering and/or mathematics departments in computer 

research and education. The aforementioned Harry Huskey, for example, based his conference 

remarks on one of the first surveys of university computer education, which was conducted by 

                                                
120 Attendees included many well-known computer pioneers and personalities, including Howard Aiken, 
Franz Alt, John Brainerd, Grace Hopper, Alston Householder, Harry Huskey, and John Mauchley, to 
name a few (101-104). 
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the IRE PGEC in 1953 and 1954 and first published in 1955.121 While the original survey 

reported that at least ninety schools had some kind of computer facilities or associated courses, 

Huskey summarized that roughly thirty of the responding universities were offering “regular” 

training in analog and/or digital electronic computers, mostly at the graduate level (Huskey, 

1955, p. 23). Further, he explained that electrical engineering departments were the principal site 

for this activity, with a total of twenty-nine EE departments offering one or more classes, and 

nine offering three or more classes (p. 24). Mathematics departments were a distant second in 

this regard, offering one or more computer-related courses at a total of ten different schools.122 

Huskey went on to note that a common pattern had emerged at many institutions, where 

early classes in computer design and closely related subjects were followed by the development 

of new courses in computer application and use. This trend allowed electrical engineering 

departments to assume a prominent role in the early development of computer education. Yet 

given that the interests of electrical engineering faculty and departments tended to skew toward 

particular subjects, mathematics and other departments stepped in to both fill in gaps in coverage 

and move into new areas. In fact, Huskey noted that math department offerings were largely 

clustered around topics such as numerical analysis, logical design, programming, and 

applications (p. 23). Hence, the educational sphere was beginning to look like another site where 

the computer field’s emergent sociotechnical dichotomies were being reproduced, at least in part. 

Further, much of the 1954 conference reflected these divides in that it was significantly 

tilted toward the development of research activities and educational programs in rapid-growth 

areas such as computer programming and applications. Throughout the event, discussions about 

the training of machine programmers and operators frequently overshadowed relatively sparse 

references to educating computer designers and engineers. Surveying the conference proceedings 

reveals at least three major reasons for this orientation. First, presenters such as G. T. Hunter of 

IBM claimed that there were relatively few employment slots in the initial planning and design 

of computers and other electronic systems (Hunter, 1955, p. 17). He also noted that workers in 
                                                
121 Huskey was closely affiliated with the IRE-PGEC at the time, especially through his position from 
1953 to 1957 as the Review Editor for the IRE’s Transactions on Electronic Computers. The survey 
results that Huskey referenced in his talk were also presented by Goode (1955) in the IRE Transactions 
on Electronic Computers. 
122 It is also worth noting that regular computer courses were being offered outside of the math and EE 
departments at a total of eight schools (Huskey, 1955, p. 24). The original survey also indicated that eight 
schools were offering advanced degrees in computing, and eleven had computer-oriented assistantships 
(Goode, 155, pp. 50-51). 
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these areas were not coming from computer-oriented educational programs, but were rather 

moving up through the ranks of industry (p. 17). As Hunter explained, the benefits of this career 

pathway centered on the range of experiences that it provided for up-and-coming designers. This 

line of reasoning implied that formal educational needs in the specific area of computer design 

and engineering were minimal. 

A second and closely related theme discussed by Hunter centered on the idea that existing 

electrical engineering programs provided an adequate level of preparation for a wide range of 

professional work in computer design, manufacturing, and maintenance (p. 17). Echoing this 

argument, conference participant James L. McPherson of the U.S. Bureau of Census framed 

computer design and maintenance as the “engineer’s side” of computer equipment, and he added 

that “[e]ducation in electronic engineering has been, and will continue to be, the way men 

capable of fulfilling this need are developed” (“Manpower Needs,” 1955, p. 33). And 

mathematician Albert A. Bennett argued at the same conference that it was undesirable for 

engineering students to focus too narrowly on electronic computers and associated technologies: 

“The engineering of design, servicing, and testing an electronic machine is too specialized to be 

a typical topic for the candidate for a degree of Bachelor of Science in Engineering” (Bennett, 

1955, p. 41). Here we find noteworthy parallels with the historical development of other 

engineering subfields and specialties such as “radio engineering,” where general types of training 

in electrical or electronics engineering often prevailed over educational programs that were more 

narrowly focused on a specific domain of technology. 

Casting a wider net reveals that many engineering educators followed Bennett’s 

conservatism with regard to engineering education. In a talk at the 1955 WJCC, for example, Cal 

Tech engineer F. C. Lindvall spoke on the topic “Computers Challenge Engineering Education” 

(1955). As Lindvall explained, many colleges of science and engineering were being “urged to 

offer courses in computer fundamentals, logic, design, components, applications, and use, not to 

speak of complete curricula leading to degrees in computer engineering” (p. 41). And while he 

acknowledged that schools with particularly strong research agendas in various areas of 

computing might be justified in developing such offerings, Lindvall’s larger message was far 

more cautious. He actively argued against “detailed specialization” and “specialized training” in 

new and emerging areas of interest such as computing, and he instead promoted an educational 

agenda that was grounded in basics, fundamentals, and generalizations (p. 41).  
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At the EJCC in 1956, mathematician H. T. Engstrom’s keynote remarks suggested that 

Lindvall’s position was widely held, including by many university administrators. Referring to 

the development of early centers of computer research at schools such as Harvard, Princeton, and 

the University of Pennsylvania, Engstrom explained that “[u]niversity management was not 

convinced, and in some cases still remains unconvinced, that the field of logical structure design 

of computing devices was one with proper academic stature” (Engstrom, 1956, p. 3). Such 

concerns about the academic legitimacy of computer-oriented research and education clearly 

stood as formidable barriers for those who favored the development of courses and programs in 

the area of computer design and engineering. 

And finally, the Wayne University conference revealed a third challenge to the ongoing 

development of courses and programs in the area of computer design and engineering. In 

summary, there was growing sentiment by the mid-1950s that improvements in computer design 

and performance were largely outpacing progress in programming and applications. As 

summarized by conference participant W. H. Frater of General Motors, “Our troubles, at the 

moment at least, are not the mechanical or logical design of equipment. We already have 

equipment which we cannot fully exploit” (Frater, 1955, p. 22). And Ralph E. Meager – who at 

the time was serving as both chief engineer of the Digital Computer Laboratory at the University 

of Illinois and editor of the IRE’s Transactions on Electronic Computers – worked in similar 

directions in a paper given at a 1956 symposium that was organized by the IRE. As Meager 

explained, “the computer engineers have a tendency to feel now that the main job in computer 

design work has been completed, that the basic ideas are known” (quoted in “Symposium on the 

Impact,” 1956, pp. 147-148).  

As noted above, fundamental innovations in the area of computer design did seem to be 

leveling off through the 1950s, especially as computer research and development activities 

became increasingly commercialized and routinized. Further, the general challenges and 

educational demands associated with computer programming and applications were clearly rising 

in urgency and importance. Yet many commentators argued to the contrary that research and 

development activities in the area of computer hardware and systems sorely needed fresh sources 

of imagination and innovation. Meager, for instance, called on engineers to adopt a “far-reaching 

attitude,” especially in ongoing efforts to develop “integrated systems” (p. 148). Such remarks 
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strongly echoed Carr’s aforementioned concerns about the state of computer design during this 

period. 

Valuable additional commentary on the state of computer-oriented research and 

education also surfaced in a 1956 article by mathematician and ACM President Alston 

Householder that was appropriately titled “The Position of the University in the Field of High 

Speed Computation and Data Handling.” After summarizing the prominent early role of 

universities in computer development and construction, the author noted that it was increasingly 

feasible for universities to acquire computers rather than build them. “In some cases,” 

Householder explained, “[computer] construction may be worthwhile as a research or a training 

project. But it seems to me that in the future the universities can contribute the most in 

applications and training” (Householder, 1956b, p. 8). Householder added that the shortage of 

technical manpower was a problem that extended well beyond the boundaries of the computer 

field, and he argued that the ability of universities to relieve the problem was limited. Further, he 

followed in the footsteps of earlier speakers by warning against the dangers of “narrow 

specialization” in technical training (p. 8).  

However, Householder was willing to promote mathematics departments as a locus of 

activity for university education and research in some phases of the computing field, even going 

so far as to state that he was “virtually advocating that the entire mathematical curriculum be 

oriented toward numerical analysis” (pp. 9-10). As further support for his recommendations, 

Householder noted that the problems faced by the programmer or numerical analyst were 

ultimately “mathematical in character” (p. 10). Yet Householder – like Carr before him – also 

recognized the importance of collaboration across extisting disciplinary boundaries, especially 

when dealing with the non-scientific applications of computers, such as in the business sphere. 

The “most rapid progress,” he explained, would happen when 

mathematicians, engineers and business experts can be persuaded to join together 

in arriving at a common understanding by which to differentiate the primary 

needs of business from the incidental byproducts of established procedures, and 

then to devise the hardware and routines for achieving the real objectives (p. 10). 

He concluded the article by asking, “Where could such teams form more readily than in a 

university?” (p. 10). It is worth noting here that Householder was reiterating his own prior 



www.manaraa.com

 148 

remarks – as well as those of others – in pushing the idea that intended applications should be a 

primary driver behind the development of both programming routines and hardware designs.  

At a 1955 conference on “The Computing Laboratory in the University,” a number of 

speakers offered candid remarks on the future role of the university in computer-oriented 

education and research. And indeed, many of these individuals expressed further skepticism 

about the ability of universities to the forefront of this domain. Jay Forrester, for example, 

forecasted that the “[t]he university will no longer be the primary training ground for computer 

experts” (Forrester, 1957, p. 18), and at another point he explained that on-the-job training was 

the main mode of professional training for those entering the electronic data-processing fields (p. 

17).123  Herb Grosch, on the other hand, noted at the same conference that “[l]eadership in 

systems engineering and in programming techniques may have to continue with the manufacturer 

and the industrial users of this equipment, and it may be difficult for the universities to continue 

to contribute powerfully even in components” (1957, p. 90). Such remarks provide further 

evidence for the rapidity with which computer research and development activities had shifted 

from universities and government research labs to the private sector in the first half of the 1950s, 

thereby impairing the ability of universities to develop and/or maintain their own research 

centers and educational programs.  

Grosch also outlined some of the moves that universities needed to make if they wanted 

to assume a more prominent position in the computer field. In addition to encouraging “new 

thinking” and “more adventurous thinking,” Grosch called on universities to “assemble their 

talents, cross departmental lines, build a few fires under some of the more mulelike faculties, and 

obtain financial support” (p. 90). Grosch’s comments hinted at an even wider range of 

impediments – ranging from pre-existing departmental and disciplinary boundaries to faculty 

conservativism and financial pressures – that were seriously hampering the development of 

computer research and educational activities on many campuses. 

Still other speakers at the conference discussed how engineering schools and departments 

might make strategic moves into certain phases of computer-oriented education. Applied 

mathematician and computer programming pioneer Forman S. Acton, for example, echoed many 

                                                
123 It is worth noting that Forrester’s own research interests were beginning to moving away from 
computer design and development by the mid-1950s. His arguments for the declining role of the 
university in computer-oriented research and education may have therefore been skewed by his own 
movement out of these areas. 
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of his colleagues when he described a looming shortage of problem analysts, programmers, and 

coders. Explicitly noting that he was not interested in developing curriculum for “the small group 

who would design better machines or even devise better general codes” (p. 123), he went on to 

briefly describe a new “mathematical engineering” option that had been established in 

Princeton’s School of Engineering (Acton, 1957, pp. 124-125). In addition to listing a series of 

associated courses in computation and mathematics, Acton noted that the students in such 

programs gained an understanding of the “the proper formulation and numerical solution of 

engineering problems” (p. 125). And elsewhere, he referred to this type of work as 

“computational engineering” (p. 122). As noted above, demand for this type of expertise was 

rising around this time, especially in computationally-intense industries such as aeronautics. 

On the other hand, electrical engineer and University of Wisconsin-Madison faculty 

member Vincent C. Rideout was the only conference speaker to explicitly focus on the topic of 

“computer engineering curriculums” (Rideout, 1957, p. 156). More specifically, he noted that 

electronic engineering departments were a particularly appropriate location for training the 

“‘triple-threat’ men so eagerly desired in industry today – men who are soundly versed in 

mechanics, in electronics, and in computing” (p. 156). In contrast to Acton, Rideout emphasized 

that engineering students specializing in this new field should be well-versed in both computers 

and computing, and described a variety of computer-oriented courses that might be offered at the 

undergraduate and graduate levels – many of which were pulled directly from his school’s 

catalog. He also suggested that the power and communications specializations typically offered 

to senior-level students might be supplemented by a computer option, and he listed a series of 

required and elective course for a computer-oriented master’s degree program. 

While Rideout’s recommendations were slightly skewed toward analog computing, his 

published remarks stand as one of the first attempts to outline what a computer engineering 

curriculum might look like at both the undergraduate and graduate levels. In fact, he was well 

ahead of his time in proposing a computer-oriented degree option for undergraduate electrical 

engineering students. On the other hand, computer-oriented courses and programs in electrical 

engineering departments were being established rather slowly, and the developments that were 

underway at the University of Wisconsin appeared more an exception than a rule. Program 

reformers and developers such as Rideout clearly faced a host of challenges and barriers, such as 

those described by Grosch. In addition, university research in computer design was in an overall 
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state of decline by the mid-1950s, and the demand for analysts and programmers was far 

outpacing the need for computer designers. In summary, the field of computer design and 

engineering remained closely wed to – and largely overshadowed by – other and more 

historically dominant forms of research and education in electrical and electronics engineering. 

Yet through the latter half of the 1950s, other developments were beginning to impinge 

on the academic landscape of computing. For example, there seemed to be growing demand for 

those with computer component or system design expertise in both the commercial realm 

generally and the defense sector specifically. Membership surveys revealed, for example, that the 

number of IRE-PGEC members affiliated with commercially-oriented firms in the private sector 

increased from 1011 (or 40% of members) in 1956 to more than 1600 (or about 42% of 

members) in 1960, while those affiliated with defense-oriented firms increased from 944 (or 

37.5% of members) to more than 1700 (or about 44% of members) during this same period 

(Martin and Olson, 1957, p. 49; Uncapher, 1961, p. 84). Other evidence for these trends can be 

found in many of the aforementioned advertisements. IBM, for example, established a Military 

Products division in 1955, and was aggressively seeking to fill it with new engineers by at least 

1957 (IBM, 1957).  

By the late 1950s a handful of outspoken commentators were also starting to discuss how 

a new and more independent field or discipline of computing might be brought to fruition in the 

academic context. Not only did many of these proposals call for the crossing of departmental 

boundaries, they also recommended the establishment of entirely new computer-oriented 

institutes, departments, programs, and even schools. It is worth discussing these discipline-

building projects in more detail, especially given the potential of this movement to impinge on 

the evolving relation of electrical engineering, computers, and computing. 

Toward a Scientific Discipline of Computing 

In order to frame the initial emergence of new discipline-building movements in the 

computer field, it is necessary to situate this story against a larger historical backdrop, especially 

the post-war ascendancy of science and the concomitant tilt of the engineering fields toward the 

so-called “engineering sciences.” While this general trend has been well-documented elsewhere, 

here I use a series of advertisements from IBM to show how scientific rhetoric and imagery 
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started to pervade the computer field, especially in the latter half of the 1950s.124 In fact, IBM 

ads from as early as 1955 started to frame the company’s work environment and employment 

opportunities through the rhetoric of science and scientific progress. These ads stood in marked 

contrast to many of the examples mentioned above, which had framed IBM’s cutting-edge work 

in electronics and computer design as largely or even wholly within the province of engineers 

and engineering. 

Some of the earliest evidence for this shift can be found in a December 1955 employment 

posting for electronic engineers that was dominated by a large banner that read: “The legacy of 

the scientist is the highest achievement of his predecessors. Only if he has ideas and ability can 

he reach greater heights” (IBM, 1955c). A 1956 IBM ad that sought engineers, on the other hand, 

was headlined with a suggestive quote from nineteenth-century British journalist and economist 

Walter Bagehot: “Nine-tenths of modern science is...the produce of men whom their 

contemporaries thought dreamers!” (IBM, 1956). The imagery for this particular ad included 

various busts and figureheads who were presumably famous scientists or intellectuals. Building 

on these thematic elements, the ad copy went on to explain that “IBM … has always sought in 

engineers and scientists that one source of all scientific achievement – the ability to think 

fearlessly!” Prospective employees were also informed that an IBM engineer “has every 

opportunity to make important and rewarding contributions to scientific progress.”  

These ads revealed a major change in imagery and rhetoric, especially as compared to 

IBM ads that had rung just a year or two before. Even more importantly, these ads suggested the 

emergence of two competing conceptions of computer research and development, one based on 

images of science and other on engineering. And while later IBM ads backed off on the scientific 

gusto, the examples highlighted here were a harbinger of things to come, especially after terms 

such as “communication science,” “information science,” and “computer science” entered 

circulation in the late 1950s and came into more widespread usage in the 1960s.  

In fact, MIT electrical engineer Jerome B. Wiesner can be credited with one of the 

earliest attempts to identify and describe an emergent disciplinary domain that both encompassed 

large swaths of the computer field and carried a scientific moniker. Per Wiesner, the 

“communication sciences” were largely focused on the study of complex communication and 

                                                
124 On the early rise of the engineering sciences, see Seely (1999). On the continued ascendancy of 
science, scientists, and the engineering sciences in the in the post-Sputnik period, see Lucena (2005). 
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computing systems, with particular emphasis on “mathematical methods, computational 

techniques, and general understanding of communications” (1958, p. 268).125 He also explained 

that problems involving “the processing, storage, and transmission of information” were both at 

the heart of this new science and centrally important in linking a wide range of existing 

disciplines, ranging from mathematics and the sciences to engineering and beyond. 

Yet in describing this new field, Wiesner argued that reaching an adequate understanding 

of complex communication and information systems involved the development and use of 

theoretical and mathematical tools that were largely beyond the reach of engineers. As he 

cautiously explained:  

I don’t want to underestimate the role of the engineer or the inventor in this field, 

because I think it will always be true, especially in a field as complex as this, that 

innovation and invention will probably outrun the theory, but they cannot outrun 

the theory very far if one hopes to have continued growth and development (1958, 

p. 270). 

As suggested by this characterization, the dominant image of engineering around this time 

framed the field as only tenuously based on theory, especially when compared to the sciences. 

Wiesner also went on to counter a potential critique of the so-called “communication sciences” 

by explaining that it would be different from other scientific disciplines. More specifically, he 

clarified that this new area of research was largely focused on the “organizational” or 

“structural” rather than “physical” properties of complex systems (p. 269). Following this line of 

reasoning, he argued that work in the emergent field extended not only into the realm of 

computing machines and communication networks, but also into the domain of biology, such as 

in relation to the study of the nervous system. Perhaps not surprisingly, Wiesner supported this 

argument by referring to theoretical pioneers such as Claude Shannon and Norbert Wiener, who 

had laid important prior groundwork at the intersection of information theory, electronics, and 

communications.126 

                                                
125 Wiesner’s article, which was published in IBM’s Journal of Research and Development, also 
discussed the activities of MIT’s newly established Communication Sciences Center. 
126 Wiesner explicitly referenced Wiener’s Cybernetics (1948) as making important contributions in areas 
such as feedback and control theory (p. 274). Further, Wiesner framed the study of error-correcting and 
other types of feedback systems as an important component element in his larger vision for a field of 
communication science. 
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While Wiesner described a rather broad and far-reaching disciplinary project, other 

commentators placed more explicit emphasis on computers and computing. Louis Fein, for 

instance, is often credited with coining and promoting the term “computer science.”127 With a 

background that included stints as an engineer at both Raytheon and Computer Control Company 

– where he gained extensive experience in the design and development of high-speed digital 

computers and related devices – Fein launched a career as an independent consultant in 1955 

(Fein, 1979). One of his early consulting jobs involved a study, commissioned by Stanford 

University, on the role of universities in computers and data processing, with particular emphasis 

on both the status of existing educational programs and the development of new curricula.  

As recounted by Fein, his research led him to conclude that computing increasingly 

looked like a collection of emergent disciplines and sub-disciplines, and by 1957 he was widely 

using the term “computer sciences” to describe this federation of topics and activities (Fein, 

1979). His earliest published remarks on the topic appeared in three papers, each bearing the 

same title: “The Role of the University in Computers, Data Processing, and Related Fields.” The 

first of these papers was Fein’s report for Stanford, the second was delivered at the Western Joint 

Computer Conference in 1958, and the third was published in the CACM in 1959 (Fein, 1961a, p. 

167). As suggested by this review of the literature, Fein’s ideas were widely distributed in the 

computer field, especially via the latter two publications. 

With regard to the 1959 Communications article – which was probably the most widely 

read of these three pieces – the author’s evaluation of existing university research and education 

in computing was almost wholly negative. After noting that some 150 universities and colleges 

were “engaged in some kind of activity in the fields of our concern,” he nonetheless argued that 

there was a profound lack of “distinguished academic centers of computers,” and a dire need for 

“integrated” approaches to computer research and education (Fein, 1959, p. 9). Fein also 

provided a laundry list of topics and courses in computer design and applications that were 

receiving some attention at colleges and universities, although he simultaneously bemoaned the 

field’s rather meager theoretical foundations. Echoing Wiesner’s concerns, Fein explained that 

                                                
127 Historian Paul Ceruzzi, for instance, points to Fein’s 1959 article in the CACM as the origin of the 
term “computer science” (Ceruzzi, 1989, pp. 266-267). In this particular piece, Fein repeatedly places 
“computer sciences” in quotes, suggesting some uncertainty over the phrase. At various points he also 
refers to both the plural “computer sciences” and the singular “computer science.” Fein has more recently 
claimed that he first adopted the term in the middle of 1956 (Fein, 1979, p. 7). 
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“the fields of computer theory, application theory, model theory do not yet appear to have been 

successfully attacked” (p. 10, author’s emphasis). 

Fein responded with a series of recommendations aimed at moving universities into a 

more prominent position with regard to computer research and education. In most general terms 

– and as noted by commentators such as Ceruzzi (1989) – Fein argued that the development of 

the “computer sciences” first and foremost demanded sound organizational and administrative 

footing. Fein’s rather imprecise and tentative outline of the new field suggested that its definition 

and scope would become more clear over time, especially once the appropriate support structures 

were in place. Following this line of reasoning, he promoted the creation of a graduate school of 

computer science, composed of five new academic departments and a computation center.128 

Fein added that these new schools would likely enter into collaborative relationships with a range 

of existing departments, while also working to “develop the new disciplines” (p. 12) and to 

establish “integrated” programs for students pursuing advanced degrees.  

As suggested by this overview, Fein described the computer sciences as a kind of 

theoretical “supra-discipline,” somewhat akin to mathematics, which was similarly linked to 

various offshoots and fields of application. On the other hand, he made it clear that this new field 

would both draw from and inform work in other domains, such as engineering, business, and the 

sciences. However, engineers and engineering received little in the way of special mention in 

Fein’s analysis. In fact, he echoed other commentators when he argued that there was “little 

reason” for universities to build their own computers, especially given the ready availability of 

commercial equipment. And as he emphasized the importance of the more mathematical and 

theoretical dimensions of computing, he went so far as to note that “an excellent integrated 

program in some selected fields of the computer sciences should be possible without any 

computing equipment at all” (p. 11). 

In the early 1960s, some of Fein’s vision was on its way to being realized, including 

through the increased use of terms such as “computer science,” as well as via ongoing moves to 

establish new computer-oriented university departments and programs. Yet by this time Fein was 

                                                
128 Fein described a rather general “Computer Department,” as well as departments dedicated to 
Operations Research, Information and Communication, Systems, and Philosophy of Organization (1959, 
pp. 12-13). And while the overall description of the five departments tilted toward theory, applications, 
and programming, Fein associated a number of “hardware” topics – including computer organization, 
component and circuit research, and systems research – with the proposed “Computer Department.” 
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promoting an even more ambitious disciplinary vision. In a 1961 article that was published in 

both American Scientist and Datamation, Fein creatively imagined and described the emergence 

of a new science, circa 1975, that he dubbed “synnoetics” (Fein, 1961a; 1961b).129 While the 

details of Fein’s article are largely beyond the scope of my analysis, the author’s explicit 

reference to the “Communication Sciences” continued themes discussed by prior commentators 

such as Wiesner. More specifically, Fein described synnoetics as a “supradiscipline,” and he 

noted that the “computer sciences” were a branch of synnoetics that focused on “the theory and 

practice of the design, programming, and application of computers” (p. 151). The author also 

borrowed Simon Ramo’s term “intellectronics” to describe another sub-branch of synnoetics that 

was closely associated with engineering schools and focused on the “the implementation of 

synnoetic systems by electronics” (p. 151).130 Fein’s proposal also anticipated tensions regarding 

the academic status of the computer sciences. Forecasting what the academic landscape might 

look like in 1975, he explained: “The academic community did not acknowledge that the study 

of the design, programming and applications of computers constituted a discipline in the classical 

sense” (p. 160). Reiterating his earlier remarks, Fein also spoke out against programs that were 

centered on and dominated by computing equipment, rather than higher-level theoretical and 

“supra-disciplinary” foundations.  

While commentators such as Wiesner and Fein put forward ambitious disciplinary 

agendas that framed computers and computing as important elements in a much large 

disciplinary framework, significant barriers stood in the way of realizing their vision. For 

instance, both of these reformers likely underestimated the challenges that came with shifting the 

dominant, unifying image of the computer field away from the boundary object of the computer 

and toward a milieu of theory that remained substantially ill-defined and inchoate. Further, Fein 

                                                
129 As explained by Fein, “Synnoetics is the science treating of the properties of composite systems – 
consisting of configurations of people, mechanisms, plant or animal organisms, or automata – whose 
main attribute is that its ability to invent, to create, and to reason – its ‘mental’ power – is usually greater 
than the ‘mental’ power of its components” (150). 
130 Simon Ramo, the originator of the term “intellectronics,” described the field as “[t]he science of 
extending man’s Intellect by Electronics” (1960, p. 6).  He outlined his views on this new “science” at the 
5th National Communications Symposium in 1959, and a brief excerpt from the talk was reprinted in 
Computers and Automation. (Ramo, 1960). In subsequent years he promoted the concept and field of 
intellectronics in a various ways, including via lectures and through his leadership position at aerospace 
company Thompson-Ramo-Woolridge Corp. (later TRW). It is also worth noting that both Wiesner and 
Ramo were scheduled to speak in a 1958 AIEE conference session dedicated to “Computing Devices and 
Research – Thinking Machines of the Future” (“AIEE Winter General Meeting,” 1958, p. 78). 
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apparently received many negative responses when he started presenting his discipline-building 

ideas to larger audiences in the mid and late 1950s.  

At a small seminar at Berkeley, for instance, Fein made one of his first calls for the 

establishment of separate university departments of “computer science” (Fein, 1979). A number 

of well-known mathematicians and computer pioneers were present, including Derek Lehmer, 

Edward Feigenbaum, and Julian Feldman (Fein, 1979, p. 10). As recounted by Fein, the reaction 

of the attendees was almost wholly negative, with most viewing the proposal as unrealistic at 

best, and “crazy” at worst (pp. 10-11). Subsequent encounters were similarly fraught with 

tension and resistance. Fein has retrospectively indicated that Jack Herriot, a Stanford 

mathematician and early head of the Stanford Computation Center, was particularly hostile to the 

idea. At one meeting, Herriot apparently made a comment along the lines of: “What you want it 

[sic] pie in the sky and you can't have pie in the sky!” (p. 11). 

Tracing out the details of this story reveals two additional actors of note. The first was 

Harry Huskey, the aforementioned Berkeley Professor of Mathematics and Electrical 

Engineering who attended Fein’s seminar at Berkeley. According to Fein, Huskey was another 

early naysayer who “saw no need whatever for having a separate department. He was doing 

computing in engineering” (Fein, 1979, p. 10). Another important actor was George Forsythe, a 

Stanford mathematician who was one of only a handful of individuals who had mixed feelings 

about the merits of Fein’s ideas, especially as applied to Stanford. According to Fein, the 

Stanford mathematics department was strongly opposed to a new computer-oriented department, 

yet Forsythe was “equivocal; he could go for it or not go for it” (p. 11). The reactions of Huskey 

and Forsythe are particularly significant in light of subsequent events. First, Berkeley and 

Stanford were two important sites where the development of computer-oriented curricula 

proceeded along two very different pathways. And second, both Huskey and Forsythe served 

terms as ACM Presidents. I revisit these themes below. 

As I discuss in the following chapter, calls for the establishment of new university 

computing departments gained significant momentum in the early 1960s, often in tandem with 

the increasing use of the “computer science” moniker. Yet the appeal of this new terminology 

was also soon reflected in various commercial employment ads. Both Philco and MITRE, for 

example, indicated employment opportunities for “computer engineers and scientists” in the 

early 1960s (Philco, 1960b; MITRE, 1961). And around the same time, a series of 
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advertisements from the General Motors Research Laboratories described exciting career 

possibilities for mathematicians, engineers, and physicists “at the edge of computer science” 

(General Motors, 1960; 1961a). A similar 1961 ad from General Motors, on the other hand, 

dropped all reference to engineering, and was aimed instead at “applied mathematicians” and 

“programmers” (General Motors, 1961b). The associated ad copy also indicated a need for 

“Research Mathematicians” and “Senior Programmers” to work on “advanced computer 

applications.”  

Once again, these advertisements reveal the segmentation of the computer field into two 

major spheres of activity, the first focused on mathematics, programming, and “computer 

science,” and the second on engineering and design. By the early 1960s, however, questions 

remained about the extent to which it was desirable or even possible for electrical engineering 

departments and faculties to claim various areas of computer-oriented education and research. In 

the following sections, I review some of the 1950s-era discussions about the role of computers, 

computing, and related topics in the realm of electrical engineering education. My analysis is 

organized around two major sections, the first focused on educating computer-using engineers, 

and the second on educating computer engineers and designers. 

Educating Computer-Using Engineers 

As noted above, through much of the 1950s computer-oriented topics and courses were 

filtering rather slowly into the electrical engineering curriculum at the majority of schools, 

despite the rapid growth of the computer industry and widespread use of computers in diverse 

organizational settings in both the public and private sectors. Yet by the late 1950s and early 

1960s it was increasingly apparent that those university engineering departments that chose to 

ignore or downplay new computer technologies and computing techniques did so at their own 

peril. Further, electrical engineers were doubly challenged by these trends given their unique 

position as potential computer users and designers. On the other hand, this section demonstrates 

that general discussions about familiarizing engineers and engineering educators with computer-

based problem-solving methods at times tended to overshadow the ongoing development of 

courses and programs in more specialized areas such as computer design and engineering. 

In fact, discussions about teaching computing skills to engineers surfaced with increasing 

frequency in outlets such as the Journal of Engineering Education (JEE). In a 1959 article, for 
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example, Bruce Gilchrist – who was serving at the time as Director of Syracuse University’s 

Computer Center – discussed the current and prospective position of universities with regard to 

teaching the “use” of computers (or “computing”) to students, engineers included (Gilchrist, 

1959). In addition to outlining existing computer programming courses at Syracuse, Gilchrist 

proposed a new undergraduate major in “mathematics-computing” that was largely focused on 

numerical analysis skills and designed to produce the “expert programmer and coder” (p. 344). 

Yet in contrast to other commentators, the author argued against the creation of new departments 

for computer-related instruction, and he instead claimed that programming courses should be 

offered by existing units, such as mathematics departments. As Gilchrist explained:  

While computers are not solely mathematical, there is so much about them, both 

in respect to design as well as to use, which is essentially mathematical, that it 

would seem difficult to find a more appropriate department to offer the 

fundamental programming and coding courses (p. 345). 

Yet the author also acknowledged that it was appropriate for Electrical Engineering Departments 

to offer courses in computer design and construction, and for Business Schools to develop 

offerings in areas such as data processing. 

Gilchrist’s remarks were followed over a year later by a special issue of the Journal of 

Engineering Education (JEE) that was dedicated to the topic of “Computers in Engineering 

Education.” In line with Gilchrist’s remarks, two of the articles in this issue were focused on 

educating students in the area of computer “use” or “application.” Contributor Adolph Katz, to 

begin with, suggestively titled his article “Do Computers Belong in the Engineering Curricula” 

(1960). Answering in the affirmative, the author explained that extant “cut and try” approaches 

to engineering design were quickly being replaced by more complex analytic and mathematical 

methods, many of which depended on the use of analog and digital computing devices (p. 835). 

By surveying college catalogs, Katz concluded that a majority of university courses in “computer 

application” were being taught by electrical engineering departments, but he added that 

mathematics departments offered many similar courses (pp. 835-836). Per Katz, this trend could 

in part be explained by the fact that EE departments had a long housed and maintained many 

different kinds of electronic equipment and related devices, including computers. 

Katz went on to conclude that the universities were doing a good overall job of teaching 

computing techniques, but he recommended that existing engineering courses needed to move 



www.manaraa.com

 159 

beyond the subjects of computer components and circuits to more thoroughly cover related 

mathematical foundations and numerical techniques. As Katz argued, “It is the responsibility of 

the university to teach the modern engineering student more of the fundamentals of the field, and 

to present the scientific laws and mathematics required to enable the engineer to use the modern 

tools available to him for the practical solution of engineering problems” (p. 838). Katz’s 

comments clearly hinted at a long-standing challenge in engineering education that involved the 

delicate balancing of disciplinary “fundamentals” with more “practical” types of tools, skills, and 

knowledge. This challenge was exacerbated by post-war trends in engineering education that led 

to an increasing emphasis on fundemantals, theory, and the “engineering sciences,” thereby 

leaving little room in the crowded curriculum for more specialized topics. 

In another article in the same special issue, mathematician William F. Atchison of the 

Georgia Institute of Technology more specifically discussed the rising importance of numerical 

analysis in engineering problem solving (Atchison, 1960). Pointing to the need for close 

cooperation between existing mathematics and engineering departments in training students in 

this area of expertise, Atchison also noted the “fairly strong chorus of voices calling for a new 

department … devoted to coordinating all the various aspects of computing” (p. 857). And while 

the author mentioned “Information Processing” as a likely choice for the name of such a 

department, most of his remarks were limited to promoting the use of computers as problem-

solving tools among engineering faculty and students. 

In a lengthy follow-up letter that was published in the wake of the special issue, William 

F. Luebbert of the Department of Electrical Engineering at the United States Military Academy 

added important insights regarding the manifold effects that computers and “information 

processing techniques” were having on electrical engineering. For starters, he described the 

historical “evolution” of electrical engineering education by outlining a gradual shift in emphasis 

from electrical power to communications and electronics, especially in the core courses of the 

discipline. Even more importantly, he noted that topics related computers and information 

processing – which appeared at least as significant as earlier developments in the field – were 

often relegated to special dedicated courses. As explained by the author, the rapid growth of the 

computer field “has tended to set computers off as a distinct technical field or specialty” 

(Luebbert, 1960, p. 134).  
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Luebbert went on to note that the suggestion of establishing “Information Processing 

Departments” tended to come from “those educators with a less predominantly electrical 

viewpoint,” and he concluded that such ideas were “startling,” “radical,” and “thought-

provoking” (p. 136). He also wrote them off as “neither feasible nor desirable,” especially when 

“more evolutionary” approaches were possible (p. 136). As one such alternative, the author 

argued for the extensive integration of computers and information processing topics throughout 

the electrical engineering curriculum, and especially in the foundational core courses that 

electrical engineers were required to take at most institutions.131 On the one hand, Luebbert’s 

remarks reveal a rising anxiety among engineers as the idea of separate computer-oriented 

departments and programs gained traction. On the other hand, his call for a thorough infusion of 

computing in all phases of electrical engineering education foreshadowed various curriculum 

reform efforts that gained traction beginning the mid and late 1960s. I discuss these movements 

in more detail in the following chapter. 

Another noteworthy article appeared that appeared in the JEE in 1961 was topically titled 

“Engineering Students Must Learn Both Computing and Mathematics” (Forsythe, 1961).  

Authored by Stanford mathematics professor George Forsythe, this piece paralleled many of the 

aforementioned articles in that the author made a general call for improving the mathematical 

and computer-related aspects of engineering education. Yet Forsythe also came out as a strong 

advocate for the so-called “computer sciences.” At the very beginning of the article, for instance, 

Forsythe noted with slight derision that “[computers] are developing so rapidly that even 

computer scientists cannot keep up with them. It must be bewildering to most mathematicians 

and engineers” (p. 177). In addition to downplaying the position of mathematicians and 

engineering in the area of computing, the author’s rather matter-of-fact reference “computer 

scientists” suggested that the identity of this group was well established. Yet at another point in 

this same article, Forsythe was more cautious in describing the “computer sciences”: 

                                                
131 Evidence suggests that the types of reforms suggested by Luebbert were being proposed and discussed 
more widely. In 1959, for example, the Electrical Sciences Committee of the American Society for 
Engineering Education (ASEE) published a “Report on the Engineering Sciences, 1956-1958” (American 
Society for Engineering Education, 1958). In addition to revealing a continued emphasis on science in 
engineering education, the report also, in Luebbert’s words, “advocated the complete reorganization of 
electrical science curricula into an energy processing portion and an information processing portion” 
(Luebbert, 1960, p. 136). 
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In spite of the diversity of the applications, the methods of attacking the different 

problems with computers show a great unity, and the name of Computer Sciences 

is being attached to the discipline as it emerges. It must be understood that this is 

a very young field whose structure is still nebulous (p. 177). 

Embellishing this depiction, the author described the “theory of computer programming” as a 

key area of activity in the emergent field, and he also identified numerical analysis, the study of 

data processing, and computer system design as “computer sciences” (p. 178). Framing computer 

design as a branch of “computer science” revealed the wide range of topics – including many 

that were traditionally connected with engineering – that many commentators claimed such a 

field should encompass. And while Forsythe stopped short of explicitly calling for the founding 

of new computer science departments in universities, he hinted in this direction when he 

suggested that introductory computer courses should be taught by “computer scientists.” Further, 

he noted that these types of courses might be developed more rapidly if the associated instructors 

were “not judged primarily by the standards of any existing department” (p. 180). One might 

infer that this could only be accomplished through the establishment of new departments that 

were linked to a new discipline.  

In the following chapter, I trace the historical trajectory of the “computer sciences” 

thought the 1960s and beyond. And in order to round out the present discussion, it is necessary to 

review a handful of developments beyond the pages of the JEE, including an ambitious and well-

known project that was launched at the University of Michigan in 1959 to more broadly 

stimulate and accelerate “the use of computers in engineering education.” Sponsored by the Ford 

Foundation and directed by Donald Katz – a Professor of Chemical Engineering at the University 

of Michigan – the impact of the project extended to dozens of other universities through the 

participation of over two hundred participating faculty (Katz et al., 1963, p. v).132 As explained 

in one final report, one major original impetus for this project stemmed from the general 

observation that “experiences with computers in research were filtering down very slowly into 

undergraduate engineering education” (Katz et al.,1963, p. iii). Building on the premise that 

                                                
132 In fact, evidence suggests that the overall impact of the Ford Foundation project was indeed quite 
significant. As University of Michigan computer scientist Bernie Galler explained in a 1991 interview, 
“Computers were really quite new, and it was recognized that they were very useful in engineering, but 
they hadn’t really gotten into the curricula. I know people who told me that in their opinion, this project 
advanced the use of computers by at least five years throughout this country” (Galler, 1991, p. 32). 
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“[a]ll graduating engineers of the future must have a knowledge of computers, just as they have a 

knowledge of mathematics” (Katz and Organick, 1960, p. 184), the project aimed to “study the 

feasibility of broad scale integration of electronic computer use into the educational process” 

(Katz et al., 1963, p. iii). In working toward this goal of integration, much of the project was 

dedicated to developing appropriate teaching materials, sample problems, and appropriately 

trained faculty. It also covered a range of engineering disciplines, and much of the associated 

work was accomplished via summer training programs and workshops. 

While the Ford Foundation project may appear somewhat tangential to the mainline 

development of computer engineering, the project reports provide important evidence about the 

general position of computers in electrical engineering education, especially in the early and mid 

1960s. In fact, a 1966 report on the role of computers in electrical engineering design education 

explained that “[e]lectrical engineers have an interest in computers not only as devices for 

performing computation but also as systems of interest in themselves” (McMahon et al., 1966, p. 

IV-1). Yet somewhat paradoxically, this same report concluded that “the computer as an aid to 

engineering design has not been emphasized in electrical engineering to the extent that it has in 

other engineering disciplines” (p. IV-1). Far from conjecture, this tendency was widely 

documented. A survey published in 1963, for instance, indicated that just over half (54%, or 22 

of 41) of all responding electrical engineering departments were teaching computing courses, 

while only 45% (or 21 of 47) of surveyed EE departments required its undergraduate students to 

take one or more computer courses (Cook, 1963, pp. 5; 9).133 The authors of the 1966 Ford 

Foundation report offered two explanations for these trends. First, they pointed to a general 

neglect of design-oriented education in most engineering fields, which limited the extent to 

which computer-based techniques could be incorporated into the curriculum. And on a second 

and closely related note, they suggested that the use of computers among electrical engineers was 

limited by the fact that “many of the problems with which electrical engineers deal are fairly 

tractable mathematically” (McMahon et al., 1966, p. IV-1).  

                                                
133 Interestingly, the report noted that industrial engineering departments were offering the most computer 
courses for engineering students (58%), followed by electrical engineering (54%). In addition, 77% of 
industrial engineering, 47% of aeronautical engineering, and 47% of chemical engineering departments 
were requiring computer courses for graduation, as compared to 45% for electrical engineering 
departments. 
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As I note below, groups such as the COSINE Committee emerged in the mid-1960s and 

in part picked up where the Ford Foundation project left off, especially with regard to urging 

electrical engineering educators to incorporate computers into all phases of the EE curriculum. 

Yet unlike the participants in the Ford project, COSINE members also raised questions about the 

extent to which it was desirable for electrical engineering departments to cultivate student and 

faculty expertise in a wider array of subjects, ranging from computer design and systems 

engineering to programming and even the so-called “computer sciences.” Yet well before the 

COSINE effort got off the ground, a handful of commentators were both raising questions about 

and making tentative recommendations for how electrical engineering departments might expand 

their interests in computers and computing generally, as well as in the area of computer design 

and engineering more specifically.  

Educating Computer Engineers and Designers 

As described above, by the mid-1960s a growing cadre of engineers and other interested 

actors were increasingly focused on teaching future generations of engineers how to use 

computers, albeit with mixed results. A somewhat smaller pool of individuals was approaching 

questions about the appropriate role of computers and computing in engineering education from 

other angles. As noted above, a 1957 article by Rideout was one of the first to discuss the 

potential development of “computer engineering curriculums,” and within a few years a handful 

of authors were pursuing related themes. In the 1960 JEE special issue on Computers in 

Engineering Education, for example, MIT civil engineer C. L. Miller and electrical engineer W. 

W. Seifert discussed the position of engineering schools with respect to a full range of “computer 

know-how” (Miller and Seifert, 1960). In most general terms, these authors argued that “the 

faculty-computer relationship must embrace the entire faculty – that the ideal ‘computer faculty’ 

includes the entire faculty of the engineering school” (p. 839). They also went on to identify four 

constituent areas of expertise, namely design, communications, mathematics, and applications (p. 

841).134  

                                                
134 The authors used the term “communications” to refer to “man-machine communications.” This area of 
activity included topics associated such computer programming and languages. With regard to 
“applications,” the authors were principally referring to the use of computers as a “problem solving tool 
of modern engineering” (p. 841). 
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With regard to computer design, Miller and Seifert framed engineering as a rather 

obvious locus of activity and education for education and research. In fact, they supported this 

claim by pointing to a long-standing affinity between engineering design and physical artifacts. 

“Those concerned with computer design,” they explained, “pose no identification problem due to 

their direct relationship with the development of computers as physical devices” (p. 841). For 

these authors, computer designers were naturally machine-oriented engineers. And indeed, my 

preceding analysis of job advertisements and employment statistics revealed the strength of this 

relationship in the late 1950s and early 1960s. 

Yet Miller and Seifert also promoted the development of a full range of computer know-

how among engineering faculty that extended well beyond the design of “physical devices” to 

cover all four of the major constituent areas listed in their article. The authors even argued that 

engineering schools and faculty needed to develop and sustain their own expertise in the more 

mathematical areas of computing. “It should be made clear,” Seifert and Miller stated, “that in 

identifying the mathematics group we are speaking of those professors within the engineering 

school who are active in developing and enlarging mathematical methods and not of the staff of 

the mathematics department” (p. 842). By arguing that all relevant phases of computing should 

remain within the province of engineering schools, the authors promoted their own vision of 

disciplinary independence and self-sufficiency. It is also likely that this position was developed 

in response to the ongoing extension of mathematics departments and faculties into many areas 

of computing, not to mention the tentative development of the “computer sciences.” Yet 

regardless of their motivations, Miller and Seifert’s recommendations appeared particularly 

synergistic with their home institution, where engineering had a long reputation for its prestige, 

mathematical and theoretical intensity, and wide-ranging scope.  

In another special issue article titled “Setting up a Computing Faculty in a School of 

Engineering,” Moore School director John Brainerd worked in directions that largely paralleled 

the comments of Miller and Seifert.135 Noting the existence of ongoing debates regarding 

whether separate faculty and departments should be developed in areas such as the “Computer 

and Information-Processing Sciences,” Brainerd downplayed the prospects for such departments 

by describing the proponents of such a split as “relatively few though at times outspoken” 

                                                
135 As noted in the preceding chapter, in as early as 1948 Brainerd had emphasized the major role of 
electrical engineers in the historical development of large-scale computing devices. 
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(Brainerd, 1960, p. 846). Summarizing his own position on the matter, Brainerd argued that 

existing departments were meeting most of the new field’s needs, and he added that “the 

administrative need for a separate department or faculty is not evident despite the crossing of 

lines of various disciplines which can be envisaged” (p. 846). He even followed a number of 

earlier commentators by suggesting that computing could be viewed as a sub-field of 

engineering. As Brainerd explained, “the creation or extension of a ‘computing faculty’ group is 

much like that for any other new and important subdivision of engineering effort” (p. 851). Such 

comments revealed a rising sense of anxiety among engineers as the establishment of new 

computer-oriented disciplines and departments appeared an increasingly likely prospect at many 

schools, including Brainerd’s own. 

Brainerd’s comments also reflected a common rhetorical strategy, where computing was 

framed as a partially or even wholly a province of engineering. In fact, preceding chapters show 

that this type of strategy can be traced back to the early 1950s. Yet Brainerd was also forced to 

admit that computer-related research and education involved other types of expertise. In fact, he 

hinted at rising concerns about the role of mathematicians, philosophers, and other “non-

engineers” in the development of computer-related courses and programs, especially in 

engineering schools and departments. “A computing faculty in a school of engineering,” 

Brainerd warned, “must be prepared to open their arms to the qualified non-engineer” (p. 850). 

As I discuss in more detail below, accommodating these “outsiders” was an important strategy – 

as well as a demanding challenge – for Brainerd and other engineers as they struggled to 

maintain control over new computer courses, programs, and faculty. Further, the possible 

participation of “qualified non-engineers” in engineering schools and departments seemed to call 

into question the identity of engineering as a distinct professional and disciplinary domain. 

 Brainerd’s article raised yet another theme that has surfaced repeatedly in my analysis, 

namely the extent to which computer design was related to computer application or use. As the 

author explained, “Logic design should ideally be carried out with full knowledge of the ranges 

which the equipment designer can achieve as well as knowledge of the basic logic of the 

contemplated device; unfortunately logic design has fallen to a low state in some instances” (p. 

849). The aforementioned article by Miller and Seifert also touched on this issue. After noting 

that the interests of computer design groups tended to concentrate on circuitry and logic, the 

authors added that “designers must have contact with those who are going to use the machines” 
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(Miller and Seifert, 1960, p. 841). Providing further insights regarding the budding divisions of 

labor among computer experts, these same authors described how a “computer languages group” 

could act as an essential link users and hardware of computing (p. 841). Of course, promoting 

cooperation between such groups was quite different than the type of proposal that authors such 

as Fein had bandied about, namely that the computer field writ large could somehow be unified 

via some sort of common theoretical framework or even disciplinary structure. 

And finally, Norman R. Scott, a professor of electrical engineering at the University of 

Michigan, contributed the only article to the same JEE special issue that was primarily dedicated 

to discussing the development of courses and degree programs in the area of computer design 

and engineering (Scott, 1960). After emphasizing the general importance of computers in the 

engineering curriculum, the author reviewed a series of challenges that were facing electrical 

engineering faculties, with particular emphasis on the area that he called “computer 

engineering.” Ultimately coming down in favor of devoting “many courses or even a degree 

program to the engineering of the digital computer” (p. 852), Scott asked a series of related 

questions about appropriate lab facilities, the relative coverage of analog versus digital topics, 

and the extent of training in computer use among electrical engineers (pp. 852-853). But even 

more importantly for the present analysis, the author queried: “What material is appropriate to 

computer engineering courses at the undergraduate level and the graduate level?” (p. 853). He 

also pondered the extent to which topics in the area of computer design and engineering should 

be taught by electrical engineering faculty versus other academic units, such as mathematics or 

philosophy departments (p. 853). 

While leaving many of these questions open, the author described ongoing developments 

at the University of Michigan, where “courses in the engineering of computers have been 

presented since 1951” (p. 853). Scott also stressed that computer engineering courses often 

required a “broad background in electrical engineering and a high level of mathematical 

maturity,” and he promoted the idea that computer engineering was a more appropriate area of 

specialization at the graduate level (p. 854). Building on these arguments, Scott listed some of 

the key topics that would likely be included in graduate courses in computer design and 

engineering. He further grouped these into a set of abstract topics that provided necessary 

mathematical and theoretical grounding – namely symbolic logic, Boolean algebra, state 

diagrams, switching, automata theory, and finite number systems – and Scott acknowledged that 
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philosophy or mathematics courses might help provide coverage in these areas. He also listed a 

set of subjects more closely associated with existing technologies and techniques, including 

arithmetic processes, command lists, the relation of “internal” and “external” languages, memory 

systems, and computer circuits and logic. While little more than an outline, Scott’s article is 

noteworthy in that it was one of the earliest published descriptions of graduate-level coursework 

specifically dedicated to computer design and engineering. Further, Scott’s remarks hinted at a 

growing sense among many electrical engineering educators that an emergent field of computer 

design or computer engineering was starting to coalesce around some common core bodies of 

knowledge and domains of technology, albeit largely as a specialization or branch of EE. 

Many of the themes developed in the special issue of the JEE were echoed in a lengthy 

summary article on the topic of “Computer Education,” which appeared in the 1963 edition of 

Advances in Computers (Tompkins, 1963). After first reviewing computer education and training 

programs in industry, author Howard E. Tompkins noted that universities lagged well behind 

industry “in their ability to teach new concepts and methods that have arisen from industrial 

research and development” (p. 139). Describing most university curricula in computing as 

“experimental” or “in transition,” Tompkins outlined two major types of curriculum that were 

being developed at the time, one focused on the “engineering design of computers” and the other 

on the “utilization of computers” (p. 142).  

Regarding the former, the author explained that most engineering curricula were not yet 

explicitly addressing the topic computer design, although he admitted that many programs and 

courses were grappling with a variety of closely associated topics. Tompkins also stated that a 

range of new technological developments that were closely related to digital computers – such as 

transistors and other types of solid-state devices – were not receiving adequate attention in most 

undergraduate engineering curricula. He added that more could be done to provide up-and-

coming engineers with a synthetic view of computing, especially by cultivating expertise in areas 

ranging from electronics and circuits to logic and systems. Reacting to the challenges that came 

with developing such curricula, Tompkins emphasized that “[t]he two points of view, logical and 

electrical, should be coordinate into a meaningful whole” (p. 142). While offering little in the 

way of additional detail, he concluded his remarks on engineering design by referencing a series 

of textbooks in “computer engineering, logic, and systems design” (p. 142). 
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In his survey of “courses and curricula aimed at the education of computer users,” on the 

other hand, Tompkins described a wide range of trends and possibilities, ranging from short, 

non-credit courses in programming to full degree programs with titles like “Computer and 

Information Sciences” or “Communications Science.” Describing some of the developments that 

were on the horizon, Tompkins offered summary descriptions of computer-oriented degree 

programs at about a dozen universities, and he noted a variety of faculty training initiatives that 

were underway, including the aforementioned Ford Foundation Project. Concluding his rather 

wide-ranging discussion of computer education at the university level, Tompkins also pondered 

the process of discipline formation: “Will a recognized and established discipline, complete with 

traditions, established standards, and a few sacred cows, arise?” (p. 151). While a small but 

growing cadre of commentators were confidently projecting the establishment of such a 

discipline by this time, Tompkins took a somewhat more cautious – and perhaps more realistic – 

view. “Not without pain and effort, and not in any thoroughgoing way, Tompkins declared, “the 

dynamics of the situation are too dominant. The field is still developing and changing too rapidly 

to admit of much immediate standardization” (p, 152). 

Conclusion 

On the surface, it may appear somewhat ironic that electrical engineering departments – 

which had both reasonably strong and relatively early claims to many aspects of the design and 

development of computing machinery – were slow to bring computers into their courses and 

curricula. However, the direct influence of university-based electrical engineers in the computer 

field peaked in the 1940s and early 1950s at a handful of high-profile hubs of activity, such as 

MIT and the University of Pennsylvania. As the commercial computer industry took off in the 

1950s, university computer design research declined accordingly, and by the mid-1950s it was 

increasingly rare for even the largest and best-funded schools to undertake major computer 

development projects or related research initiatives, albeit with a few notable exceptions. These 

trends – coupled with a strong, post-war tendency for electrical engineering departments and 

faculties to both embrace the engineering sciences and resist rapid curricular changes and 

technical specialization – created a climate in which computer-related topics and technologies 

filtered slowly into electrical engineering courses and curricula, even into the 1960s. In fact, 

many private-sector employers were largely content with this status quo, even if they frequently 
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assumed the primary burden of transforming recent graduates who were well-schooled in 

engineering fundamentals into effective engineering practitioners, such as via supplemental 

training programs and on-the-job experiences. 

And while electrical engineers continued to fill large numbers of private-sector 

employment slots in areas ranging from electronics and circuit design to logical design and 

systems engineering, the demand for numerical analysts, programmers, and other applications 

experts rose rapidly through the 1950s and into the 1960s. With electrical engineering 

departments reluctant to move into these areas, other academic units and programs filled in the 

gaps. Mathematics departments, for example, started to produce large numbers of students who 

would go on to become analysts and programmers. In addition, a growing raft of commentators 

proposed the establishment of a new computer-oriented academic discipline that covered a wide 

spectrum of activity in the field. On the one hand, this movement seemed to be the sort of reform 

that commentators such as Carr and Gorn were looking for, as it suggested that it might be 

possible to reconcile some of computer field’s major social and technical divides. On the other 

hand, there remained the very real possibility that the emergence and rise of the “computer 

sciences” might further fracture the field by driving a wedge between an emergent class of 

“computer scientists” and a counterpart pool of computer designers and engineers. In fact, this 

latter pattern appeared synergistic with the major sociotechnical boundaries that had come to 

dominate other aspects of the field, including the major professional societies, various private-

sector worksites, and even the sphere of computer technology itself. 

As Tompkins explained in 1963, many questions remained about whether a new 

computer-oriented discipline could emerge and thrive, especially against the backdrop of rapid 

technological change. Yet his focus on issues of “standardization” and “established traditions” 

partially missed the mark, given that the academic context more often serves as a site where 

disciplinary settlements are worked out and periodically renegotiated, with discipline-based 

departments and graduate degree programs helping to reproduce various fields of interest, while 

also preserving their internal and external stability. Tompkins also failed to ask an important 

follow-up question: if a new discipline of computing was successfully established, would it be 

sociotechnically integrated, thereby making one head out of the proverbial Humpty and Dumpty? 

Or would it reflect and reinforce the kinds of dichotomies that had grown up in other contexts of 

computing? Such questions help set the stage for the following chapter, which follows the 



www.manaraa.com

 170 

historical development of two major discipline-building movements in the computer field, the 

first centered on the independent development of “computer science,” and the latter involving the 

redoubled efforts of electrical engineering reformers and educators to promote the development 

of their own brand of computer-oriented courses and curricula within existing engineering 

schools and departments. 
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Chapter 5 

Competing Images of Disciplinarity:  

Computer Science, COSINE, and Computer Engineering 

 

 

 
In prior chapters I documented the historical trajectory of computer engineers and 

engineering by looking at various contexts of disciplinary and professional development, 

including professional societies and industry worksites, as well as the domain of computer 

technology itself. More specifically, my analysis highlighted how the computer field’s early 

decades were significantly marked by the emergence of two distinct sociotechnical territories, 

one focused on software and programming, the other centered on engineering, design, and 

hardware. The preceding chapters also documented persistent uncertainty over the status of 

computer engineering as a distinct field or discipline. In fact, terms such as “computer engineer” 

and “computer engineering” were in wide circulation in the 1950s and 1960s, but primarily in 

reference to various jurisdictions of professional work in the context of industry. My account 

also revealed significant ambiguity in the use of “computer engineer” and related terms, 

especially in the mid-1950s. Yet even as these terms became more narrowly associated with the 

design of computer systems and associated devices, computer engineering was often couched as 

a subfield or branch of electrical engineering, rather than as a discipline or profession unto itself. 

By delving into the educational arena, the prior chapter presented early evidence for the 

emergence of a discipline that over time came to be called “computer science.” It also outlined 

the tentative efforts of electrical engineering faculties and departments to enter various areas of 

computing, including through a handful of graduate-level courses and programs dedicated to 

computer design and engineering. The present chapter carries this analysis of the educational 

sphere through the remainder of the 1960s and into the early 1970s, with particular emphasis on 

two related historical movements. The first of these involved ongoing efforts to define, position, 

and institutionalize the budding field of computer science, especially through the efforts of the 

ACM and its mathematically- and theoretically-oriented constituency. In addition to detailing a 
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series of early efforts to succinctly define this new field, I draw on the work of Abbott to suggest 

that the success of computer science largely hinged on both the negotiation of the field’s 

disciplinary “settlement” and the establishment of new computer science departments and 

graduate degree programs. Hence, my analysis brings into further relief the importance of 

“bottom-up” processes of discipline-building.  

In a segue section in the middle of this chapter, I turn to handful of “insiders” who 

critiqued the identity and direction of computer science education, and who questioned whether 

the emergent field was moving too far away from engineering and technology. This line of 

analysis provides an appropriate transition into the second major part of this chapter, which 

details how a new cadre of electrical engineers called for a thorough reorientation of electrical 

engineering education toward computers and computing. In fact, two Bell Labs researchers aptly 

captured the underlying ethos of this movement when they framed engineering and computing as 

a “holy alliance” in a 1960s-era memorandum. In order to realize this alliance, many of these 

reformers initially worked to bring computer science “into the fold” of electrical engineering, 

especially through the efforts of the COSINE Committee in the educational arena. Yet for a 

variety of reasons, the goals of this movement gradually shifted toward the development of 

courses, programs, and degree options in the area known as “computer engineering.” 

On the one hand, my analysis once again highlight the tendency of the computer field to 

cleave into hardware- and software-oriented spheres in a variety of contexts. But perhaps even 

more importantly, this chapter reveals the crucial importance of the academic sphere in the 

negotation and development of disciplines. In fact, ongoing efforts to attach the computer 

engineering moniker to various facets of electrical engineering quite crucially set the stage for 

the gradual and widespread emergence of computer science and computer engineering as distinct 

domains, complete with their own partially unique social and professional identities, bodies of 

knowledge, educational pathways, and spheres of technology. My analysis also reveals the extent 

to which these processes involved competing images of disciplinarity, as well as the ongoing 

negotiation of disciplinary settlements. 

Part I – (The) Computer/Computing/Information Science(s): A Formative First Decade 

Over roughly the span of a decade, the field that was growing up around terms such as 

“computer science” gained an impressive momentum. As historian Paul Ceruzzi explains, the 
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origins of the field can be traced back to at least the late 1950s, when “it was recognized that 

many topics that had much in common with each other (and all in common with the computer) 

were being taught in various departments in around most universities” (Ceruzzi, 1989, p. 266). 

This was also a time when rapid increases in the number of computer systems installed 

nationwide (and worldwide) was accompanied by rising demand for computer-oriented workers 

of all types. Recognizing and responding to these trends, a handful of forward looking 

individuals proposed the establishment of a new field or discipline, which the aforementioned 

Wienser dubbed the “communication sciences” and Fein called “computer science.” 

In subsequent years, an expanding cadre of actors and groups – many with ties to the 

mathematics community and the ACM – lent support to this discipline-building project, which 

increasingly went by the name of “computer science.” In this section, I outline three different 

aspects of this historical trajectory, in roughly increasing order of importance. The first such 

aspect centers on early “top-down” efforts to define and name the proposed discipline. I then turn 

to ongoing moves to position the emergent field in a larger milieu of disciplines, especially in 

idealized terms. Third and finally, I discuss the establishment of computer science and related 

departments and curricula in the 1960s in order to shed light on the “institutionalization” of the 

field. This latter theme supports the argument that the rapid growth of computer science in the 

academic context was a pivotal development, both for the proponents of the new discipline and 

for other stakeholders, including electrical engineers. 

Defining Computer Science as a Discipline136 

Debates over the definition of “computer science” and closely related terms can be traced 

throughout the history of the field, even to the present. In fact, the long-standing lack of 

consensus on this matter suggests that the successful establishment and development of a 

discipline does not necessarily require widespread consensus about its precise definition or 

scope. Yet in order to gain a general sense for the evolving scope and orientation of computer 

science, it is worth reviewing some of the major definitions in play, especially in the field’s 

formative first decade. These definitional efforts frequently involved processes of abstraction, 

                                                
136 The account presented in this section has some parallels with the prior efforts of Ceruzzi, who provides 
one of the better reviews of ongoing efforts to define “computer science” (Ceruzzi, 1989, pp. 265-270). 
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where attempts were made to capture the commonalities that united the full array of subjects, 

topics, and technologies that were at the heart of the proposed discipline.  

As noted above, Wiesner made one of the earliest attempts at such a definition when he 

described the “communication sciences” as providing the appropriate mathematical and 

theoretical foundations for the study of complex computing, information processing, and 

communication systems, of both the natural and artificial variety (Wiesner, 1958). Fein, on the 

other hand, was likely the first author to proclaim the emergence of a new discipline called 

“computer science.” And while his 1959 article hinted at the contours of the field via wide-

ranging lists of potentially relevant topics and subjects, in 1961 Fein more succinctly defined the 

“computer sciences” as “the theory and practice of the design, programming, and application of 

computers” (1961a, p. 151). With a nod to Wiesner, he also suggested that the computer sciences 

were a branch of a proposed “supradiscipline” called the “computer-related sciences” or 

“synnoetics,” which was more generally concerned with the properties and structure of 

“composite systems” (1961a, pp. 150-151).137 Both Wiesner and Fein can be credited with 

recognizing some of the synergies that were forming between a wide range of fields, ranging 

from computing, cybernetics, and communication theory to parts of biology and even linguistics. 

And while the ambitious visions presented by these authors were perhaps ahead of their time, 

they helped set the stage for a larger movement that got underway in the 1960s. 

Some of the first evidence for such a movement can be found in the CACM, which in 

1960 featured a “Report on a Conference of University Computing Center Directors” (Morse, 

1960). As the author of this report confidently explained, computer science was both a “new 

scientific field” and “discipline in its own right” (p. 520; 521).138 Yet aside from listing a handful 

of courses and subjects being taught by university staff, the report was mostly silent on the 

definition and scope of the field. Mathematician George Forsythe, on the other hand, explained 

in a 1961 article that a new discipline of “Computer Sciences” was emerging. Describing the 

field in pluralistic terms, he indicated that the “theory of computer programming” was perhaps 

the “most important of the computer sciences,” although he added that numerical analysis, data 

                                                
137 As Fein explained, composite systems could consist of various configurations of people, mechanisms, 
plants, animals, organisms, and/or “automata” (1961a, p. 150). 
138 It is worth noting that the terms “computing science” and “computer science” were used 
interchangeably in one section of the report. This flexibility of terminology closely parallels the use of 
terms such as “computing engineering” and “computer engineering” in the 1950s, as documented in the 
preceding chapter. 
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processing, and computer system design were also relevant to the “computer sciences” (Forsythe, 

1961, pp. 177-178). 

Definitional issues received further attention in 1963, when mathematician Saul Gorn 

described the development of “a new basic discipline” that he called the “computer and 

information sciences.” The author also explained that one of the field’s central concerns was the 

“‘analysis’ and ‘synthesis’ of ‘mechanical languages’ and their ‘processors’” (Gorn, 1963, p. 

150).139  In addition to reflecting Gorn’s research interests in the area of computer languages, 

framing the field in this manner placed implicit emphasis on the orientation of the field toward 

information and communication processes and systems. In a 1964 article, on the other hand, 

Thomas Keenan of the University of Rochester discussed the prior writings of Wiesner, Fein, 

and Gorn as he developed something of a “composite” definition for the new field. As Keenan 

explained, “the study of the organizational and structural properties of systems, arrays of 

symbols and mechanical languages which find their application in the processing and 

communication of information is at the heart of computer science” (Keenan, 1964, p. 206).140 

As noted in previous chapters, through the 1960s “information,” “information 

processing,” and “information systems” were viewed as pivotal concerns for those working in 

many different phases computer field. This trend was also reflected in a preliminary ACM 

curriculum report published in 1965. In a section titled “Computer Science as a Discipline,” the 

authors stated that “Computer science is concerned with information in much the same sense that 

physics is concerned with energy; it is devoted to the representation, storage, manipulation and 

presentation of information in an environment permitting automatic information systems” (ACM 

C3S, 1965, p. 544). And in 1967, Forsythe similarly described computer science as “the art and 

science of representing and processing information and, in particular, processing information 

with the logical engines called automatic computers” (p. 3). Vladimir Slamecka of the George 

Institute of Technology, on the other hand, argued at a 1967 conference that “Information 

Science and Engineering” was a more accurate name for the field (Slamecka, 1968). Expressing 

dissatisfaction with prior definitions, Slamecka argued that the structure of the discipline was 

                                                
139 As Gorn explained, “The study of mechanical languages is concerned with the synthesis and analysis 
of systems of arrangements of symbols, and with the synthesis and analysis of processors which generate, 
recognize, translate, and generally interpret such systems in various ways” (Gorn, 1963, p. 151). 
140 At the end of his article, Keenan suggestively added that “[p]rogressive faculties now understand that 
computer science is more than FORTRAN programming” (Keenan, 1964, p. 209). 
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fundamentally based on theories of information, information processes, and information 

systems.141 

But even as it was increasingly common to frame the emergent field as information-

oriented, commentators such as Alan Perlis developed still other types of definitions. In a 1967 

conference talk, Perlis echoed prior commentators when he explained that one principle goal of 

computer science centered on understanding “the organization and administration of 

information” (Perlis, 1968, p. 70). Yet he moved in somewhat different directions when he noted 

that “computer science is the study of the design, analysis, representation, and applications of 

algorithms on computers” (p. 70). And later in the same talk, Perlis echoed one of Forsythe’s 

early comments when he suggested that “computer programming is at the root of computer 

science” (p. 76). While this array of characterizations perpetuated the image of a rather inchoate 

new field, they nonetheless informed ongoing efforts to map out and negotiate the disciplinary 

settlement of computer science. 

Perlis addressed the issue from still another angle in a 1967 letter that he co-authored 

with Allen Newell and Herbert Simon, two of his colleagues at Carnegie Tech. Published in 

Science and addressing the question of “What is Computer Science,” the letter started by with a 

seemingly straightforward argument: “There are computers. Ergo, computer science is the study 

of computers” (Newell, Perlis, and Simon, 1967, p. 1373).  The authors went on to explain that 

this included all phenomena surrounding computers, including programs, algorithms, and 

hardware. On the one hand, Simon in part expanded on this line of argument in his suggestively 

titled 1969 tome, The Sciences of the Artificial. On the other hand – and as noted by Ceruzzi – 

the publication of texts such as Donald Knuth’s The Art of Computer Programming, Volume 1: 

Fundamental Algorithms (1968) helped promote the notion that algorithms were a central topic 

of concern for computer scientists and programmers.142 

                                                
141 Still another definition along these lines was developed by the Department of Information Sciences at 
the University of Chicago: “The Information Sciences deal with the body of knowledge that relates to the 
structure, organization, transmission and transformation of information … This includes the investigation 
of information representation, as in the generic code or in codes for efficient message transmission, and 
the study of information processing devices, and techniques, such as computers and their programming 
systems” (Beckman, 1968, p. 40). 
142 The importance of the topic of algorithms admittedly has a longer history in the field. From about 1959 
onward, for example, the CACM devoted an expanding number of pages to descriptions and discussions 
of algorithms. But as evidenced by the publication of Knuth’s text and the remarks of commentators such 
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By the late 1960s, the definition of computer science and a series of closely related terms 

remained the subject of much discussion and debate. Yet there was growing consensus that a 

discipline had either formed or was well on its way to forming, and it was increasingly referred 

to as “computer science.” Further, the dominant image of the field was largely based on a 

disciplinary settlement that encompassed algorithms, programming, information processing, and 

information systems, and that was grounded in theory and mathematics. In a sense, then, the term 

“computer science” was something of a misnomer, and a long string of commentators maintained 

that the emergent field was significantly independent from the actual machinery of computing.  

Fein hinted at this theme in 1959 when he framed computing equipment as a 

“supplement” to university educational programs in the “computer sciences” (p. 11). And in 

1961, he noted that more expansive terms such as “Computer-Related Sciences” were misleading 

because they overemphasized computer equipment (1961a, p. 161).143 Forsythe similarly argued 

in 1961 that “the computer sciences are partly independent of actual automatic computers” (p. 

178), while Atchison and Hamblen complained in 1964 that the term “computer science” was too 

“machine-oriented” (1964, p. 227). As the 1960s wore on, the apparent distance between the 

discipline and the machine only increased, leading Atchison to summarize in 1971 that “’[t]he 

pure computer scientists will probably move further and further from the machine itself and more 

and more into the theoretical aspects such as abstract structures of information and the theories 

of representation and transformation” (1971, p. 131). In many ways, this distancing was 

beneficial for computer science, as it insulated the field from rapid technological changes in 

computer technology. As I note below, courses and curricula became an important pathway for 

creating and maintaining space between the discipline of computer science and the rapidly 

changing state of the technological art. On the other hand, this trend also tended to expand the 

distance between the theoretical foundations of computer science and the more pragmatic 

application of computers to real world-problems, thereby opening up new opportunities for other 

actors and groups to assume leading positions in other spheres, including that of “hardware.” 

                                                                                                                                                       
as Perlis, the view that algorithms were a central, defining concern of computer science did not gain 
significant traction until later in the 1960s.  
143 As noted above, Fein addressed this problem by coining and promoting an alternate term, namely 
“synnoetics.” 
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Positioning and Settling Computer Science 

While the development of top-down definitions for computer science is an important 

aspect of the present historical account, it is but one aspect of a larger discipline building 

process. In fact, if we take seriously Abbott’s claim that “academic settlement involves a 

complex structure of relations with other disciplines” (2001, p. 141) we might expect to find 

extensive discussions about the position of computer science in a larger disciplinary milieu. As it 

turns out, many other commentators have uncovered such discussions and recognized their 

importance. As nicely summarized by engineer and historian Eric A. Weiss, for example: 

[I]n the late 1950s and early 1960s, the academic world was struggling with the 

question of where computing was to be fitted into its often hidebound structure. 

Was it a subdivision of mathematics or electrical engineering? Would it last or 

would it fade away? Did it have enough philosophical and intellectual content to 

be considered in any way a science in its own right? (1992, p. 76). 

In this section I document ongoing efforts to address these types of issues, especially from the 

late 1950s to late 1960s. I place particular emphasis on how various actors and groups defined 

computer science in relation to a variety of other disciplines specifically, as well as to 

mathematics, the sciences, and engineering generally. In summary, my analysis brings into 

further relief the establishment and negotiation of a disciplinary settlement for computer science. 

I begin by looking at how these issues were addressed in rather abstract and idealized terms, and 

then turn to more pragmatic discussions about the “institutionalization” of the field. 

To begin with, early commentators such as Wiesner and Fein framed the emergence of a 

new computer-related discipline as both drawing from and informing work in other fields. 

Wiesner noted a “close kinship” among many researchers working in diverse domains, ranging 

from engineering and the physical sciences to mathematics and even biology (1958). And while 

he admitted that engineers and inventors played an important role in the field of “communication 

sciences,” he emphasized the need for further theoretical developments, which engineers alone 

could presumably not provide. Fein similarly noted the importance of establishing theoretical 

foundations for the proposed discipline, and he explicitly described “computer science” as “inter-
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disciplinary.” He added that fields such as computer science, mathematics, and library science 

“are both disciplines in themselves as well as service tools to other disciplines” (1959, p. 11).144  

However, commentators such as Gorn argued that distinguishing the field from its 

neighbors required a more substantive rationale than simply suggesting that it was somehow 

“interdisciplinary.” He therefore argued in 1963 that “essential differences in attitude and 

essential differences in background requirements” (p. 153) set the so-called “computer and 

information sciences” apart from other fields. Keenan worked in similar directions when he 

noted that computer science was distinguished from other fields by its distinct “intellectual 

orientation” (1964, p. 206). He more specifically explained that:  

The physicist is interested in the basic thermal or electromagnetic properties of 

the materials; the electrical engineer is interested in the behavior of these as 

components in an electrical circuit; the computer scientists is interested in [the] 

performance of these components in large arrays and their effect on the design of 

information processing equipment to yield greater utility or improved economics 

(p. 206).145 

In summary, these authors were drawing very distinct boundaries between the engineers who 

were interested in the electronic components of computers and the “computer and information 

scientists” who grappled with higher-level matters such as logical design and machine 

organization. To put it another way, they argued that engineers and computer scientists saw very 

different things, even when they were looking at ostensibly the same technologies. Such 

passages hint at the extent to which the establishment of a given disciplinary settlement may 

extend beyond the drawing of epistemological boundaries to include claims about the desirable 

attitudes, methods, and even “culture” of those associated with a given field. In fact, these latter 

claims become particularly important when two or more disciplines maintain overlapping 

interests in a common domain of technology – in this case, computers and information systems. 

Yet even if those working in the new discipline possessed a unique outlook, it was clear 

that much activity in this emergent domain was firmly situated at the intersection of 

                                                
144 In his 1961 article on the “supradiscipline” that he called the “computer-related sciences” or 
“synnoetics,” Fein once again emphasized that the proposed discipline was “a tool for practitioners in 
other disciplines and … a discipline in itself” (1961a, p. 159). Such remarks hint at the author’s intended 
analogy to other fields, such as mathematics. 
145 Keenan’s example was likely influenced by Gorn’s 1963 article, which featured a very similar passage. 
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mathematics, science, and engineering. This posed various challenges as commentators worked 

toward an appropriate name and disciplinary identity for the field. Forsythe, for example, stated 

in 1963 that “Computer Science seems to be about halfway in spirit between Humanities and 

Sciences, and Engineering” (p. 175). More specifically, he explained that concerns about design 

pointed to a location for computer science within engineering, while “the abstract nature of 

computing” suggested a close affiliation with the humanities and sciences in general, and 

mathematics, physics, and philosophy, in particular. And in 1967, Forsythe summarized that 

“computer science is in part a young deductive science, in part a young experimental science, 

and in part a new field of engineering design” (p. 4). Yet despite his acknowledgment of the 

field’s hybrid identity, Forsythe ultimately expressed sympathies with situating computer science 

within university schools of arts and sciences, a point to which I will return. 

Much discussion at the 1967 Stony Brook conference on University Education in 

Computing Science similarly centered on the multifaceted character of “computer science” or 

“computing science.” For instance, Perlis explained that much of the “dilemma” of computer 

science centered on the field’s constitution as “part mathematical science and part mathematical 

engineering” (1968, p. 71). Yet the suggestive title of his talk -- “Computer Science is Neither 

Mathematics nor Electrical Engineering” – made it clear that Perlis viewed the emergent 

discipline as sufficiently distinct and independent from other fields. 

Slamecka offered additional insights on these issues in his presentation at the same 

conference on the topic of “Information Science and Engineering” (1968). As Slamecka 

explained, this field’s engagement with “theories of information” and “information processes” 

aligned it with science, while its concern with information systems linked it to engineering. The 

author therefore concluded that “[t]he structure of the discipline … straddles and units [sic, 

unites] (rather than distinguishes) science and engineering” (p. 90). Slamecka went on to 

describe Information Science and Engineering as the first “metascience” to “concern itself 

actively with the synthesis of the various disciplines of science and engineering” (p. 90). While 

Slamecka’s argument was substantially open to critique, it once more hinted at persistent 

questions about whether such a discipline could find a secure place in the “hidebound” structure 

of the university, where the boundaries between science and engineering were often deeply 

inscribed in the organization of colleges, departments, and degrees. To put it another way, to 
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what extent was it possible to establish and maintain the disciplinary settlement of a field that to 

some extent lived across the boundaries of science and engineering? 

In their passionate defense of computer science published in Science, Newell, Perlis, and 

Simon responded to other points of objection regarding the identity and position of the proposed 

field. For instance, in addressing the critique that “computer science is a branch of electronics (or 

mathematics, psychology, etc.),” the authors admitted that many of the “phenomena of 

computers” were indeed relevant to other sciences. Yet they argued that “all of the phenomena of 

computers are not subsumed under any one existing science” (Newell, Perlis, and Simon, 1967, 

p. 1374). As suggested by such remarks, the authors viewed computer science as a unifying 

discipline for the study of diverse phenomena. They also responded to the claim that “computers 

belong to engineering, not science” by arguing that the computers “belong to both,” and they 

added that “[t]ime will tell what professional specialization is desirable between analysis and 

synthesis, and between the pure study of computers and their application” (p. 1374). However, 

the authors’ preference for framing the emergent field in scientific rather than engineering terms 

was clear, especially in light of both their choice of terminology and major points of argument. 

As my analysis suggests, establishing convincing arguments for the identity and position 

of computer science was viewed as an important factor in building the field’s legitimacy, 

especially in the academic context. Further, many of these arguments spoke to pressing concerns 

about what participants at the 1967 Stony Brook meeting referred to as the “intellectual 

respectability” of the proposed discipline. In 1968, Forsythe quipped that “[i]n a purely 

intellectual sense, such jurisdictional questions are sterile and a waste of time” (p. 455). He was 

forced to admit, however, that these issues were of “great importance” when linked to more 

pragmatic concerns, such as the organization of universities or the administration of research 

grants. And indeed, the following section reveals that discussions about the ideal or preferred 

position of computer science in the midst of science, mathematics, and engineering were 

increasingly overshadowed by its actual location within various institutions, especially from the 

mid-1960s onward. To put it another way, the problem of disciplinary settlement was ultimately 

not addressed via top-down decree, but rather by bottom-up and context-specific processes. 
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Instituting Computer Science – Departments and Programs 

In Slamecka’s view, realizing the new discipline that he called “information science and 

engineering” demanded “a patient and imaginative examination of the fabric of science for the 

purpose of structuring a utilitarian, logically consistent subset of knowledge which can be 

transmitted” (1968, p. 92). As the preceding analysis suggests, many of the proponents of 

computer science were exploring this idealized pathway as they worked to define and position 

the emergent discipline, often in rather abstract terms. It was a task made even more challenging 

by the persistent framing of computer science or information science as mathematical and 

scientific, yet also closely linked to engineering, design, and technology.146 

Slamecka also explained that carefully defining and positioning the discipline in a top-

down manner was crucial in setting the stage for the development of “goal-oriented” educational 

programs. However, he admitted that “the structure of educational programs is not necessarily 

identical with the structure of the discipline” (p. 91). As I document below, this potential schism 

between the ideals and realities of discipline building was abundantly clear by the time of 

Slamecka’s remarks. In fact, I contend that the ongoing proliferation of computer science 

departments and programs through the 1960s lent crucial support to the momentum and 

legitimacy of the discipline, in spite of persistent debates over its definition, position, and 

“intellectual respectability.” 

Tentative calls to institutionalize computer science – or some variation thereof – first 

surfaced in the late 1950s. Wiesner (1958), for example, advocated the establishment of 

university research centers, with his own Communication Sciences Center at MIT as a working 

model. Fein (1959), on the other hand, soon thereafter called for the development of “graduate 

schools of computer sciences,” which in ideal form consisted of multiple departments, 

“integrated” instructional programs, and dedicated faculty members. While clearly ambitious, his 

recommendation strategically placed computer science high in the university structure, thereby 

sidestepping thorny questions about where computer science should be located with respect to 

other, pre-existing schools or departments. As noted in the previous chapter, Fein also pitched 

the idea of establishing departments of computer science to various schools in the early 1950s, 

                                                
146 Using the language developed by Science and Technology Studies scholars, one might view the 
emergence and development of computer science as an important chapter in the history of twentieth-
century “technoscience.” 
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although his proposals were initially met with much skepticism.147 Hence, other actors and 

groups – many with backgrounds in mathematics, as well as close ties to the academy and the 

ACM – largely picked up where Fein left off. 

Saul Gorn stepped forward as another outspoken proponent of academic departments of 

computer science. In his 1963 article on the “Computer and Information Sciences,” he framed 

the issue in historical terms by acknowledging that many mathematics departments and schools 

of engineering were important early sites for computer-oriented research and education. Yet he 

went on to ask: “[C]an such a rapidly growing discipline with clearly different interests and 

requirements continue indefinitely to be carried in an essentially different environment where 

accident has caused it to gestate?” (p. 155). While Gorn’s use of the term “accident” was clearly 

a strategic overstatement, the author used an even more dramatic maternal metaphor to describe 

the discipline’s future prospects: 

Would not the mother discipline of the particular environment eventually have to 

limit the nourishment it can afford to provide to such a growing child if it is not to 

limit its own growth and development? In such a case the new discipline would 

have to be able to fend for itself (p. 155).148 

The author’s message was clear: both mathematics and electrical engineering departments were 

significantly at cross-purposes when it came to promoting computer-related research and 

education. Gorn forecasted the continued expansion of the Computer and Information Sciences, 

especially as the demand for computer-oriented courses and expertise spread into other 

disciplines. He concluded by arguing that this process of growth and development “will, willy-

nilly, have to stabilize, and when it does there will be a completely new department responsible 

for the new discipline” (p. 155).  

Here we find an awareness of the close links between disciplines and departments, at 

least in the American academic structure. And while Gorn faced significant challenges in 

realizing such a department at the University of Pennsylvania – a point to which I will return – 
                                                
147 Some of the difficulty that Fein faced as he worked to realize his vision was likely linked to his status 
as an independent consultant whose background and interests crossed the boundaries of science and 
engineering, the academy and industry, and even the ACM and the IRE. 
148 In a 1963 article, Forsythe similarly described “the birth of a coherent body of technique, which I call 
computer science” (p. 169). While feminist theorists of technology have suggested that creating 
technologies can provide men with surrogate birthing or mothering experiences, the remarks of these 
commentators suggest that this line of argument might be extended to the study of disciplines and 
processes of disciplinary formation. 
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his colleague George Forsythe had better success at Stanford. In fact, Forsythe played a leading 

role in the establishment of a Division of Computer Science within the Mathematics Department 

in 1961, transformed in 1965 into an independent Department of Computer Science, one of the 

first of its kind in the nation (Lee, 1995, p. 314; Knuth, 1972, p. 722). For Forsythe, establishing 

such departments came with many advantages, such as allowing for faculty salary scales that 

were more competitive with industry (Forsythe, 1963, p. 174).149 But even more importantly, he 

explained that such departments provided the necessary freedom to experiment with new 

curricula and degrees (p. 174).  

And while Forsythe also expressed sympathies with situating computer science 

departments within schools of arts of sciences, the aforementioned Stony Brook conference 

revealed wide variations in how computer science was being instituted at different schools. 

According to one workshop report, computer science was variously being realized as a: 

• major within mathematics or electrical engineering; 

• separate department within a college of liberal arts and sciences or a college of 

engineering;  

• separate department spanning colleges;  

• separate department in the graduate school;  

• separate school entirely; or, 

• single unit combined with computer services and reporting to a vice-president or 

provost (Atchison, 1968, p. 171). 

The report went on to explain that the workshop participants largely agreed that computer 

science “is now accepted as a separate academic discipline,” and they explained that this pointed 

toward the establishment of a separate “organizational entity” of some kind (p. 175). And while 

this group failed to reach consensus on what this entity should look like or where it should be 

located, establishing computer science majors within other departments was clearly the least 

desirable of these approaches. The workshop report also indicated that appropriate solutions 

should be worked out on a school-by-school basis, with sensitivity to local conditions. 

                                                
149 Still others suggested that the independence of computer science would allow work in the field to be 
evaluated “on its own terms” (Morse, 1960, p. 521). Along similar lines – and as noted in the previous 
chapter – Forsythe similarly argued around this same time that courses in certain areas of computing 
might be developed more rapidly if the associated instructors were “not judged primarily by the standards 
of any existing department” (1961, p. 180). 



www.manaraa.com

 185 

On the surface, it might seem that these diverse manifestations of computer science at 

different institutions was not a particularly strong selling point for the proposed discipline, and 

1960s-era statistics about the precise number of institutes, schools, or departments of computer 

science are difficult to come by. However, through the 1960s an expanding assortment of 

commentators and analysts were documenting impressive expansions in the number of computer 

science degree programs and options. Forsythe pointed in this direction when he noted in 1963 

that “integrated” programs in computer science had been established in at least a dozen 

universities, although the structure and naming of these varied widely (p. 175).150 And as 

mentioned in the previous chapter, around this same time Tompkins (1963) identified a roughly 

similar number and range of programs. 

A more comprehensive survey of university computing center directors conducted in 

1963 revealed that 28 of 93 responding North American institutions offered some type of 

computer-oriented degree programs, while another 18 were planning such programs (Atchison 

and Hamblen, 1964, p. 226). This report also documented wide variations in the naming and 

institutional location of these programs, and the authors even stated that the “profusion of degree 

programs and names for programs makes it abundantly clear that a precise discipline has not yet 

crystallized” (p. 227). Yet the authors also noted the widespread use of the phrase “computer 

science,” and the survey data indicated that a large majority of respondents preferred this term as 

a moniker for academic programs. Alternatives such as “Information Processing” and 

“Information Science” were rated a distant second and third in popularity.151 A 1965 report 

provided further evidence for these trends by indicating that more than 15 schools were offering 

doctorate degrees in computer-science or related areas, a total of 30 or more schools offered 

                                                
150 More specifically Forsythe pointed to a number of interdepartmental graduate degree programs, 
including “Systems and Communication Sciences” at Carnegie Institute of Technology, the 
aforementioned “Computer and Information Sciences” program at the University of Pennsylvania, and a 
“Communication Science” option at the University of Michigan. Forsythe also indicated that separate 
departments of Numerical Analysis were established at the Universities of Arizona and Wisconsin. At 
still other schools, computer science was linked to divisions of applied mathematics (1963, p. 175). 
151 Given that this particular survey polled university computer center directors – who tended to have both 
closer ties to mathematics departments and stronger sympathies with the emergent field of “computer 
science” – it is not entirely surprising that respondents preferred non-engineering program names. Yet in 
spite of its popularity, the authors complained that the term “computer science” was not ideal: “It is 
certainly true that this term has many shortcomings in appearing to be too machine-oriented but then too 
so does the term Association for Computing Machinery fall far short of describing our professional 
organization” (Atchison and Hamble, 1964, p. 227). 
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master’s degrees, and at least 17 had similar options at the baccalaureate level (ACM C3S, 1965, 

pp. 544-545). 

A report published in 1967 provides additional evidence regarding both the growing 

number of computer-oriented degree programs and the increasing popularity of the “computer 

science” moniker (Hamblen, 1967). For starters, the report estimated that for the 1964-1965 

academic year, about 143 distinct degree programs and options in computer science and related 

areas were offered nationwide at the baccalaureate and graduate levels.152 More than 40% (58 of 

143) of these were specifically dedicated to Computer Science or Information Science, and many 

of these were affiliated with departments of the same name (p. 66). These were impressive 

statistics, especially since the first programs of this type were established just five or so years 

prior. Computer Science options in Mathematics and Electrical Engineering claimed roughly 

another one-third of all programs, with a further respective breakdown of 17% (24 of 143) and 

13% (19 of 143). The remaining programs and options were offered in other departments or as 

interdisciplinary programs, with titles ranging from “Business Data Processing” to “Systems and 

Communication Sciences” (pp. 66-67). 

This same report also offered forecasts for 1968-1969. First, the survey pointed to a rapid 

potential for expansion in the total number of computer science and related programs, which 

were expected to grow from 143 to 226 in the span of just four years (p. 66). Further, dedicated 

Computer Science programs were expected to dominate this trend, with survey data suggesting 

that as many as 166 new computer science degree programs at the undergraduate and graduate 

levels were in active development. The number of computer science and related options in 

electrical engineering, on the other hand, was expected to increase from a total of 19 to just 23, 

while similar options in mathematics were expected to jump from 24 to 36 (p. 66). While these 

data were based only on the planned actions of responding institutions, the trends were 

unmistakable. In fact, these data clearly support the argument that much of the momentum of the 

computer science movement was being driven not by “top-down” definitional efforts, but rather 

by the “bottom-up” development of new academic departments and dedicated degree programs. 

                                                
152 Note that these data represent the total number of separate degree options, not separate schools. Hence, 
a school offering bachelor’s, master’s, and doctoral degrees in computer science would add three to this 
total, not one. Unfortunately, the original report does not provide enough original data for a more fine-
grained analysis. 
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In addition to creating new patterns of disciplinary settlement for computer science, these 

departments and programs helped nurture the field’s image as an independent discipline. 

Instituting Computer Science – Courses and Curricula 

While the growth of computer science departments and programs was a key trend in the 

1960s, I have largely sidestepped the content of the associated curricula. Further, published 

discussions of computer science and related courses and curricula were sparse, especially in the 

late 1950s and early 1960s. This situation started to change rapidly, especially through the efforts 

of the Curriculum Committee on Computer Science, or C3S. Originally established as a 

subcommittee of the ACM’s Education Committee in 1962, the ACM recognized the C3S as an 

independent committee in 1964 under the leadership of mathematician William Atchison 

(Atchison, 1985, p. 328; ACM C3S, 1968, p. 152).153  

While the early activities of the C3S were primarily centered on organizing panel sessions 

at conferences and meetings, the growing prominence of this group was reflected in the April 

1964 issue of the CACM, which featured a series of eight short articles on the topic of “Computer 

Science Curriculum.” In addition to the aforementioned background piece by Keenan and survey 

article by Atchison and Hamblin, six of the papers in the special issue presented detailed 

descriptions of various courses that “could form a basis for a computer science curriculum” 

(“Computer Science Curriculum,” 1964). And while a comprehensive review of this set of 

papers is beyond the scope of my analysis, a brief juxtaposition of two of these pieces provides 

important insights regarding the ways in which different actors approached the development of 

computer-oriented educational programs.  

The two papers in question were focused on the development of a series of courses in the 

area of logic, which has long been viewed as a foundational topic for large swaths of work in the 

computer field. In fact, it was clear by the 1960s that most computer-oriented educational 

programs at the baccalaureate and graduate levels should provide students with some familiarity 

with this subject. In outlining a series of logic courses for what he called “the computer 

sciences,” Purdue mathematician Robert R. Korfhage took a mathematical and theoretical 
                                                
153 Atchison held a Ph.D. in mathematics from the University of Illinois, and from 1955 to 1966 he was 
affiliated with the Georgia Institute of Technology. His roles at Georgia included head of the school’s 
computer center, acting director of the School of Information Science, and professor of Information 
Science. In 1966 he became the director of the University of Maryland’s Computer Science Center (Lee, 
1995, pp. 46-48).  
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approach to the topic (1964). His proposed four-course sequence started with Introduction to 

Logic and Algorithms, followed by Logical Design, Mathematical Logic, and Computability and 

Algorithms. As suggested by these titles, the author’s proposed content for three of the four 

courses was primarily oriented toward mathematics and algorithms, while computer design 

topics were bracketed off in the separate Logical Design course that the author largely failed to 

describe. In fact, he even argued that teaching the “exact physical form” of computer logic 

elements was best left to the departments that had the requisite expertise in electronics and 

physics (p. 216). 

By contrast, David E. Muller of the University of Illinois-Urbana wrote on “The Place of 

Logical Design and Switching Theory in the Computer Curriculum” (1964). In his four-course 

sequence, Muller emphasized topics such as computer organization, switching theory, logical 

design, and system design. The author’s proposal also avoided the term “computer science,” and 

it largely framed mathematical logic as a prerequisite topic that was applied and extended in the 

proposed course series. As nicely summarized by reviewer Harvey L. Garner of the University of 

Michigan, “[t]he courses presented by Prof. Muller form an excellent and well-organized 

sequence which places logical design and switching theory in the context of digital computer 

engineering” (Garner, 1964, p. 224, my emphasis). However, Garner complained that some of 

the more important topics highlighted by Muller – such as switching theory and automata theory 

– were too deeply buried in a program ostensibly dedicated to “digital computer engineering.”  

While perhaps a fair critique, Garner’s comments hinted at the conflicts of “intellectual 

orientation” that divided the more machine- and engineering-oriented proponents of computer 

education from those who took mathematics, algorithms, or even information as the field’s 

common denominator. This schism was also evident in a special panel presentation on 

“Computer Science Curriculum.” Held at the ACM’s national conference in early 1964, the 

panelists discussed programs that were proposed or getting underway at the University of 

Maryland, Purdue, and Case Institute of Technology. The Computer Sciences program at Purdue 

stood at one end of the spectrum of possibilities given that it was described as “heavily 

mathematically oriented” – perhaps not surprising since that school’s newly formed Department 

of Computer Science was located within a Division of Mathematical Sciences (Conte, 1964).154 

                                                
154 As explained in the program description, “Computer Sciences as a discipline is more closely related in 
methodology and philosophy to mathematics than to any other discipline. This belief is strengthened by 
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A group at Maryland, on the other hand, was developing a more middle-of-the-road “Computer 

Sciences” program that was largely based on mathematical foundations and focused on 

algorithms (Schweppe, 1964). However, this program did allow students to select distinct 

mathematics, physics, or electronics tracks, and the authors noted that electrical engineers had 

contributed to the development of the program (p. L1.1-2). 

The program at Case, on the other hand, tilted strongly toward the engineering end of the 

spectrum. As indicated in a summary description authored by mathematics professor Richard 

Varga (1964), early efforts to develop computer-oriented courses and programs within the 

school’s mathematics department were problematic because they demanded that students be 

trained as mathematicians. The author therefore argued that “the activities of the computer 

technologist at the undergraduate level are far more closely related to, and have more in common 

with, the training of engineers” (p. L1.3-1). Emphasizing the value of taking a systems-oriented 

approach to educating future computer experts, the report described a program that coupled an 

engineering core curriculum with two program options, one dedicated to “computer engineering” 

and the other to “numerical methods and programming” (p. L1.3-1). This was one of the first 

programs of its type to offer an option that was explicitly termed “computer engineering.”155  

As the development of computer science and related curricula gained momentum in 

subsequent years, the engineering-oriented curricula presented by Muller and Varga increasingly 

looked like an exception in an expanding sea of actual and proposed programs, many of which 

were oriented toward mathematics and theory. In another article in the same issue of the CACM, 

for example, Forsythe provided a partial sketch of an “An Undergraduate Curriculum in 

Numerical Analysis” (1964a) that was largely focused on mathematics and programming. And in 

1964, the Committee on the Undergraduate Program in Mathematics (CUPM) of the 

Mathematical Association of America (MAA) published a short report titled “Recommendations 

on the Undergraduate Mathematics Program for Work in Computing” (Committee on the 

Undergraduate Program in Mathematics, 1964). Authored largely by mathematics professors – 

including notable figures such as Berkeley’s A. H. Taub –  the report insisted that “responsibility 

for research and training in Computer Science should be closely linked to mathematics” (p. 2). 

                                                                                                                                                       
the clear evidence that the leaders in research and development in computing today were largely trained 
as mathematicians” (Conte, 1964, p. L1.2-1). 
155 As outlined in the report description, students pursuing the computer engineering pathway took 
courses on electronic circuits, circuit analysis, and digital computer design (Varga, 1964, p. L1.3-1). 
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Perhaps not surprisingly, the courses and curriculum outlined in the report were mathematically 

oriented, and the authors explicitly argued that computer science researchers “must think like 

mathematicians” (p. 2). 

The ongoing movement of computer science away from the domain of engineering and 

“hardware” was also evident in a 1965 report by the ACM C3S titled “An Undergraduate 

Program in Computer Science – Preliminary Recommendations” (ACM C3S, 1965). As noted 

above, the authors of this report were significantly concerned with defining the field, yet they 

also noted “the fact that computer science is now a distinct academic discipline is demonstrated 

by the rapidly increasing number of colleges and universities which have established 

departments of computer science” (p. 544). Much of the report was dedicated to describing 

sixteen courses leading to a proposed undergraduate computer science degree. In most general 

terms, the curriculum was oriented toward algorithms, programming, and mathematics, although 

topics such as computer organization, logic design, and switching theory were included to 

varying extents. The report also noted that an “electronics” option might be offered to students, 

yet the authors bracketed off a course on electronics as one of many optional electives for 

computer science majors. In an important sense, reports such as this one provided a partial 

description of – and prescription for – the disciplinary settlement of computer science. 

Another notable development in the educational arena was the aforementioned 1967 

Stony Brook conference, where numerous presentations and workshops were focused on 

discussing the development graduate-level degree programs in computer science and related 

areas. But even more important was the subsequent publication of the C3S’s influential 

Curriculum 68 report (ACM C3S, 1968). In contrast to both the committee’s earlier 

recommendations and the dominant tone of the Stony Brook conference, the report explained 

that debates over the existence of “computer science” were being replaced by discussions about 

“what this discipline should be called and what it should include” (p. 153). And with regard to 

implementing computer science degree programs, the authors stressed the importance of 

establishing “independent academic units” and involving dedicated faculty “who consider 

themselves computer scientists” (pp. 166-167). Such statements once again pointed to the 

recognized strategic importance of establishing both a distinct identity for computer scientists 

and an independent institutional niche for the new field.  
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Curriculum 68 also provided detailed recommendations for computer science programs 

and curricula, and these were largely organized around three major subject areas, namely 

information structures and processes, information processing and systems, and methodologies. 

The “mathematical sciences” and “physical and information sciences” were also mentioned, but 

only as subjects of potential relevance. The report included detailed descriptions and outlines for 

22 specific courses, as well as overall curricular recommendations at the undergraduate and 

graduate levels. And as Ceruzzi (1989) has noted, the report dispensed with “hardware” courses 

almost completely, preferring instead “an algorithmic approach and an emphasis on language 

and data structures” (p. 268).  

And while perhaps the authors of the report probably did not fully realize it at the time, 

the publication of Curriculum 68 was the outcome of a decade-long discipline-building project. 

Setting aside questions about the preferred definition and position of computer science, the report 

pointed the way toward the continued expansion of the field through ongoing, bottom-up efforts 

to develop courses and curricula. The importance of this report for the development of computer 

science has been widely recognized by commentators. Yet skeptics and critics continued to raise 

potent questions about the discipline-building project of computer science through the 1960s and 

beyond, even as the proliferation of computer science departments and programs served as a 

potent demonstration of the field’s impressive institutional success. In fact, the following section 

turns to the efforts of a growing band of electrical engineers, whose alternative vision for 

computer science and its associated educational programs started to gain traction in the latter part 

of the 1960s. Yet on the whole, engineering educators reacted rather slowly to the emergence of 

computer science. And when they finally did respond, it was increasingly evident that their 

agenda was based on a partially distinct image of disciplinarity. 



www.manaraa.com

 192 

Segue – On the Boundaries of Computer Science and Engineering 

In the preceding section, I examined how various actors and groups coalesced around the 

discipline building of project of “computer science.” But as IBM’s Frank Beckman noted at the 

1967 Stony Brook conference, the “enormous range of intellectual activity in computing” tended 

to raise skepticism about such an effort, especially among those who were unfamiliar with the 

computer field (Beckman, 1968, p. 45). Yet even insiders expressed concerns about the identity 

and position of computer science. Stanley Gill of Imperial College (UK), for instance, noted at 

the same 1967 meeting that computer science remained somewhat short on theory (Gill, 1968). 

He therefore indicated that “information engineering” was probably a more appropriate 

descriptor for the field, and he explained that the appeal of the term “computer science” was 

likely linked to both the “glamour” of the word “science” and the less desirable popular 

association of engineering with “hardware” (p. 117). And while Gill implicitly lent support to the 

science-engineering divide by framing information engineers as “practitioners” and computer 

scientists as “theoreticians,” he echoed commentators such as Perlis when he argued that 

computer science was neither a branch of electrical engineering nor mathematics.156 In fact, he 

asserted that computer science should be viewed as a “new profession, based on a new 

discipline” (p. 121). As I discuss in more detail below, this conception of the field clearly 

bounded it off from other professions, most notably engineering. 

Anthony Oettinger is another important actor in this story, and one might initially suspect 

that he favored the development of an independent discipline of computer science. After all, he 

followed Forsythe as the President of the ACM from 1966 to 1968, and he held the title of 

Professor of Linguistics and Applied Mathematics at Harvard University. Yet in addition to 

boasting a Ph.D. in Applied Mathematics from Harvard, Oettinger held an A.B. in Engineering 

Sciences and Applied Physics from the same school, and he was a senior member of the IEEE 

                                                
156 Gill even stated that the central importance of algorithms in computer science provided the field with 
“more internal coherence than electrical engineering” (Gill, 1968, p. 120). He also emphasized that 
computer science was no more of a “hotch-potch” than electrical engineering, and he snidely added: 
“Well, if electrical engineering is looking for a place in the sun, I wish it luck. But don’t let it mess up 
computer science in the process” (p. 120). These comments were largely a retort to a talk by electrical 
engineering Lotfi Zadeh, who I discuss in substantial detail below. 
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(“Anthony Oettinger’s Home Page,” 1998).157 Like many before him, Oettinger’s status as a 

“hybrid” actor provided him with a unique outlook that potentially put him at odds with some of 

his peers. In fact, Oettinger acknowledged in a 1967 talk that “the views I hold personally and 

some of the views that I feel that I ought to express, say in my official capacity as president of 

the ACM, are not always the same” (1968a, p. 27). Given such tensions, many of Oettinger’s 

views on the emergence of computer science were deeply ambivalent, yet also very insightful. 

Oettinger’s concerns about the field of “computer science” were evident early in his 

Presidential tenure. In a 1966 letter to the ACM membership, for example, he noted that there 

were “weaknesses in the position of computer and information science as a new discipline” 

(1966b, p. 838). He more specifically pointed to a lack of “reliable descriptive data concerning 

the scope of computer science, education, and industry” (p. 838), and he identified a series of 

criticisms about the perceived value and necessity of establishing associated departments and 

educational programs. Paraphrasing what he described as a persistent “misconception,” Oettinger 

added that “[c]omputer science is not a coherent intellectual discipline but rather a heterogeneous 

collection of bits and pieces from other disciplines” (p. 839). He went on to urge those 

sympathetic with the field to bolster its position by carefully identifying and describing its 

unifying themes and core subject matter. 

Yet it was increasingly clear that Oettinger was not willing to participate in such a 

project. In fact, he delivered two talks in 1967 that revealed his ambivalence toward computer 

science. To begin with, he complained that the term “computer science” was something of a 

misnomer. “At the very least,” he explained, “the title should be Computer Scientist and 

Engineer” (1968, p. 28, author’s emphasis). In line with this remark, Oettinger spent 

considerable time discussing how “computing” was related to mathematics, science, and 

engineering. For example, he argued in a 1967 talk that the field was a science only to the extent 

that mathematics was a science (p. 604). And elsewhere, he noted that adopting a scientific 

identity for a large segment of the computer field was often linked to concerns about 

respectability and status, even though “much of what we do and a great deal more of what we 

should be doing and encouraging our students to do is, in fact, the practice of a brand of 

engineering” (1968, p. 28). As suggested by Oettinger’s remarks, the proponents of computer 
                                                
157 In fact, a biographical sketch of Oettinger that was published in 1966 indicated that he was a member 
of the IEEE since 1947, but it is not clear whether he was a member of the AIEE and/or the IRE before 
the two groups merged (Oettinger, 1966a). 
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science generally preferred to adopt a scientific rather than engineering identity. This was not 

entirely surprising, given that many of these actors had backgrounds or academic appointments 

in mathematics or the physical sciences. Further, the cultural cachet of science was significantly 

higher than that of engineering, especially by the 1960s, while the formative image of computer 

science as an independent field made it look more like an aspiring scientific discipline rather 

than a branch of the engineering profession. 

However, Oettinger nonetheless insisted on framing the computing field as a broad 

spectrum of activity, with mathematics and engineering largely defining its poles. “Whatever it 

[computer science] is,” Oettinger explained, “on the one hand it has components of the purest of 

mathematics and on the other hand of the dirtiest of engineering” (1967, p. 605). Touching on 

similar themes in another talk, he worked to put a positive spin on this characterization: 

We, as a profession, as a group, happen to have been born at the time when, in 

many other areas, science and technology have just become fused. And so, rather 

than bemoaning the view that somehow we are neither fish nor fowl and thereby 

befoul the purities of science with the dirt of engineering and contaminate healthy 

robust engineering with pallid theoretical considerations, we should think of 

ourselves as the vanguard of the new outlook (1968, p. 34). 

Such remarks paralleled the remarks of commentators such as Slamecka, who described 

“information science and engineering” as a “metascience” that united science and engineering. 

Yet as suggested by Oettinger’s clever characterization, significant social, intellectual, and even 

cultural barriers stood in the way of realizing this ambitious vision for a combined field of 

computer science and engineering. 

Oettinger further parted ways with many of his colleagues by once again questioning the 

value of establishing departments of computer science. In fact, he argued that the ongoing 

proliferation of such departments was largely the result of disciplinary politics and “rebellion.”158 

As Oettinger explained: 

[I]n most universities computer people have had to rebel. They have had to rebel 

against archaic engineering schools that have just barely forgotten rotating 

                                                
158 Somewhat ironically, Finerman noted at the 1967 Stony Brook conference that many of the objections 
put forward by skeptics of computer science resulted from “political rather than intellectual factors” 
(1968, p. 196). As suggested by the remarks of Oettinger and Finerman, complaints about “political” 
motivations came from all sides of this story. 
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machinery and maybe will tolerate a transistor or an integrated circuit but that 

certainly do not see that a machine … needs software to run. They have also had 

to get out of the clutches of mathematics departments that regard anything that is 

not completely pure, rigorous, and formal as some form of depravity (1967, p. 

606). 

As suggested by such remarks, the rebellion described by Oettinger came with many potentially 

negative consequences. More specifically, it was cutting off the field’s abstract roots in 

mathematics, as well as its more pragmatic connections with physical machines, design methods, 

and pragmatic engineering criteria. 

Further, Oettinger suggested that engineering departments were losing a rapidly growing 

sub-branch of engineering, while mathematics departments were losing the many students who 

were forced to seek computer-oriented degrees elsewhere. The larger message was clear: the 

secession of computer science was a negative development for all of the involved disciplines. 

Further, Oettinger suggested that working to redress this fragmentation might point toward better 

computer technologies, especially by both improving the “complementarity” of hardware and 

software development and linking design with intended applications (1967). However, the author 

placed particular emphasis on the value of an engineering outlook, and he enthusiastically 

praised the emergence of the concept of “software engineering.”159 Oettinger also argued that 

large, complex programming projects were best viewed as “major engineering problems” (1967, 

p. 606), and elsewhere he noted that engineering should be making moves into the domain 

known as computer science.  

Oettinger’s views were bold, especially given that he was delivering them to audiences 

that were primarily comprised of mathematicians and self-identified computer scientists. Yet 

despite his numerous insights and artful presentation, Oettinger’s ambivalence limited his ability 

– and probably also his inclination – to effect change. In pragmatic terms, he concluded: “I am 

forced to split my mind and say that it is an intellectual mistake to have departments of computer 

science, while I believe there is no real tactical alternative to having them” (1968, p. 28). Yet in 

somewhat more idealistic terms, he argued that computer people should work to “infiltrate both 

                                                
159 This was one of the first times that the term “software engineering” appeared in publication. Just a few 
months prior, an employment ad from the Foxboro company sought “software engineers” (Foxboro, 
1967). As I discuss in more detail below, software engineering emerged as an increasingly important site 
of negotiation for the overlapping interests of computer scientists and engineers, especially in the 1970s. 
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departments [of mathematics and electrical engineering] and take them over. From a dreamy 

missionary point of view, that’s the goal. Meanwhile, we are lucky if we survive in their 

presence” (p. 35). In the end, however, it was clear that Oettinger – suspended as he was between 

the ideal and the actual – was largely content to “watch from the sidelines” (p. 34).  

In subsequent years, other prominent actors such as Richard W. Hamming raised similar 

concerns. A mathematician, Bell Labs researchers, and former ACM President, Hamming was a 

well-known figure in the computer field by the late 1960s. In fact, he received the ACM’s 

prestigious Turing Award in 1968, and he devoted much of his award lecture to arguing that 

“more than the usual engineering flavor be given to computer science” (1969, p. 3).160 Building 

this argument, Hamming made an “arbitrary distinction” between science and engineering by 

indicating that the former was focused on “what is possible,” while the latter was concerned with 

“choosing, from among the many possible ways, one that meets a number of often poorly stated 

economic and practical objectives” (p. 5, author’s emphasis). Following this line of reasoning, he 

suggested that “computer engineering” was probably a more accurate label for the field than 

“computer science,” although he cautioned that he was not advocating such a name change (p. 

5). However, Hamming followed Oettinger by promoting the view that “training in software be 

given a more practical, engineering flavor” (p. 10). He also critiqued computer science and its 

educational program for being too strongly oriented toward mathematics. 

In an important sense, commentators such as Oettinger and Hamming were developing 

critiques of computer science that were primarily aimed at the field’s insiders. In fact, many of 

their views were outlined in ACM publications, which was increasingly a de facto locus of 

activity for the proponents of both computer science generally and computer science education 

specifically. But in calling for the injection of more engineering flavor into computer science, 

these authors were ultimately either ambivalent or undecided about the position of computer 

science in a larger disciplinary milieu. Further, they seemed to lack an awareness of the partially 

distinct images of disciplinarity that tended to prevail in science versus engineering. 

A growing cadre of electrical engineers, on the other hand, entered this debate beginning 

in the mid 1960s. And in contrast to Oettinger’s idealistic suggestion that computer people 

should “infiltrate” electrical engineering and take it over, these engineers were working to 
                                                
160 In the same year that he won the ACM’s Turing Award, Hamming was honored as an IEEE Fellow. 
These honors hint at the extent to which Hamming’s work crossed the boundaries between mathematics, 
science, and engineering. 
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transform their own field from the inside out. In fact, they initially asserted that they had both a 

historical right and a contemporary responsibility to develop computer-oriented programs and 

courses, including in the domain of “computer science.” And perhaps not surprisingly, the 

contentious nature of these types of claims led these actors to make key adjustments in their 

agendas and strategies. 
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Part II – Shifting Disciplinary Images: From Computer Science to Computer Engineering in 

Electrical Engineering 

Bringing Computer Science Into the Fold: Lotfi Zadeh at Berkeley and Beyond 

As discussed in Chapter 2, in a 1950 article Lotfi Zadeh urged his electrical engineering 

colleagues to develop the necessary mathematical and theoretical expertise so that they could 

take leadership roles in the design of electronic computing devices, or “thinking machines.” Yet 

for more than a decade after this piece was published, Zadeh offered little in the way of follow-

up commentary regarding the position of electrical engineers relative to computers and 

computing. Indeed, he was likely occupied with his intense research and teaching activities at 

Columbia University, which led to his rapid ascension to full professor in 1957. His career 

trajectory took another important turn in 1959, when he was lured to UC Berkeley’s esteemed 

Department of Electrical Engineering (McNeill and Freiberger, 1993, p. 22). After taking over as 

chair of the department in 1963, Zadeh’s work started to move in a number of important 

directions. In terms of research, his interests in decision analysis and system theory led him to 

establish important foundations for the field now known as “fuzzy logic” or “fuzzy theory.”161 In 

fact, this particular area of research remains one of Zadeh’s main claims to historical fame. 

But as a department head, Zadeh also found himself surrounded by debates about both 

the future of electrical engineering education and the rise of “the computer sciences.” Some of 

the first evidence for Zadeh’s engagement with these issues can be traced to changes in his own 

academic unit. In 1964, for example, a new electrical engineering curriculum was adopted at 

Berkeley that offered undergraduate students four distinct program options: Computer Science; 

Electronics, Fields, and Plasmas; Systems, Information, and Control; and General Electrical 

Engineering (Zadeh, 1967, p. 9). By 1965 the name of the department was changed from 

Electrical Engineering to Electrical Engineering and Computer Science (EECS), and in a 1967 

                                                
161 A 1965 article by Zadeh titled “Fuzzy Sets” helped establish him as a “founder” in the emerging field 
of fuzzy logic (Zadeh, 1965a). For a biography of Zadeh that is largely focused on this aspect of his 
career, see McNeill and Freiberger (1993). Seising (2005), on the other hand, provides a nice overview of 
the historical development of Zadeh’s work in area of fuzzy logic, emphasizing “that the genesis of fuzzy 
sets is not a story of basic research in set theory or symbolic logic or philosophy of mathematics but it is a 
story of fundamental research of a mathematical oriented electrical engineer and system theorist” (p. 5). 
Seising’s characterization of Zadeh as a mathematicially-oriented engineer also helps explain Zadeh’s 
strong feelings about the close relation of computing and engineering. 
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presentation Zadeh boasted that total student enrollment in the department’s computer science 

courses had risen from 150 in 1963-64 to more than 1900 in 1966-67 (Karp, 2004, para. 3; 

Zadeh, 1967, p. 10). While these developments suggested that Zadeh and his colleagues were 

working to somehow meld computer science and electrical engineering at Berkeley, more details 

regarding Zadeh’s agenda and outlook can be gleaned from his writings during this time period. 

The first article of relevance was published in both the IEEE International Convention 

Record and the IEEE Transactions on Education (Zadeh, 1965b; 1965c). Titled “Electrical 

Engineering at the Crossroads,” it called on electrical engineers to stake out large swaths of the 

computer field as their own. Zadeh started by explaining that the “health and vitality” of 

electrical engineering was threatened by a number of pressing challenges. More specifically, he 

indicated that “[b]y far the most serious of these problems centers on the relationship between 

computer sciences and electrical engineering” (1965c, p. 30). After emphasizing the key role 

played by electrical engineers in the history of computing, the author indicated that electrical 

engineering departments were responding slowly to rapidly expanding computer use, rising 

demand for computer scientists and engineers, and the rise of the “computer sciences” (pp. 30-

31).162 Given these trends, the article indicated that many campuses were facing strong pressure 

to establish computer science programs and departments.163 

In order to respond to such pressures, Zadeh proposed that the field of electrical 

engineering should bring “the development of computer sciences within its fold” (p. 31). Shoring 

up this argument, he added that electrical engineering both engaged with many topics relevant to 

the computer sciences and also had valuable resources to offer, such as manpower and facilities. 

                                                
162 In historical terms, Zadeh discussed how electrical engineers were pivotal in the early development of 
machine computation, including at the University of Pennsylvania and MIT. He also noted that a number 
of forward-looking electrical engineering departments at the University of Michigan, Carnegie Tech, and 
the University of Pennsylvania had set up special interdisciplinary curricula in communication and 
computer sciences. Putting forward a rather machine-centric view of the field, Zadeh added: “Historically, 
the technology of machine computation has been and still is largely within the province of electrical 
engineering, since large scale machine computers are primarily electronic devices” (1965cm p. 30). In 
this same article, Zadeh also noted that electrical engineers far outnumbered mathematicians in both the 
ACM and IEEE Computer Group (p. 31). The accuracy of this particular claim is not clear. 
163 Zadeh pointed to the aforementioned 1964 CUPM report as evidence for these pressures, although he 
steadfastly resisted the report’s assertion that the field of computer science should retain close academic 
ties to mathematics. As Zadeh explained, many of the subjects typically associated with computer science 
were frequently offered by electrical engineering rather than mathematics departments (1965c, pp. 30-31). 
More specifically, he asserted that five of the eight elective areas identified in the CUPM report actually 
fell within the province of electrical engineering. 
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Zadeh also expressed considerable anxiety regarding the possible failure of such an agenda, and 

he explained that ongoing efforts to establish independent computer science departments “would 

be disastrous for electrical engineering in the long run, and would not necessarily be in the best 

interests of computer science” (p. 31). The author therefore concluded that “electrical 

engineering departments can provide a home for computer sciences within their domain and thus 

assume a leading role in the vital and rapidly growing field of engineering and scientific activity” 

(p. 33). Per Zadeh, bringing computer science into electrical engineering was an advantageous 

proposition for both fields.  

Yet the article also acknowledged that this process would likely change the identity and 

orientation of electrical engineering. In fact, Zadeh tentatively argued that it was time to abandon 

the view of electrical engineering as a “single unified field of engineering,” and he supported this 

claim by describing how Berkeley’s EE curriculum had been split into four distinct “programs” 

(pp. 31-33).164 Zadeh went on to boldy suggest that the term “electrical engineering” might be 

replaced by a new name that emphasized the orientation of the field toward electronics and 

information processing (1965b, p. 50; 1965c, p. 33). Many of his suggestions also replaced the 

term “engineering” with “science.” 165 In addition to arguing that an alternate name would more 

accurately reflect the contemporary image and span of the field, he claimed that it would help 

“retain the vitality which it still has but is in danger of losing through inaction and lack of 

foresight” (1965c, p. 33). As suggested by this overview, Zadeh’s agenda potentially put him at 

odds with many actors and groups, including both the proponents of separate computer science 

departments and other factions of the electrical engineering field.  

                                                
164 In the same journal issue, engineer Robert M. Saunders of the University of California Irvine followed 
a similar line of reasoning when he indicated that “electrical engineering as a separate and distinct 
discipline may not exist in 1975” (1965, p. 33). Yet in contrast to Zadeh – who emphasized the links 
between electrical engineering, electronics, and the computer and information sciences – Saunders noted 
that future electrical engineering faculties might be clustered in areas such as engineering science, 
materials engineering, guidance and control, and applied physics (pp. 33-34). While perhaps overstated, 
these authors’ remarks revealed that the ongoing transformation of electrical engineering was highly 
probable, especially in the midst of ongoing changes in the technological and disciplinary landscape. 
165 The names proposed by the author included: Electronic and Information Sciences; Electronic and 
Information Engineering; Electronic Engineering and Information Sciences; Electronic, Systems, and 
Communication Sciences; and Electronic, Control and Information Sciences (1965b, p. 50). These 
suggestions reveal that Zadeh was unsure of whether to frame the field as linked to engineering, science, 
or some combination of the two. It is also worth noting that the author favored terms such as 
“information” over popular alternatives such as “computers” or “computing.” 
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In fact, Zadeh’s reputation clearly preceded him when he addressed these and other issues 

at the aforementioned Stony Brook conference in 1967 (Zadeh, 1968a). In a talk titled “The 

Dilemma of Computer Sciences,” Zadeh started by suggesting that one of the conference chairs 

had introduced him to the audience as a “progressive conservative” (p. 61). He also went on to 

acknowledge that “[p]robably most of you anticipate that I will take a militant stand in favor of 

developing computer sciences within electrical engineering departments, rather than within 

separate computer science departments” (p. 61). As suggested by these remarks, Zadeh was 

viewed by many as progressive with respect to reforming electrical engineering education, yet 

conservative because it was assumed that he opposed the establishment of independent 

departments of computer science.  

To be sure, Zadeh was in a difficult position. Yet the politically savvy Zadeh responded 

to the conference chair’s characterization by indicating “there is no universal answer to the 

question of what is the best organizational structure for instruction and research in computer 

sciences in an academic environment” (p. 61). Yet Zadeh was willing to speak about the 

disciplinary position of computer science in more abstract and generalized terms, and he placed 

particular emphasis on discussing how the emergent field was related to both mathematics and 

electrical engineering. With regard to the former, he followed prior commentators such as Gorn 

and Keenan when he noted that the close relationship between mathematics and computer 

science stemmed largely from “the intrinsically abstract nature of the mental attitudes of the 

computer scientist and his lack of preoccupation with the physical aspects of signals and 

systems” (p. 63). 

Turning to the relation of computer science and electrical engineering, Zadeh reiterated 

an important historical claim: “[E]lectrical engineering, by virtue of its long standing and deep 

involvement in information processing technology, has vital concern not only with the use but, 

more important, with the conception, design and construction of digital computers” (p. 64). He 

went on to identify a number of specific subjects and topics that were related to both electrical 

engineering and computer technology, and he noted that jurisdictional conflicts over computer 

science were significantly linked to overlapping concerns in the area of “information processing” 

(p. 64). And while he repeatedly emphasized that there was no “single formula” or “universal 

answer” to such conflicts, he emphasized that electrical engineering departments had a 

“responsibility” for providing their students with training in “digital information processing and 
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the computer sciences,” especially in light of growing industry demand for expert workers in 

these areas (p. 66). This was an important line of argument, as it helped frame the efforts of 

electrical engineers as motivated by historical precedent and professional responsibilities, rather 

than by ill-defined or misguided “political” motivations.  

Toward the end of his talk, Zadeh also delivered a concise summary of his agenda for 

electrical engineering departments:  

 [E]ither by themselves or in cooperation with computer science departments, 

electrical engineering departments should be offering broad programs in computer 

sciences and information systems, covering such areas as hardware, logical design 

and machine organization, programming languages, automata theory, formal 

languages and artificial intelligence (p. 66).  

In essence, Zadeh was tentatively mapping out a disciplinary settlement for electrical 

engineering departments in the domain of computing. He also went on to emphasize that 

affiliated educational programs should be oriented toward the needs of “information systems 

designers rather than users,” and he added that gaining competence in computer science should 

be a ready possibility for electrical engineering students. Even more generally, Zadeh claimed 

that it was essential for electrical engineering and computer science departments to “learn to live 

with one another” and work as “partners” in the training of computer scientists and engineers (p. 

66). He concluded his talk by noting that training for tens of thousands of computer scientists 

and engineers was needed in subsequent years, which suggested that there was plenty of demand 

to support a variety of computer-oriented educational programs, no matter their institutional or 

disciplinary location. Hence, Zadeh’s claims suggested that computer science and electrical 

engineering might successfully coexist in the context of the academy, even in the midst of their 

overlapping and interpenetrating settlements in the domains of computing theory and computer 

technology. And indeed, disciplinary theorists such as Abbott have convincingly argued that this 

type of outcome is not only possible, but also quite common. 

In summary, some of the earliest efforts to stake out large swaths of computing as a 

province of engineering can be traced back to the early and mid-1950s. Zadeh’s remarks provide 

evidence for a revitalization of this movement that was both prompted by the rise of computer 

science and principally focused on the academic sphere. Below, I discuss how this movement 

expanded from the mid 1960s onward. Before doing so, however, it is worth reviewing a 1968 
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paper by Zadeh that reveals some of the key challenges and tensions that came with trying to 

bring computer science into electrical engineering. More specifically, my analysis suggests that 

engineers such as Zadeh were working with an image of computer science that substantially 

differed from how the discipline was viewed by mathematicians and computer scientists. 

 

 

Table 5.1 – Containment Table for Computer Science 
(Zadeh, 1968b, p. 913) 

Subject 

Degree of 
Containment 
in CS 

Programming languages 
Computer design and organization 
Data Structures 
Models of computation 
Operating systems 
Programming systems 
Formal languages and grammars 
Computational linguistics 
Automata theory 
Finite-state systems 
Theory of algorithms 
Discrete mathematics 
Mathematical logic 
Combinatorics and graph theory 
Dynamic programming 
Mathematical programming 
Numerical methods 
Switching theory 
Analog and hybrid computers 
Computer graphics 
Digital devices and circuits 
Artificial intelligence and heuristic programming 
Information retrieval 
Information theory and coding 
Pattern recognition and learning systems 

1 
1 
1 
1 
1 
1 
0.9 
0.8 
0.8 
0.8 
0.9 
0.8 
0.6 
0.8 
0.7 
0.7 
0.8 
0.8 
0.7 
0.7 
0.7 
0.9 
0.7 
0.6 
0.6 



www.manaraa.com

 204 

Engineering Images of Computer Science: Discipline, Department, and/or Program? 

Zadeh authored a follow-up article in 1968 that revisited and expanded on many of the 

issues raised in his prior writings (Zadeh, 1968b). Suggestively titled “Computer Science as a 

Discipline” and published in the Journal of Engineering Education, this particular piece also 

provides evidence for how Zadeh’s participation in the discipline-building project of computer 

science was inflected by his own background and interests. Noting ongoing disagreements over 

the definition of computer science, Zadeh explicitly agreed with the efforts of the ACM C3S to 

frame the proposed discipline of computer science as largely concerned with “information” (p. 

913). Yet he indicated that these types of generalizations failed to adequately delineate the field’s 

boundaries. He therefore used his own concept of “fuzzy sets” to develop a “containment table” 

for the major subjects of computer science, as shown in Table 5.1.166  

The author’s unique approach leads us to a number of important insights. To begin with, 

his list of major subject areas did not depart significantly from the courses and topics identified 

and described in the ACM’s preliminary curricular recommendations, suggesting that Zadeh’s 

understanding of the general scope of computer science was not all that radical or controversial. 

Yet unlike many other commentators, Zadeh developed a more “bottom-up” characterization of 

the field that was based on identifying a large number of more specific and well-established 

constituent subject areas.167 Unlike many of the aforementioned attempts to define computer 

science in a top-down manner, this “fuzzy” approach nicely resonates with a more settlement-

based model of discipline formation and development, where a given field may have associations 

of varying strength with a wide-range of epistemological and technological domains. 

Yet in addition to providing summary descriptions for each of the subject areas listed in 

this containment table, Zadeh identified and discussed a related series of controversial questions: 

Is computer science a discipline?  

Is it a branch of science or engineering?  

What is its relation to mathematics?  

                                                
166 As Zadeh explained, “[L]et us regard computer science as a name for a fuzzy set of subjects and 
attempt to concretize its meaning by associating with various subjects their respective degrees of 
containment (ranging from 0 to 1) in the fuzzy set of computer science” (1968b, p. 913). He also noted 
that the numerical values listed in the containment table were only “rough measures of inclusion, with no 
claims to universality or long-term validity” (p. 914). 
167 This approach also conveniently allowed Zadeh to introduce and promote his theoretical apparatus of 
“fuzzy sets” to an audience comprised largely of engineers and engineering educators. 
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What is its relation to electrical engineering?  

Should the instruction and research in computer science be centered in an independent 

academic unit or should it be conducted within an established academic department?  

(p. 915). 

The author pragmatically waved off the first issue by claiming that the growth and popularity of 

the field – especially in the educational arena – were ultimately more important long-term 

measures of success for computer science. Like many before him, Zadeh clearly recognized that 

achieving disciplinary legitimacy and recognition is often a grassroots process involving the 

establishment of courses, departments, and degree programs. Zadeh also noted two possible 

futures for computer science. On the one hand, he explained that the “core” subjects of the field 

provided it with a distinct “flavor and identity,” and he noted that computer science might evolve 

into “a big and influential field in its own right” (p. 915). This outcome was probably a source of 

anxiety for engineers such as Zadeh, yet he also noted that the heterogeneity and rapid growth of 

computer science might instead cause the field to splinter and fragment.  

As in his previous writings, Zadeh also discussed the position of computer science in a 

larger disciplinary milieu, and he noted ongoing efforts to link the field to mathematics generally 

and mathematics departments specifically. Yet Zadeh placed considerable emphasis on how 

electrical engineers were reacting to the expansion of computer science. In fact, he used an 

undated and unpublished Bell Labs memorandum titled “Engineering and Computing – A Holy 

Alliance” to speak for the many engineers who were highly skeptical of the emergent field. It is 

worth reproducing the lengthy passage from this memo – which was originally authored by 

engineers E. E. David, Jr. and Franklin F. Kuo – that Zadeh cited in his paper: 

There is, in fact, very little classical science behind computation today. On one 

hand there are the circuits, memories and systems which we call hardware which 

we associate with electrical engineering. On the other, there is computer software 

based upon linguistics, logic, and mathematics. There is “science” behind 

computation only in the same sense that information and detection theory behind 

communication can be called “science.” Regardless of terminology, there is a real 

question of an appropriate philosophy for computing efforts in universities and 

research institutions. We believe that this philosophy should be rooted in 

engineering (quoted in Zadeh, pp. 915-916, author’s emphasis). 
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To begin with, this passage once more revealed the extent to which the dualistic discourse of 

“hardware” and “software” had become a pervasive and convenient shorthand for the computer 

field’s major sociotechnical boundaries. Further, this memo suggested that engineers were 

willing to acknowledge the mathematical dimensions of computing, especially in the realm of 

software. However, they steadfastly resisted the idea that work in the field should be primarily 

framed as scientific. In fact, they likely viewed their own work as no less scientific than the 

activities of the so-called computer scientists, especially given that these engineers hailed from 

an organization well known for its cutting-edge research and development activities. 

Zadeh provided little additional commentary on the preceding passage, and his own 

views on “computer science as a discipline” suggest that he was somewhat more sympathetic 

with a scientific view of the emergent field. However, in a subsequent passage Zadeh did add 

that computer science had a “split personality” due to its relation to both mathematics and 

engineering. And while he noted that a similar characterization had led authors such as Perlis to 

insist that computer science was an independent field, Zadeh reiterated his view that there was a 

place for computer science in electrical engineering. He also stressed the importance of 

cooperation between competing departments, especially as electrical engineering education 

shifted toward digital techniques and participated in the training of large numbers of “digital 

system designers” and “computer scientists” (p. 916).  

In even more general terms, participating in the discipline-building project of computer 

science may look like a particularly bold move for Zadeh, as it implicitly challenged the control 

that mathematicians and other non-engineers wielded over the emergent field. But Zadeh seemed 

to have the right kind of background to lead such a charge, especially given that much of his own 

work was highly mathematical, theoretical, and linked to the “engineering sciences.” In a more 

recent interview, for instance, Zadeh’s ruminations on his time as a faculty member at Columbia 

and Berkeley revealed the extent to which he was a long-time proponent of a mathematically 

intense flavor of engineering. As Zadeh explained, “I felt that my mission was that of teaching 

whatever subject I was teaching in a precise and rigorous fashion. In other words: to make 

engineering as close to mathematics as possible” (Zadeh, 2001). In light of such remarks, it is not 

entirely surprising that Zadeh saw electrical engineering as a natural home for computer science. 

It is also worth highlighting Zadeh’s ties with MIT’s electrical engineering department, 

which had a long reputation for its orientation toward mathematics and the engineering sciences. 
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In fact, Zadeh used this department as something of an exemplar in his 1967 talk at Stony Brook. 

Noting the long and influential history of MIT electrical engineers in the “theory and practice of 

information processing in all its forms” (1968a, p. 65), Zadeh queried, “Would it make sense to 

set up a separate Department of Computer Sciences outside of Electrical Engineering in a case 

like that?” (p.  65). Answering in the negative, Zadeh turned to a suggestive metaphor of the 

physical body: 

Clearly, this could be done only by amputating a major part of the Electrical 

Engineering Department and combining it with parts of other departments. But 

where then would the cut in the body of electrical engineering be made? What 

professors in circuit theory, information theory, control systems, optimization 

techniques, pattern recognition and related areas be moved out of electrical 

engineering, or left behind? (p. 65) 

While certainly dramatic, framing the issue in this matter revealed the stakes that were in play in 

debates over the position of computer science. For actors such as Zadeh, electrical engineering, 

computers, and computing were thoroughly intertwined, and driving a wedge between these 

domains amounted to an unnecessary act of violence against a unitary disciplinary body. Yet 

beginning in the mid 1960s and through the 1970s, even MIT was grappling with questions about 

the appropriate disciplinary position of computer science, as well as its relation to electrical 

engineering (Wildes and Lindgren, 1985, pp. 359-361; Aspray, 2000, pp. 49-51).  

Further, it may seem that Zadeh’s efforts to define computer science as a discipline to 

some extent undermined his argument that the field should remain a province of electrical 

engineering. And indeed, the preceding analysis reveals that many of the actors who similarly 

discussed the development of “computer science as a discipline” concluded that independent 

departments were crucial for the field’s growth and success. However, I contend that engineers 

such as Zadeh were working with an image of disciplinarity that was at least partially divergent 

from the perspective held by many self-identified computer scientists. More specifically, 

disciplines in the context of engineering education have historically provided a way of 

organizing research and education, yet these divisions are rarely allowed to threaten the image of 

engineering as a single professional domain. Hence, it was not difficult for engineers such as 

Zadeh to conceptualize computer science as one engineering sub-discipline among many, but 

only as long as the field maintained the subservient identity of an “engineering science.”  
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Yet there were many other actors who preferred to view computer science as a truly 

independent scientific discipline, unfettered from the potentially competing or even contradictory 

interests and commitments of other disciplines or professions. In fact, the influence of this latter 

group was evident at Berkeley, where Zadeh and his colleagues in electrical engineering were 

unable to block a partial secession of computer science faculty. As Zadeh was forced to admit in 

a 1967 talk, a new Department of Computer Science was being established in Berkeley’s College 

of Letters and Science (1968a, p. 62). Per Zadeh, such a schism might be appropriate at a school 

such as Berkeley, which could “afford to have separate centers of activity in different colleges 

with different orientations” (p. 62). The new department was officially established in 1968, yet 

within a few years the situation was deemed unsustainable. Following much heated discussion 

and debate, the Department was moved back to the College of Engineering in 1973, transformed 

into a partially autonomous Computer Science Division within the EECS Department (“EECS 

History,” n.d.). As many commentators have recognized, the events at Berkeley were watched 

closely, especially by faculty and administrators at other institutions that were similarly 

grappling with questions about both the identity of computer science as a discipline and its 

preferred position in the structure of the academy.168 

Zadeh also played an influential role behind the scenes as a parallel scenario played out at 

the University of Pennsylvania. As the 1960s progressed, prominent faculty members such as the 

aforementioned Gorn and Carr were pushing for the establishment of a Department of Computer 

and Information Science at the school. According to Aspray, the realization of such a department 

looked increasingly likely by 1966, but was stymied at the last minute by John Brainerd, who at 

the time was serving as head of the Moore School of Electrical Engineering. As Aspray describes 

it, “Brainerd was generally supportive of computer science, for example, having been in favor of 

the hirings of Gorn and Carr – but only to the extent that computer science did not harm 

electrical engineering” (2000, p. 64). Further, Aspray explains that it was Zadeh who was 

instrumental in convincing Brainerd “of the benefits to electrical engineering of keeping 

computer science within his domain” (p. 64). A separate department of CIS was finally 

established at Penn in 1970, although it remained within the confines of the Moore School (p. 

64). The compromises worked out at Berkeley and Penn were therefore quite similar in the end, 
                                                
168 As COSINE member Edward J. McCluskey explained in recent correspondence, “there were all these 
wars going on at universities for control of computer, quote computer science. … [T]he one that I think 
had the highest visibility was Berkeley” (McCluskey, 2005). 
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even if reached by different pathways. And as these schisms played out at these and other 

institutions, many were looking to the leaders of electrical engineering for further insight and 

inspiration. As I discuss in the following sections, the activities of the COSINE Committee were 

designed to provide some of this support and guidance. 

An Introduction to the COSINE Committee: Historical Origins and Trajectory 

While I have placed considerable emphasis on Zadeh’s role in this historical account, he 

was but one important player in a larger movement that gained significant momentum in the mid 

and late 1960s. In fact, Zadeh’s concerns about both the future of electrical engineering and its 

relation to computer science were shared with many of his colleagues, including Mac Van 

Valkenburg. Zadeh and Van Valkenburg’s relationship can be traced back to the 1940s at MIT, 

with both men earning masters degrees in electrical engineering in 1946 (McNeill and 

Freiberger, 1993, p. 21; Zadeh, 1998; VanValkenburg, 1972, p. 246). Van Valkenburg also 

worked in the Radiation Laboratory and Research Laboratory of Electronics at MIT, and 

following graduation in 1946 he assumed instructor and then faculty positions at the University 

of Utah (Moone, 2002). He took leave to pursue a Ph.D. at Stanford, which he completed in 

1952, and in 1955 he joined the Electrical Engineering faculty at the University of Illinois, 

Urbana-Champaign (Moone, 2002). Through the 1960s Van Valkenburg was an increasingly 

well-known engineering educator and textbook writer. And like Zadeh, he was also very active 

in the field of system theory.169 

                                                
169 In fact, Van Valkenburg helped organize the first Allerton Conference on Circuits and Systems in 
1963. This event quickly grew to become one of the foremost conferences in the field of system theory 
(Moone, 2002). In the context of electrical engineering, system theory is generally concerned with the 
modeling and design of complex electrical or electronic systems, often with a strong theoretical and 
mathematical bent. It is also worth noting that many actors framed system theory as an emergent field or 
discipline. As Zadeh explained in 1963, “It is not sufficient, however, to put the label of ‘system theory’ 
on an aggregation of parts of several well-established disciplines. To acquire a distinct identity, system 
theory must develop its own body of concepts, problems, and techniques” (Cruz, 1963, p. 154). Yet 
despite such discipline-building rhetoric, there is little evidence that commentators such as Zadeh were 
inclined to promote the establishment of independent departments or degree programs in system theory. 
Hence, I claim that these authors conceptualized system theory as another sub-discipline of engineering, 
in a manner that was similar to how they viewed the field of computer science. 
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In early 1965, Zadeh and Van Valkenburg invited a number of electrical engineering 

department heads to a meeting at Berkeley.170 According to Martha Sloan – an electrical 

engineering educator who both served on the COSINE Committee and evaluated the group’s 

impact as a part of her dissertation research – “[t]he meeting was intended to reassess the 

relationships between computer science and electrical engineering and to study the role of 

electrical engineering departments in training computer scientists and engineers” (Sloan, 1973, p. 

22). The participants, who included numerous department heads and various representatives of 

industry and government agencies, concluded that electrical engineering departments should lead 

this type of training. The principle outcome of this meeting was the formal establishment of the 

“Computer Sciences in Electrical Engineering” or “COSINE” Committee. As suggested by its 

name, the committee’s identity and early agenda closely followed Zadeh’s views on bringing the 

computer sciences “within the fold” of electrical engineering.  

Members of the newly formed committee met at the annual meeting of the American 

Society for Engineering Education (ASEE) in June of 1965, and they received initial financial 

support from the Commission on Engineering Education of the National Academy of 

Engineering (NAE) (Sloan, 1973, p. 22). Later in 1965, the COSINE Committee – operating 

under the auspices of the Committee on Engineering Education – submitted a proposal to the 

National Science Foundation (NSF) for two additional years of funding for their activities 

(Huggins, 1969, p. 61). As suggested by these developments, the committee was operating in 

close coordination with the NAE, which itself was spun off from the National Academy of 

Sciences in 1964 as a private, independent, non-profit advisory group. The initial proposal was 

approved, and NSF support for the COSINE Committee officially commenced in July of 1966 

(Committee on Computer Sciences in Electrical Engineering, 1968, p. 2). In 1968 and 1971, the 

group submitted successful proposals for continuations of NSF support (Sloan, 1972, pp. 23-24). 

The COSINE Committee was active from 1965 to 1972, or a span of about eight years. 

The group spearheaded an array of activities during this time period, including on-site visits to 

universities, the organization of ten workshops and summer conferences and five EE chairmen’s 

meetings, and the publication of 11 major reports. The leaders of COSINE also published 

bulletins, letters, and articles related to their efforts, and by 1970 the group was increasingly 
                                                
170 As evidenced by one account that was published a few years after the establishment of the COSINE 
Committee, Zadeh and Van Valkenburg were quickly recognized as the so-called “fathers” of the group 
(Huggins, 1968, p. 60). 
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focused on assessing both its own impact and other relevant trends in electrical engineering. 

According to Sloan, COSINE was composed of 14 core members, although only half of these 

were involved through the entire life of the committee (1972, p. 23). A total of 11 committee 

members held university appointments, and the remaining 3 were primarily affiliated with 

industry. The credentials of the group were also impressive. As noted by Sloan in her 1974 report 

on the impact of the group, “The committee included six current or former department chairmen, 

three members of the National Academy of Engineering, several IEEE Fellows, and authors of 

several texts” (p. 180). In addition, a total of more than 30 individuals – including, at one time or 

another, all of the core members – served on the various “task forces” that developed most of the 

COSINE reports.171 

The group also maintained a working relationship with the ACM’s the Curriculum 

Committee on Computer Science (C3S), especially in the late 1960s. Edward J. McCluskey, for 

example, was a member of both COSINE and the ACM’s C3S, and he delivered a presentation 

on “The ACM- C3S Curriculum” at the second COSINE-sponsored meeting of department 

heads, held in 1967 at Princeton University. McCluskey started his talk with the wry observation 

that “[i]t has been suggested that not everyone here is necessarily familiar with the C3S 

abbreviation; perhaps even the ACM abbreviation may be strange” (1967, p. 6). In addition to 

describing both the ACM and its efforts in the area of curriculum development, McCluskey 

explained that the C3S was interested in the perspectives of engineers, and he indicated that the 

ACM recommendations could provide useful inspiration for electrical engineering departments 

as they developed of computer-oriented courses. C3S member William Viavant also acted a 

liaison between the two groups. His assistance was recognized in the COSINE Committee’s 

inaugural 1967 report, and he also served as the chair of the 1968 Park City conference on 

Computers in Undergraduate Education, which was jointly sponsored by COSINE and the C3S 

(COSINE Committee, 1967; Viavant, 1968).172 

                                                
171 The membership of each COSINE task force varied significantly, revealing the relatively loose 
structure of the committee. As I note below, this feature of COSINE contributed to an overall lack of 
cohesiveness and consistency in the numerous reports and recommendations that the group issued. 
172 While originally conceived as a follow-up to the 1967 Stony Brook conference, the agenda of this 
meeting was reoriented in response to the NSF’s interest in sponsoring an event that was generally 
focused on computers in undergraduate education, rather than on computer science more specifically. As 
a result, only one of the five conference working groups was dedicated to “Curriculum and Programs in 
Computer Science.” (Viavant, 1968). 
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Yet by 1968, a COSINE proposal for continued funding explained that there was “little 

overlap in the interests of this Committee [the C3S] and COSINE, except at the beginning level” 

(Committee on Computer Sciences, 1968, p. 7). And as I discuss below, from the late 1960s 

onward the agenda of the COSINE Committee was reframed in ways that distanced the group 

from the ACM’s educational efforts. This same 1968 proposal also indicated that the IEEE 

Computer Group was not significantly involved in curriculum development or educational 

programs, which further bolstered the argument that the COSINE activities filled an important 

and unmet need. More recently, McCluskey proposed two additional reasons to explain the 

distance between COSINE and the IEEE (McCluskey, 2005). First, the Computer Group and its 

members were still recovering from a lengthy and laborious merger process that distracted them 

from other activities. And second, there were likely concerns about the autonomy that the group 

might lose – as well as the level of bureaucracy it might face – if closely affiliated with the 

IEEE.173 As I discuss below, doubts were also raised in the mid-1970s regarding the ability of the 

Computer Group’s Education Committee to carry forward some part of the COSINE 

Committee’s agenda and activities. 

In summary, the COSINE Committee addressed a wide variety of topics and issues 

during its existence, as suggested by the report titles listed in Table 5.2. In the following section, 

I place considerable emphasis on two of these reports as a window into the group’s historical 

trajectory. The first of these was the group’s inaugural report, which was initially published in 

1967 and appropriately titled Computer Science(s) in Electrical Engineering (COSINE 

Committee, 1967b). An Undergraduate Computing Engineering Option for Electrical 

Engineering, on the other hand, was first published in 1970 (COSINE Committee, 1970). These 

reports are important for at least four major reasons. First, they presented reasonably 

comprehensive and detailed curricular recommendations, while other COSINE publications 

tended to focus on more specific topics, such as suggestions for the development of courses and 

labs. Second, these were among the few COSINE reports that received wider distribution in 

major professional publications. Third, those surveyed at a 1970 meeting of department heads 

ranked these two reports as the most significant of the seven major COSINE publications that 

had been published to date. Fourth, finally, and perhaps most importantly, these reports provide 

                                                
173 Sloan has similarly pointed to the COSINE Committee’s probable desire for “independence” (Sloan, 
2005). 
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evidence for key shifts in the committee’s larger agenda and orientation, including its movement 

away from “computer science” and toward “computer engineering.” 

 

Table 5.2 – COSINE Committee Reports 

Publication Date Report Title 

September 1967 Computer Science(s) in Electrical Engineering  
(COSINE Committee, 1967b; 1968a)  

September 1968 Some Specifications for a Computer-Oriented First 
Course in Electrical Engineering (COSINE Committee, 
1968b) 

October 1968 An Undergraduate Electrical Engineering Course on 
Computer Organization (COSINE Committee, 1968c) 

1968 Proceedings of the Meeting on Computer Science in 
Electrical Engineering of the Commission on 
Engineering Education, October 24-25, 1968 (COSINE 
Committee, 1968d) 

November 1968 Some Specifications for an Undergraduate Course on 
Digital Subsystems (COSINE Committee, 1968e) 

September 1969 Impact of Computers in Electrical Engineering 
Education – A View from Industry (COSINE Committee, 
1969a) 

December 1969 Computer-Oriented Electrical Engineering Experiments 
1969-1970 (COSINE Committee, 1969b) 

January 1970 An Undergraduate Computer Engineering Option for 
Electrical Engineering (COSINE Committee, 1970; 
Coates, et al., 1971) 

March 1971 Digital Systems Laboratory Courses and Laboratory 
Development (COSINE Committee, 1971a) 

June 1971 An Undergraduate Course on Operating Systems 
Principles (COSINE Committee, 1971b) 

April 1972 Minicomputers in the Digital Laboratory Program 
(COSINE Committee, 1972) 
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COSINE, The Early Years: Promoting “Computer Sciences in Electrical Engineering” 

The COSINE Committee’s first report, Computer Sciences in Electrical Engineering, was 

framed as a preliminary set of recommendations that grew out of the group’s early meetings and 

workshops. In an introductory passage, the authors of this report followed prior commentators 

such as Zadeh by pointing to the “long standing and deep involvement” of electrical engineers in 

all phases of information processing technology, ranging from use and application to conception, 

design, and construction (COSINE Committee, 1967b, p. 5).174 Yet the authors admitted that at 

least three major developments were impacting this relationship (pp. 5-6). First, they noted a 

shift in emphasis from “hardware” to “software” in the sphere of computer technology.175 

Second, they explained that this shift was in part stimulating the emergence of the field known as 

“computer sciences.” And third, the report indicated that information processing systems were 

increasingly based on digital (or “discrete”) rather than analog (or “continuous”) electronics 

technology.  

The authors argued that these developments were “creating an urgent need for a major 

reorganization of electrical engineering curricula” (p. 6), leading them to encourage greater 

flexibility in the standard electrical engineering curriculum. They also presented three more 

specific sets of recommendations. The first and most extensive of these was focused on the 

development of computer science programs within electrical engineering, while a second 

discussed how electrical engineering education could be reorganized to place greater emphasis 

on digital systems and related topics (pp. 9-19; pp. 21-23). The third major section of the report 

explored how computers might be incorporated into a wide range of existing electrical 

engineering courses, especially for analysis, design, and related tasks (pp. 25-31). This topic, in 

particular, had much in common with earlier efforts to incorporate computers into the 

engineering curriculum, as exemplified by the previously mentioned Ford Foundation project.  

Yet as documented in the previous chapter, the other areas of reform that the committee 

addressed had received only scattered prior attention. And evidenced by both its title and content, 

much of the 1967 report was dedicated to developing recommendations for computer science 

                                                
174 In fact, one of the introductory passages in this report was identical to Zadeh’s talk at the 1967 Stony 
Brook conference. Zadeh or one of his colleagues likely copied this passage into the COSINE report. This 
clearly reflected the influence of Zadeh and his agenda on the group’s early activities. 
175 More specifically, the authors equated “hardware” with “circuit and component design” and 
“software” with “system organization and programming” (COSINE Committee, 1967b, p. 5). 
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programs within electrical engineering. The committee approached this matter in a rather 

cautious and strategic manner: 

Clearly, it would be unreasonable to equate computer sciences with electrical 

engineering, or to regard it as a subset of the latter. Nevertheless, the close 

relation between the two is presenting the electrical engineering departments with 

a special responsibility for the training of the large number of computer scientists 

who would be needed … in the years ahead (p. 5). 

And later in the report, the authors indicated that those electrical engineering students who 

pursued a computer science major should “acquire substantive competence in computer sciences 

and related fields, comparable, but not necessarily similar in content, to that acquired by students 

in a typical computer science department” (p. 9). In light of such remarks, one might question the 

extent to which the committee was promoting the training of computer scientists, or perhaps 

instead electrical engineers with some baseline level of expertise in computer science. The latter 

appears quite likely, especially given my prior arguments about engineers viewing computer 

science as one sub-discipline among many “engineering sciences.”  

Nonetheless, these passages suggest that the committee remained somewhat at cross-

purposes with their adoption of the term “computer science.” They also seemed to maintain an 

awareness of the political baggage that came with their recommendations. Their report provided 

descriptions for four core and twelve recommended elective subjects for a computer science 

program situated within an undergraduate electrical engineering curriculum. And in many ways, 

the subjects outlined in the report overlapped significantly with the ACM’s preliminary 

recommendations for the computer science curriculum, especially in areas such as programming, 

machine languages, algorithms, and discrete mathematics. However, the dominant structure of 

the electrical engineering curriculum placed significant limits on how much coursework could be 

dedicated to computer science programs, in spite of the authors’ claim that such programs “may 

or may not include a core of required electrical engineering courses in areas outside of computer 

sciences” (p. 11).176 

                                                
176 Engineering education has long had a reputation for being conservative and slow changing, and 
electrical engineering is no exception. In fact, making changes to the “core curriculum” has been – and in 
many cases remains – a sure fire way to trigger passionate debates among engineering faculty members. I 
revisit this issue below. 
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In fact, the core subjects described in the report represented a relatively small amount of 

coursework, making it clear that the recommendations were primarily designed for the 

development of computer science majors or options within the confines of existing electrical 

engineering programs. This was a politically expedient move, as recommending more radical 

changes to the engineering curriculum would likely jeopardize the ability of schools to maintain 

accreditation under the guidelines developed by the Engineers Council for Professional 

Development (ECPD). To put it another way, moving too far away from the dominant model of 

engineering education could endanger a school’s ability to produce “certified” graduates who 

could go on to become recognized as professional engineers. 

As further inspiration for how such programs might be realized within existing 

departments, the report included three sample curricula in an attached appendix (COSINE 

Committee, 1967b, Appendix B). The examples included Computer Science bachelor degree 

programs situated within Colleges of Engineering at Berkeley and the University of Utah, as well 

as a proposed “Computer Science Program” within the existing structure of MIT’s S.B. in 

Electrical Engineering.177 Perhaps not surprisingly, all three of these programs retained a strong 

engineering orientation, albeit with a number of computer-oriented classes inserted in the 

curriculum. In many ways, this approach to revising the curriculum looked like a direct response 

to a question that was discussed at a 1967 COSINE meeting, namely: “What might constitute the 

minimal CS needs for all EE students; for a CS major within EE” (p. 34, my emphasis). This 

minimalist approach to computer science education stood in marked contrast with the ACM’s 

ambitious curricular recommendations, which were designed to be more structured, cohesive, 

and comprehensive. In fact, the members of the ACM C3S had a distinct edge over COSINE in 

this regard, because they could propose computer science degree programs that sidestepped the 

pre-existing educational requirements and restrictions that were characteristic of other fields. 

The authors of the 1967 COSINE report also detailed how their curricular 

recommendations were related to computer technology. And unlike their ACM counterparts, 

they placed more explicit emphasis on the sphere of “hardware.”178 For example, the report 

                                                
177 According to the proceedings of a 1967 COSINE meeting, Syracuse University was also developing a 
separate B.S. degree in computer science that was to be administered by the school’s electrical 
engineering department (COSINE Committee, 1967a, p. 33). 
178 As noted above, the curricula developed by the ACM C3S placed considerable emphasis on 
programming, numerical analysis, algorithms, and related subject areas. However, this group clearly 
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indicated that student experiences in two of the four core subject areas should stress “computer 

hardware as the means of realizing programming functions” (p. 11). And elsewhere, the report 

indicated that the core subject of Computation Structures required “[c]onsiderable emphasis … 

on the interrelation and trade-offs between hardware and software techniques” (pp. 12-13). And 

for at least two major reasons, the authors added that the early stages of the curriculum should 

emphasize programming features before turning to more machine-oriented topics. First, they 

indicated that this approach could shed light on how “programming features” informed various 

aspects of machine organization. And second, the authors noted that this sequence of instruction 

could help students view conventional approaches to machine organization “in a less sacred 

light” (p. 11), thereby allowing them to consider alternatives ways to implement programming 

features in hardware. This looked like an important step toward recognizing – and perhaps even 

working to reconcile – some of the schisms that had grown up around the software and hardware 

phases of the field. However, this educational model continued historical precedent by framing 

engineers as the ultimate arbiters of computer design decisions. 

With regard to realizing their proposed curriculum, the authors refused to take a position 

on jurisdictional issues, including questions about departmental responsibility for particular 

courses. However, they did stress that electrical engineering departments should cultivate faculty 

expertise in the computer sciences and related areas, and they encouraged close cooperation with 

other relevant departments. And at a 1967 COSINE meeting, a discussion group addressed 

closely related questions about why it was appropriate for electrical engineering departments to 

offer computer science courses and/or programs, including at the graduate level. As explained in 

one summary report, the focus of engineering education on “systems design” provided this 

justification (COSINE Committee, 1967a, p. 46). This report also emphasized that it was the 

                                                                                                                                                       
recognized that computer science students should have some familiarity with the hardware aspects of 
computers. Their 1965 report, for example, identified “Computer Organization and Programming” as a 
required course and “Logic Design and Switching Theory” as a highly recommended elective (ACM C3S, 
1965). “Curriculum 68” similarly recommended that students take a “Computer Organization” course 
(ACM C3S, 1968). In addition, the 1965 report acknowledged that “[i]t has been suggested that the 
educational needs of those who will plan and design the computing and communication equipment should 
be given special consideration” (ACM C3S, 1965, p. 545). Responding to this need, Curriculum 68 
identified a series of optional and elective courses that would allow students to specialize in the area of 
“Computer Organization and Design.” However, there remain many open questions about how closely 
these recommendations were followed by schools, and commentators such as Ceruzzi have noted that the 
core of the 1968 curriculum almost entirely eschewed “hardware” courses and subjects, replacing them 
instead with an emphasis on algorithms, programming languages, and data structures (1988, p. 268). 



www.manaraa.com

 218 

responsibility of electrical engineering education to provide an “integrated engineering 

viewpoint” for those charged with designing digital systems (p. 46). Yet as I discuss below, it 

was increasingly questionable whether the committee’s focus on the engineering and design 

aspects of digital systems was compatible with its use of the “computer science” moniker. 

Transitional COSINE: From Computer Science to Computer Engineering 

In March of 1968, the first major set of COSINE recommendations reached a wider 

audience through the publication of a condensed version of the group’s 1967 report in the IEEE 

Spectrum magazine (COSINE Committee, 1968a). And in June of the same year, the COSINE 

Committee submitted a request for continued NSF funding via a proposal titled “A Program to 

Stimulate the Development of Electrical Engineering Courses and Curricula To Include the 

Computer Sciences” (Committee on Computer Sciences, 1968). As in the 1967 report, this 

document emphasized the goal of bringing the computer sciences into electrical engineering. At 

least on the surface, the titles and contents of these documents suggested that the committee was 

both united by a common purpose and headed in a consistent direction. 

Yet a closer analysis of other early COSINE documents reveals important variations in 

the group’s agenda. At the second COSINE sponsored meeting of department heads in 1967, for 

example, Van Valkenburg explained that the main objective of the COSINE Committee was to 

“assist Electrical Engineering Departments in reorienting their curricula to provide for a greater 

emphasis on digital technology and the associated symbol manipulation techniques” (1967, p. 3). 

A discussion group at the same conference, on the other hand, addressed the topic of “computer 

design in the undergraduate education,” and participants identified a handful of courses that 

might make up a “computer design option” for electrical engineering students (COSINE 

Committee, 1967a, pp. 36-37).179 Even the group’s aforementioned 1968 proposal hinted at the 

group’s wide-ranging objectives, which also included encouraging the use of computers for 

design and analysis, as well as more generally reorienting electrical engineering courses and 

curricula toward digital techniques. While these objectives were not necessarily at odds with 

developing computer science in electrical engineering, realizing these diverse goals clearly 

demanded a range of different strategies and approaches. It was therefore possible that the 
                                                
179 The five courses included: Introductory Computer Concepts and Programming; Switching Theory and 
Logic Design; Computer Organization and Digital Systems Design; Laboratory, Digital Devices and 
Circuits; and Advanced Programming (COSINE Committee, 1967a, p. 37). 
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Committee’s agenda was too wide and its resources were stretched too thin, especially given the 

many potential barriers and challenges they were facing. 

By late 1968, the orientation of the committee was beginning to shift more markedly. 

Evidence for this trend can be found in the published proceedings of a third COSINE-sponsored 

meeting of electrical engineering department heads, held at Stanford in October of 1968. This 

event included a paper by COSINE Committee member Clarence L. Coates, who joined the 

group in 1967. Like many actors in this history, Coates’ career trajectory straddled the 

boundaries of engineering, science, and computing. After receiving a Ph.D. in Electrical 

Engineering from the University of Illinois in 1953, Coates worked as an assistant professor at 

the same school, and then as a research scientist at General Electric (“1993 OECE Recipiants,” 

1993). In 1963 he joined the faculty at the University of Texas at Austin, where he variously 

served as Professor of Computer Sciences, supervisor of the graduate Information Sciences 

program, and head of the Department of Electrical Engineering. He returned to the Electrical 

Engineering department at the University of Illinois at Urbana in 1971, and in 1973 he took over 

as the head of Purdue’s School of Electrical Engineering.180 

As suggested by the title of his 1968 talk, Coates issued a passionate plea for the 

development of “University Education in Computer Engineering” (Coates, 1968). More 

specifically, he started by noting rapid growth in both graduate and undergraduate computer 

science programs, and he explicitly emphasized that these were often “science oriented” (p. 5). 

Coates also explained that “education in computer engineering is being neglected at most 

institutions,” and he stressed that this type of education demanded an “engineering educational 

environment,” which presumably only colleges and departments of engineering could provide (p. 

5). He also presented data – which he drew from the aforementioned Stony Brook proceedings – 

to highlight both the rapid growth of computer science education and the relative lack of 

computer-oriented degree programs in electrical engineering.181 As noted above, such statistics 

generated significant anxiety for many electrical engineering educators, Coates included. 

                                                
180 According to this same source, Coates later spearheaded the development of a computer engineering 
degree program at Purdue (“1993 OECE Recipients,” 1993). 
181 More specifically, Coates noted that the total number of computer science degree programs was 
forecasted to increase from 58 to 240 from 1964 to 1968, while the number of computer options in 
electrical engineering was expected to rise from 19 to just 23 during this same period (1968, p. 5). While 
Coates’ figures for computer science are based on a different interpretation of the data than what I 
presented above, they highlight the same overall trends. 
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The author also admitted these trends were not necessarily a cause for alarm, especially if 

computer science programs provided an adequate an appropriate type of education. However, he 

complained that most computer science programs were largely focused on software and theory, 

with particular emphasis on topics such as programming, numerical analysis, formal languages, 

automata theory, and applications. He therefore argued that computer science education was 

deficient in “the hardware aspects of computers, in the hardware-software interface area, and in 

systems for which the computer is a component part” (p. 5). The author explained that a major 

reason for such deficiencies centered on the links between computer science and the arts and 

sciences, especially in terms of the background and interests of computer science faculty, as well 

as the dominant institutional location of computer science departments and programs. He also 

complained that the courses recommended by the ACM lacked an engineering orientation. 

According to Coates, those responsible for developing Curriculum 68 simply had “no interest, 

experience, or appreciation for engineering” (p. 7), and he concluded that the ACM’s 

recommendations were ultimately “a computer science curriculum and not a curriculum for 

computer engineering” (p. 7). Such remarks suggest that Coates was appealing to engineers who 

maintained deep-seated feelings about how their work was distinguished from that of scientists. 

Coates went on to argue against the idea that computer engineering was somehow “a part 

of” computer science, and he instead framed computer science and computer engineering as 

distinct domains that needed separate educational programs. “Where we have failed,” Coates 

opined, “is to recognize that computer science education and computer engineering education are 

not the same and that there is a need for both” (p. 10). And while the author failed to provide a 

direct definition for computer engineering, he hinted at the meaning of the term when he noted 

rising demand for “engineers who are trained in the analysis, organization, and design of systems 

that perform one or more of the functions of control, communications, recognition, processing 

and retrieval” (p. 7). As Coates explained, the most practical way to provide this type of training 

involved the establishment of computer engineering options within electrical engineering 

departments, and he indicated that such programs would place extensive emphasis on subject 

areas such as control systems, information and communication theory, logic design and 

switching theory, machine organization, and programming (p. 10). In addition to providing an 

updated definition for the field, Coates’ remarks tentatively and partially outlined a disciplinary 

settlement for “computer engineering.” 
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Responding to a potential point of criticism, Coates also argued that it was necessary for 

computer engineering education to move away from some of the “fundamental” subjects that had 

long been at the core of the standard electrical engineering curriculum. In fact, Coates indicated 

that a computer engineering program would likely eschew any engagement with the subject area 

of “power systems,” thereby completing a historical trend that had started many decades earlier 

with the rise of electronics. He also noted that such a program would place relatively less 

emphasis on electromagnetic theory, network theory, electron materials and devices, and 

electronic circuits (p. 10). This was a major call for change, especially given that most 1960s-era 

electrical engineering programs – oriented as they were toward both the engineering sciences and 

electronics – tended to cover these subject areas rather extensively. 

Comparing his proposal to the earlier shift in the field from power to electronics, Coates 

also argued that electrical engineering education was entering a new period of transition. More 

specifically, he described the growth of computer engineering as representing the emergence of 

“a new epoch” in electrical engineering, and he even went so far as to state: “I am not now 

suggesting that the electronics epoch is ending, although this may be true” (pp. 7, 10). He 

concluded his talk by boldly declaring, “I would chide you as the leaders of electrical 

engineering education, as well as we of COSINE, for failing to recognize long ago the need for 

education in computer engineering” (p. 10). Of course, the previous chapter revealed that 

scattered commentators were calling for the establishment of such programs by the late 1950s 

and early 1960s, and commentators such as Vincent Rideout and Norman Scott even used the 

phrase “computer engineering” to describe graduate electrical engineering programs that were 

oriented toward computer system design and associated subjects. Yet these types of programs 

had failed to gain significant momentum outside of a handful of institutions, such as Scott’s own 

University of Michigan. In the meantime, computer science had emerged and grown 

prodigiously, often beyond the purview of electrical engineering.  

Coates’ concerns received additional attention at the same 1968 COSINE meeting 

through a workshop that was aptly titled “Computer Engineering Rather than Computer Science” 

(1968d, pp. 16-18). As indicated in one post-workshop summary report, “[t]here seems to be a 

well defined separation of interest developing between the curricula of Computer Science 

Departments and Computer Science programs offered within Electrical Engineering 

Departments” (p. 16). The report then identified a series of topic areas in mathematics, electrical 
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engineering, and computer theory that were of particular interest “to an engineer working in the 

area of computers and information systems” (p. 17). In fact, it was noted that four of the topics in 

the electrical engineering category fell outside of the ACM’s curricular recommendations. 182 

This piece of evidence provided additional support for the claim that computer-oriented 

programs in electrical engineering were at least partially divergent from computer science. The 

report even asserted that “[a] consensus was reached that the existence of a Computer Science 

Department must not interfere with the development of a strong computer oriented program in 

Electrical Engineering” (p. 17). 

Three additional COSINE reports were published in 1968 and 1969, and each lent a 

measure of support to the agenda outlined by Coates. In fact, Coates was the only member of the 

COSINE Committee who participated in the development of all three of these documents. The 

first such report provided recommendations for an undergraduate course dedicated to the subject 

of “Computer Organization” (COSINE Committee, 1968c). Contextualizing their efforts, the 

authors of this report acknowledged the ongoing establishment of Computer Science 

departments, yet they argued that “there is an ever increasing need for electrical engineers whose 

undergraduate program provided a familiarity with digital system design” (p. 2). They explained 

that such programs required engagement with both the “hardware and software aspects of digital 

systems,” such as via the course outlined in the report. In fact, they made it clear that “such a 

course should be offered by the Electrical Engineering Department and should correlate the 

design and organizational aspects of the subject” (p. 2). In light of the different philosophies of 

course and program design to which these passages elude, electrical engineering and computer 

science departments at many schools were developing and offering their own, separate versions 

of courses in overlapping areas of interest, including computer organization.183  

Another COSINE Task Force presented specifications in 1968 for a one-year 

undergraduate elective course in the area of “Digital Subsystems” (COSINE Committee, 1968e). 

The content for this course took a bottom-up and hardware-oriented approach, beginning with 
                                                
182 These four topic areas included: Circuits and Systems; Electronics; Control, Communication, and 
Information Theory; and Solid State Electronics (p. 17). 
183 In a more recent conversation, McCluskey discussed how control over individual courses became an 
important site of negotiation and competition for rival departments: “[O]ne of the ways in which this 
battle [for control of computer science] was fought out was by control of which courses the students in 
the department could take. And I'm sure there are many instances at universities where there were two 
computer activities, in two different departments, where one of the departments wouldn't recognize the 
courses in the other department” (McCluskey, 2005). 
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basic circuits and simple functional units, and proceeding to the design of complete “digital 

subsystems.” And while this course partially overlapped with computer organization, the two 

courses clearly complemented one another and covered many of the subject areas that were 

historically associated with the domain of “computer engineering.” 

A 1969 COSINE report, on the other hand, was more generally concerned with the 

Impact of Computers on Electrical Engineering Education – A View From Industry (COSINE 

Committee, 1969a).184 As the authors of the report indicated, one of the main goals of the 

COSINE Committee was to “keep abreast of trends and developments in the area of computer 

engineering and computer science and bring this information to the attention of electrical 

engineering educators” (p. 1). In addition to summarizing how computers and digital systems 

technology were impacting the actual practice of engineering in industry, the report discussed 

how electrical engineering educators might respond to these trends. The task force lobbied for 

more flexible curricula, and they emphasized the importance of student experiences in design-

oriented projects. And in terms of topical coverage, they complained that “electrical engineering 

departments are not updating their curricula in this area as fast as the present and future practice 

of engineering would warrant,” especially given the extent to which computers and “digital 

systems concepts” had permeated engineering practice (p. 1). The report stressed that students 

should have opportunities to use computers for engineering problem solving, while also gaining 

experience with the design and simulation of digital circuits and systems.  

It is also worth noting that the authors of this report did not specifically discuss computer 

science or computer engineering programs, preferring instead to frame their discussion as more 

generally relevant to the education of electrical engineering students. However, the COSINE 

Committee’s next major report made it clear that the group’s agenda and activities were 

increasingly being advanced under the banner of “computer engineering.” As a result, their work 

pointed to the potential development of new alignments and synergies between the field’s 

professional jurisdictions and its disciplinary settlements. 
                                                
184 This report also indicated that one of the earliest formal activities of the committee was a late 1966 
meeting with representatives of industry that was intended to “determine the impact that computer 
technology was having upon industry” (p. 1). The close ties between COSINE and industry stood in 
marked contrast with the ACM’s curricular efforts in computer science. In fact, evidence suggests that the 
emergent field of “computer science” had very low visibility in industry, at least through much of the 
1960s. As Eric Weiss of Sun Oil Company explained at the 1967 Stony Brook conference, “I made 
inquiry of my colleagues in industry to get their views of computing science and its relevance to their 
world. … Too often their reply was a question, ‘What is computing science?’” (1968, p. 105). 
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COSINE and Computer Engineering: Expanding EE From the Inside Out 

The COSINE Committee’s An Undergraduate Computer Engineering Option for 

Electrical Engineering (COSINE Committee, 1970) was developed by a seven-member task 

force, which included only three of the authors listed in the group’s 1967 report. In fact, notable 

individuals such as Van Valkenburg and Zadeh were not directly involved with this task force, 

while Coates acted as chair. The document therefore represented another unique set of interests, 

agendas, and stakeholders, and in most general terms it cemented the COSINE Committee’s 

movement away from “computer science” and toward “computer engineering.” And perhaps 

more than any other document, this report can be credited with stimulating the widespread 

development of computer engineering education. Yet by framing computer engineering as a 

branch or sub-discipline of electrical engineering, this set of recommendations also hinted at 

potentially disruptive shifts in the identity and disciplinary settlement of the parent field. 

The authors started the report by indicating that their efforts were prompted by a 

“growing demand for education in computer engineering and the limited opportunities for study 

in this area” (p. 1). As additional background, they briefly outlined the history of electrical 

engineering from the 1930s onward, with particular emphasis on the shifting orientation of the 

field from power to electronics. The authors also followed prior commentators by noting that 

digital technologies and systems were increasingly central topics in the field. Given this trend, 

they explicitly described “computer engineering” as that part of electrical engineering concerned 

with “the organization, design, and utilization of digital processing systems as general purpose 

computers or as components of systems concerned with communication, control, measurement, 

or signal processing” (p. 1). This definition was generally consistent with how commentators 

such as Coates had used the term in the past, especially with regard to the field’s focus on the 

design and organization of computer systems and the components thereof.  

Yet this passage also hinted at another emergent area of technical expertise, where 

engineers were being called upon to incorporate computers into even larger technological 

systems. In fact, demand for this type of expertise was likely on the rise, especially given both 

the increasing availability and falling costs of computers around this time. Hence, even if there 

remained relatively few employment slots for those who were directly involved in the design of 

computer systems and components, expanding the field’s settlement to include the design of 
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these larger types of computer-based systems looked like an appropriate move for those who 

advocated the ongoing expansion of computer engineering education.  

Adopting the computer engineering moniker was also a sound strategy for these authors, 

especially given both its deeper historical roots and the difficulties that came with co-opting 

atlernate terms such as “computer science.” This move also allowed the authors to frame 

computer engineering as primarily or even wholly a branch of electrical engineering. In fact, the 

1970 report even avoided the use of terms such as “field” or “discipline,” and it instead described 

computer engineering as a “new dimension” of electrical engineering. The committee’s activities 

were therefore reframed as a more natural expansion or extension of their own field, from the 

inside out. This approach stood in marked contrast with prior efforts to bring the outside 

discipline of computer science into electrical engineering, thereby leading to potential conflicts 

between the dominant image of computer science as an independent discipline and electrical 

engineering as a part of the engineering profession. 

Yet the authors acknowledged that the subject of their report at least partially overlapped 

with prior efforts to develop computer-oriented educational programs, and they responded 

directly to questions about the necessity of their efforts. More specifically, the authors cleverly 

argued that previous studies were inadequate because they were not directly concerned with 

computer engineering. They also explained that the ACM’s Curriculum 68 was a “science-

oriented software program and not an engineering programming for education in digital 

processing system design” (p. 2), and they added that existing computer science departments and 

programs were turning out “software specialists.” The authors noted that the 1967 COSINE 

report, on the other hand, was designed to “indicate a minimal set of courses that could be 

included in the undergraduate electrical engineering curriculum … [to] introduce the student to 

the basic techniques and theoretical concepts of computing” (p. 2).  

This same report went on to argue that computer engineers required a different type of 

education that covered “the design of software, hardware and systems” (p. 2). The authors also 

stressed that programs in this area should provide students with an understanding of “the 

important relationships and ‘trade-off’s’ between the hardware and software components of the 

system and an understanding of how these functions should be partitioned in the system 

organization in view of the intended applications” (pp. 2-3). With these objectives in mind, the 

task force identified a total of seventeen subject areas for a computer engineering option, and 
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these were further split into background, basic, and elective categories.185 And in contrast to the 

1967 COSINE report, this new set of recommendations provided more detailed information 

about the subject matter, semester hours, and overall structure of such a program. The report also 

included “possible” computer engineering curricula that were custom-tailored for 

implementation at four different universities, namely Carnegie-Mellon, Hawaii, Princeton, and 

University of Texas-Austin (pp. 7-10).186 Unlike the curricular samples presented in 1967, these 

degree outlines were clearly identified as computer engineering programs within electrical 

engineering. This was an important shift, as it suggested that computer engineering students 

would receive degrees in electrical engineering rather than computer science. Electrical 

engineering educators could therefore move into the domain of computing in ways preserved 

their identity as electrical engineers who were training future engineering professionals. A 

slightly revised version of the same report reached a larger audience in 1971 through its 

publication in the Proceedings of the IEEE (Coates, et al., 1971). And in a new forward, 

COSINE chairman Van Valkenburg stressed the importance of the group’s recommendations, 

especially given the ongoing and rapid growth of computer engineering education within 

electrical engineering departments (Coates, et al., 1971, p. 854).  

The COSINE Committee also released three new reports in 1971 and 1972, and two of 

these were focused on the development of laboratory work that was compatible with the group’s 

larger set of curricular recommendations (COSINE Committee, 1971a; 1971b; 1972). In one of 

these reports, the authors explained: “As digital system and computer engineering concepts have 

been integrated into the undergraduate electrical engineering curriculum, many departments have 

begun revising their laboratory programs to include more work with digital networks and mini-

computers” (1971a, p. 1). Such passages once again reveal the extent to which larger currents of 
                                                
185 The six “background” subjects included physics, calculus and differential equations, linear and abstract 
algebra, probability theory, electric and electronic circuits, and introductory computer programming. With 
the exception of probability theory, most electrical engineering programs required that students take a 
similar set of core coursework. The four basic subjects identified in the report were switching theory and 
logical design, machine structure and machine language programming, computer organization, and 
systems programming and operating systems. And finally, the seven elective areas recommended by the 
committee were programming languages and translation, numerical analysis, logic and automata theory, 
communication systems, operations research, simulation and modeling, and field analysis. As this 
overview reveals, many of the topics that the ACM C3S identified and described as core requirements for 
computer science were electives in the COSINE recommendations for computer engineering. 
186 All four of the proposed curricula were developed for schools where members of the task force served 
as faculty. These sample curricula also featured an entirely different group of schools as compared to the 
1967 COSINE report. 



www.manaraa.com

 227 

change were finally beginning to move through electrical engineering education. The third of 

these reports, on the other hand, proposed an undergraduate course on “Operating Systems 

Principles.” As explained by the authors, such a course would likely be realized as an elective 

“for students whose major interest is in the engineering of computer systems and software” 

(1972, p. 1). This particular report hinted at the extent to which the domain of software was 

becoming a more pivotal site for negotiating the boundaries between computer engineering and 

computer science, a point to which I will return. 

As the preceding review makes clear, from the late 1960s and into the 1970s the COSINE 

Committee eagerly promoted its agenda under the banner of computer engineering. In fact, even 

Zadeh came to temper his use of the term “computer science.” In a 1971 article on “Impact of 

Computers on the Orientation of Electrical Engineering Curricula” that was published in the 

IEEE Transactions on Education, Zadeh emphasized that “electrical engineering has a special 

responsibility to train its students in both the basic and applied aspects of computer science and 

engineering” (Zadeh, 1971, p. 153). Yet he admitted that the efforts of the COSINE Committee 

represented “a rather belated response on the part of electrical engineering educators to the 

challenge of the computer revolution” (p. 154). He went on to once more lobby for greater 

flexibility and multi-option systems in the electrical engineering curriculum. He also argued that 

required upper division core courses should be replaced by “a system of recommended 

programs” (p. 154). As Zadeh explained, one of principal advantage of such a “free curriculum” 

was that it “comes to grips with a basic fact of life, namely, that electrical engineering is no 

longer a unified field of study with a clearly definable single core; rather, it is an aggregation of 

subject areas” (p. 154). Per Zadeh, these included clusters of subjects in areas such as: systems, 

information, and control; computers and digital systems; circuits and electron devices; 

electromagnetics; bioelectrics; and urban and public systems (1971, p. 154).187 

                                                
187 It is again worth noting that these types of reform discussions could trigger passionate debates about 
whether various core courses or subjects should remain in the electrical engineering curriculum. In fact, 
McCluskey more recently recounted one such debate: “I have to tell you, the biggest fight that I 
remember, and you said tensions, and I'm talking about, there were not only tensions, but this was a fight, 
was a COSINE meeting, and it was out here at Stanford. And there was one guy on the committee. What 
the committee was discussing was whether there should be an E&M [electromagnetism] course in the EE 
undergraduate curriculum, or in the computer engineering undergraduate curriculum. … [A]nd this one 
guy was [whistles], he was very emotional about this. And he didn't think there ought to be one there. He 
thought we were compromising, selling our souls. I can remember him pounding on the table and walking 
out. But that's the only one I remember like that. And it turns out he was wrong” (McCluskey, 2005). 
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Comments such as these suggest that the concept of disciplinary settlement provides an 

appropriate lens for understanding the historical development of electrical engineering through 

this time period. More specifically, Zadeh’s remarks revealed that electrical engineering – like 

computer science – was neither easily nor succinctly definable, as its domain ultimately 

comprised a range of loosely connected subjects, and many of these were shared with other 

fields. Hence, both Zadeh’s article and the COSINE Committee reports from the early 1970s 

pointed to the persistent challenges that electrical engineering educators faced as they grappled 

with how to reform and revise their curricula in ways that accommodated the field’s increasing 

diversity and scope while simultaneously preserving its cohesion and unique identity. These 

challenges were only compounded given that many of the proposed reforms could potentially 

threaten the dominant image of electrical engineering and its various sub-disciplines – including 

computer engineering – as unambiguous parts of the engineering profession. 

Evaluating the “Impact” of COSINE and the Growth of Computer Engineering Education 

From 1970 to 1972, the COSINE Committee conducted a series of surveys that were 

designed to both evaluate the impact of the group and document other relevant trends in 

electrical engineering education (Sloan, 1973, p. 27). Members of the group also used the survey 

data to support their agenda. In 1971, for example, Van Valkenburg noted that 87 of 203 (or 43% 

of) electrical engineering departments that responded to one survey offered an undergraduate 

option or program in computer engineering, while another 35 of the surveyed schools planned to 

offer such an option in the coming year (Coates, et al., 1971, p. 854).188 As Van Valkenburg 

explained, these data revealed the importance of the COSINE recommendations with regard to 

the computer engineering curriculum. Yet it was the final COSINE survey – which was 

completed in 1972, just before COSINE disbanded – that provided the most detailed data 

regarding relevant educational trends in electrical engineering through the life of the Committee. 

                                                
188 Van Valkenburg repeatedly deployed similar statistics to discuss the movement of computers and 
computing into electrical engineering education. In another 1971 commentary, for example, he explained: 
“A recent survey of department chairmen I conducted had responses from 201 universities. Of this 
number, 86 indicated that they now offer an option or program in computer engineering at the 
undergraduate level, and 34 more showed some indication that there might be such a program or option 
within a year” (Dertouzos, et al., 1971). And while it is not clear why Van Valkenburg presented slightly 
different statistics in this piece, the larger trends were clear. 
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These results were summarized in a 1973 article that was authored by Sloan, Coates, and 

McCluskey (1973) and published in the IEEE’s widely-read Computer magazine. 

To begin with, it is worth noting how the history of the committee was framed in this 

document. In an introductory passage, the authors summarized that the COSINE Committee 

“was organized in September, 1965 to help electrical engineering departments develop 

educational programs in computer engineering and to design other courses to use digital 

computers” (p. 30). This was a very strategic depiction, as it framed computer engineering as one 

of the group’s primary, original concerns, even though the early efforts of the committee were 

couched in terms of “computer science.” In fact, in the early 1970s the COSINE acronym was 

often used without any reference to its original meaning, and the group’s 1971 request for 

additional funding from the NSF was cleverly titled “Proposal for a Project in Computers in 

Electrical Engineering (COSINE)” (Sloan, 1973, p. 97). This evidence suggests that the group 

adjusted both its name and historical narrative to distance itself from the term computer science. 

With regard to the survey data, the authors of the report summarized the results with a 

mix of enthusiasm and anxiety. On the one hand, they indicated that just under half (49%) of the 

responding schools had computer engineering options (p. 33). By comparison, 54% of these 

schools had computer science departments (p. 32). They also indicated an increase in the number 

of “digital faculty” in electrical engineering departments from one in 1965-66 to three or four in 

1972-73, and with the total number of digital faculty at all schools more than doubling during 

this same time period (p. 32).189 With regard to curricula, the authors noted that six of the basic 

courses recommended by COSINE for a computer engineering option were taught at 80% or 

more of all responding schools, and the majority of these schools offered six of the seven 

recommended elective courses (p. 37). And while the survey indicated that a growing number of 

these courses were taught by electrical engineering departments, a relatively large number of the 

core and elective subjects – especially in the areas of programming and software – were often 

taught outside of EE (p. 37). These conclusions once more pointed to a central tension that came 

with the growth of computer engineering education, namely that these types of programs were 

being established in ways that did not require electrical engineering departments to make large 

                                                
189 While not explicitly defined, “digital faculty” likely referred to those faculty whose primary research 
and teaching interests were in digital rather than analog technologies and techniques. Later in the report, 
the authors also noted that the presence of a computer engineering option was strongly correlated with the 
number of digital faculty at any given institution (p. 32). 



www.manaraa.com

 230 

teaching or research commitments in computer engineering, digital technology and techniques, 

and related areas. 

The authors concluded the report by boasting that the “[t]he dominant theme of this 

report is the rapid growth of computer engineering in electrical engineering departments in the 

past seven years” (p. 38).190 However, they cautioned that this rapid expansion was probably 

coming to an end, and they issued a number of caveats. To begin with, they used the collected 

survey data to conclude that the presence of computer science departments in colleges of 

engineering tended to inhibit the development of computing engineering options in electrical 

engineering departments.191 The authors also referenced a number of other surveys and studies to 

suggest that computer science degree programs were still being established more rapidly than 

computer engineering options, although they noted that the most rapid growth of computer 

science departments was probably over.192 

Through her dissertation research and a variety of derivative publications, Sloan 

attempted an even more thorough evaluation of “The Impact of the COSINE Committee on the 

Undergraduate Electrical Engineering Curriculum” (1973; 1974). Many of her conclusions are 

worth summarizing here. To begin with, she echoed the last of the COSINE surveys when she 

reported on the general expansion of computer engineering within electrical engineering 

education. More specifically, her research revealed that computer engineering options had been 

established in 16 of 46 (of 35% of) surveyed departments (1974, p. 185).193 Along similar lines, 

she documented impressive growth in the number of computer engineering courses and faculty 

during the COSINE years. As yet another indicator of these trends, she noted that the number of 

                                                
190 In comparative terms, the authors added that “Computer engineering options did not start real growth 
until after 1965 but then developed so rapidly that the mean and median years for establishment of 
computer science departments and computer engineering options are the same, 1968” (p. 33). These were 
certainly impressive statistics, especially given the relative lag between these two educational movements. 
191 They also explained that the presence of computer science departments outside of schools or colleges 
of engineering did not have a similar impact. Further, it is difficult to determine whether the survey data 
showed causation or merely correlation with respect to these trends. 
192 As explained by the authors, “82% of schools without computer science departments do not plan to 
establish one within the next two years” (p. 32). The report also indicated that “the problem of the proper 
place for computer science departments has not been uniformly solved” (p. 32). More specifically, their 
data showed that 33% of computer science departments were in liberal arts colleges, 25% were in 
engineering colleges, and 24% were in other colleges (p. 32). 
193 The results of the larger 1972 survey – which indicated that just under 50% of schools had computer 
engineering options – was probably more accurate than Sloan’s figure of 35%, which was based on a 
much smaller sample. 
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electrical engineering departments teaching computer organization as a subject or course had 

increased from 13% in 1965-66 to 69% in 1971-72 (1973, p. 64). Given these pieces of evidence, 

Sloan summarized that “[t]here has been considerable growth of computer engineering in 

electrical engineering departments along the lines recommended by the COSINE Committee” 

(1974, p. 189). 

But what role did the COSINE Committee play in triggering or shaping these 

developments? The data presented by Sloan suggested that the COSINE reports played a 

particularly important role in ongoing efforts to establish computer engineering courses and 

options, especially as compared to the group’s other activities (Sloan, 1974, pp. 182-183). On the 

other hand, she identified at least three major reasons why the ultimate impact of these 

documents was limited (p. 188). First, she explained that the distribution of the reports was 

relatively haphazard, and that the committee lacked sufficient resources to develop follow-up 

publications, such as textbooks. Second, Sloan added that the reports appeared relatively late, 

especially when compared to the ACM’s recommendations. Third and finally, she noted that the 

COSINE reports featured “different and occasionally conflicting recommendations” (p. 188), 

including guidelines for a total of 23 different courses (Sloan, 1973, p. 62). As Sloan concluded, 

“When compared to the orderly curriculum of ACM 65 and ACM 68, the COSINE curriculum is 

hard to identify” (1974, p. 188). However, she failed to comment on how this ambiguity was 

linked to the group’s reorientation from computer science to computer engineering in the late 

1960s. In fact, like many other “insiders” she retrospectively framed “computer engineering” as 

the committee’s primary concern throughout its history.194  

Sloan’s report also acknowledged some of the areas where the COSINE Committee had 

largely failed to initiate significant change. For instance, she concluded that “COSINE did not 

succeed in increasing computer-oriented material in traditional courses, except for circuits 

courses” (1974, p. 188). As noted above, this was one of the three main goals originally 

articulated by the committee, and the failure to make substantial headway in this area hints at the 

formidable barriers faced by those who wished to make widespread reforms in electrical 

                                                
194 For example, the abstract for Sloan’s 1974 article summarized: “The COSINE Committee, formed in 
1965, recommended that electrical engineering departments develop computer engineering courses” (p. 
179). Elsewhere, she spelled out the group’s original name, yet framed its activities as primarily focused 
on computer engineering. 
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engineering education.195 The committee was also criticized for failing to involve smaller 

schools in its agenda. In fact, the group originally planned to address this problem through site 

visits to smaller and less prestigious schools, but few of these visits ever happened, and those 

that did tended to involve larger institutions (Sloan, 1974, pp. 181-182). As one of Sloan’s 

survey respondents explained, “The actual base of COSINE seems to be a very small fraternity – 

as a result, it may be making recommendations that are inappropriate to many schools” (p. 182). 

The failure of the group to reach out to a larger constituency also helps explain why the 

expansion of computer engineering courses, options, and faculty seemed to be leveling off by the 

early 1970s. On a closely related note, Sloan added that context-dependent considerations such 

as department size and departmental policies against multi-option degree systems probably 

placed an upper limits on the total number of computer engineering options that could be 

established in electrical engineering departments nationwide, at least in the short term (1974, p. 

185). 

Sloan ultimately concluded that there were no clear causal relationships between the 

activities of the COSINE Committee and a variety of larger trends in electrical engineering 

education. Further, she indicated that she was unable to locate any department that had directly 

patterned its curriculum on COSINE recommendations. Sloan was therefore left with the rather 

simple conclusion that the group was visible and that it likely influenced or helped inspire the 

expansion of computer engineering. In fact, her own survey data revealed that the top sources of 

outside influence on the development of computer engineering courses in 46 electrical 

engineering departments included industry (6 responses), graduate schools (6 responses), the 

environment or “local interests” (5 responses), and COSINE (5 responses) (1974, p. 184). Along 

similar lines, Sloan only found a handful of textbooks that closely followed COSINE 

recommendations for course content. On the other hand, she noted that a number of COSINE 

members felt that the group had a favorable impact, although such insider responses are naturally 

highly subjective.196 

                                                
195 In fact, Sloan’s evaluation indicated that the COSINE meetings and workshops had failed to attract 
many faculty members who were not already department heads or self-identified “computer engineers” 
(1974, p. 181). 
196 As Sloan explained, one of the COSINE Committee members felt that the group had significantly 
altered the course of many electrical engineering departments, especially with regard to their involvement 
in computer science and computer engineering. Other members suggested that “the main effect of the 
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In the end, Sloan got to the crux of the problem of causality when she noted that “an 

increase in courses recommended by a committee is creditable to the committee if only because 

the committee were good educational prophets” (1974, p. 188). One is therefore left with a rather 

simple conclusion, namely that the efforts of the COSINE Committee were significantly 

correlated with growth in many areas of computer engineering education. However, addressing 

questions of causality is not the central goal of my project. Instead, for the present analysis it is 

worth emphasizing that the activities of the COSINE Committee and the growth of computer 

engineering education were significantly co-produced, in that they reflected and reinforced one 

another. As a result of this process, computer engineering became an increasingly important 

marker for an expanding domain of electrical engineering education and a growing pool of 

computer-oriented electrical engineers. And while computer engineering was by no means a new 

term or even new domain of activity, from the early 1970s onward it was taking on important 

new meanings and trajectories in the academic sphere. 

Conclusion 

As noted in preceding chapters, by the mid-1960s a “sociotechnical parity” had been 

established in many areas of the computer field. For instance, the ACM and the IEEE Computer 

Group boasted roughly equal numbers of members, and each organization had carved out a 

partially distinct scope and constituency. In addition, hardware and software had emerged as 

markers for two distinct – yet intimately related – domains of technology, knowledge, and 

practice. The present chapter analyzed the historical development of two major spheres of 

computer-oriented education, namely “computer science” and “computer engineering.” Here too 

we find a notable parity. By the early 1970s approximately 54% of more than 200 major 

universities had computer science departments, while only a slightly smaller percentage (49%) 

offered computer engineering options in departments of electrical engineering. And while the 

recommended courses and curricula for educational programs in both of these areas included 

some overlapping subjects, computer science courses and programs clearly tended to tilt toward 

software, applications, and programming, while the dominant mode of computer engineering 

education placed greater emphasis on hardware, design, and digital systems.  

                                                                                                                                                       
committee was to hasten development of computer engineering and of computer-oriented traditional 
courses by one or two years” (1973, p. 62). 
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In summary, the major social and technical schisms that had earlier emerged in the sphere 

of industry and in the system of professional societies were largely reproduced in the educational 

sphere, despite the efforts of many actors to challenge these boundaries. To put it more 

succinctly, computer engineering emerged as a foil to computer science – just as software had 

earlier emerged as a foil to hardware – and each of these two domains was linked to a partially 

distinct disciplinary settlement. Yet as noted above, this process happened neither overnight nor 

without significant struggle. The first phase of this historical trajectory centered on the objective 

of bringing the computer sciences into the fold of electrical engineering education, such as via 

new courses and degree programs. The early agenda and activities of Lotfi Zadeh and the 

COSINE Committee exemplify this approach.  

However, using this strategy to reclaim large swaths of computing as a territory of 

electrical engineering was beset by difficulties. For example, Zadeh’s own efforts to outline the 

contours of computer science “as a discipline” partially undermined his argument that the 

emergent field – or at least large parts of it – should be brought into electrical engineering. 

Further, this strategy suggested that such an amalgamation might challenge the respective 

dominant image of computer science as an independent discipline and electrical engineering as 

first and foremost a part of the engineering profession. In fact, Zadeh even went so far as to 

suggest that the electrical engineering field be renamed, while the 1967 COSINE report added 

that electrical engineering departments might grant dedicated degrees in computer science. Given 

the potential for such changes to generate disciplinary and professional instabilities, these 

proposals were surely a source of much anxiety, both for the proponents of computer science and 

the conservative old guard of electrical engineering education. And indeed, the events that 

unfolded at schools such as Berkeley and the University of Pennsylvania in the late 1960s and 

early 1970s revealed what kinds of disruptions were possible when the competing agendas of 

engineers and computer scientists came into direct contact and conflict. 

In light of these challenges, we find that from the late 1960s onward the agenda and 

activities of the COSINE Committee were reoriented. In fact, COSINE publications and other 

sources reveal that the group’s identity and history were rather swiftly reframed under the guise 

of “computer engineering.” In a sense this change was largely rhetorical, especially given that 

relatively few electrical engineering departments were making concerted moves at the time to 

bring large swaths of computer science within their purview. However, the expanding roster of 



www.manaraa.com

 235 

COSINE reports did provide useful guidance and inspiration for engineering educators. The 

group’s 1970 curriculum recommendations, for example, emphasized the extent to which a 

computer engineering “option” could be integrated into existing electrical engineering programs, 

including through new courses and offerings from other departments. These adjustments made 

moving into computer engineering a more tractable and appealing prospect for many 

departments. Further, the emergence of computer engineering courses and options was a pivotal 

development, as it seemed to bring the academic sphere into closer alignment with the scope and 

orientation of the IEEE Computer Society, the various divisions of labor that were increasingly 

prevalent in the private sector, and the sociotechnical boundaries of hardware and software. 

Of course, one might question why the major goals outlined by the COSINE Committee 

did not emerge and gain traction earlier. After all, the preceding chapter revealed that 

commentators such as Rideout and Scott were describing computer-oriented programs in 

electrical engineering by the late 1950s and early 1960s, and a handful of universities were 

blazing important new trails in this area. Yet widespread change in engineering education is 

often notoriously slow and difficult, and the field of electrical engineering is no exception. It was 

increasingly evident from the late 1950s onward, for instance, that electrical engineering 

educators were moving slowly with regard to both incorporating computer use into a broad range 

of courses and providing students with a more balanced exposure to analog and digital 

technology. Further, it did not appear highly problematic that computer-oriented research and 

education was uneven from school to school, especially given that most electrical engineering 

departments only faced modest competition for students and resources from other academic units 

or colleges. In addition, resource restrictions meant that most departments could only move into 

some limited number of sub-disciplines and specialties, and so it was quite natural that some 

embraced and others avoided computer design and engineering. And finally, it is worth noting 

that the aforementioned Carr alleged in the late 1960s that industry had actively blocked 

university research and educational activities in some areas of “computer equipment and 

engineering.197 

                                                
197 At the 1967 Stony Brook conference, the aforementioned John W. Carr III argued that computer 
science never willingly left the area of “computer equipment and engineering.” As Carr explained, “I 
think that everyone knows that the large computer manufacturers have done everything possible to 
abolish computer engineering within the universities. Anyone who has tried to get a grant for study of 
computer hardware – as a colleague of mine did for $10,000 and then had a large computer corporation 
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To be sure, a variety of factors contributed to the overall lack of university education and 

research in many areas of computing. However, the growth of computer science departments and 

programs reconfigured the disciplinary and institutional landscape in ways that many electrical 

engineering educators could no longer ignore. And despite the partial success of the COSINE 

Committee in responding to the rise of computer science and challenging the status quo of 

electrical engineering education, the future of computer engineering was by no means assured. It 

was rarely referred to or defined as a distinct discipline or field, for example, which revealed that 

it remained at least partially circumscribed and subservient to the electrical engineering 

profession writ large.198 Further, there remained important points of contestation and overlap 

between computer engineering and computer science, especially in the academic arena. And 

whether these disciplinary settlements were sustainable in the long run remained an open 

question, especially in light of ongoing and dramatic changes in the technology and knowledge 

of computing. 

After the COSINE Committee wrapped up its activities in 1972, a handful of 

commentators commented on the future of computer engineering. Coates, McCluskey, and 

Sloan, for example, insisted that the “expansion of computer engineering programs should still 

occur” (1973, p. 38). However, these authors recognized that numerous barriers stood in the way 

of realizing their vision. They explained, for instance, that “the reluctance of many electrical 

engineering departments to move into software, even into software engineering, may handicap 

their growth relative to computer science departments as the balance between hardware and 

software activities continues to shift” (p. 38). Sloan similarly noted that “most electrical 

engineering departments … had not been swayed by attempts of the COSINE to promote 

software, or what they termed ‘software engineering’” (1974, p. 184). As I discuss in the 

                                                                                                                                                       
go to Washington and insist that this was now a function of the manufacturer – should make known this 
fact. I disagree heartily with the statement that people have gone outside the area of computer engineering 
voluntarily. We were forced, dragged kicking and screaming, away from computer equipment. If anyone 
wants to support my organization with funds to create some really imaginative computer equipment, I 
would certainly appreciate knowing of such sources” (quoted Oettinger, 1968, p. 38). Additional evidence 
for Carr’s claim is difficult to find. However, the close collaboration between the COSINE Committee 
and industry suggests that this type of resistance was likely fading by the late 1960s and early 1970s. 
198 In fact, others had noticed the peculiar historical arc of “communication engineering.” As engineer S. 
Seshu explained in a 1963 panel discussion, “The division of electrical engineering into branches thirty 
years ago was effected to permit the communication engineers to develop. Later we abolished the division 
when communication engineering matured, in order to pull up the others” (Cruz, 1963, p. 158). It was 
entirely possible that computer engineering would meet a similar fate. 
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following chapter, emergent areas such as “software engineering” were increasingly important 

domains of disciplinary negotiation at the intersection of computer science and computer 

engineering. Yet this was not the one among many points of overlap between the two fields. In 

the following chapter, I discuss how both the ACM and the IEEE made parallel moves into other 

emergent domains, including “computer architecture” and microprogramming.  

There also remained questions about who would carry forward the torch of the COSINE 

Committee. Sloan, for example, noted in her 1974 evaluation of COSINE that the group had 

disbanded without successfully transferring its functions to another organization, such as the 

Education Committee of the IEEE’s Computer Society. In fact, she suggested that this alternate 

group was largely ill-equipped for such a task, especially given that it lacked resources, met 

infrequently, and was not working with a liaison from the COSINE Committee (Sloan, 1974, p. 

182). Yet by 1974 the Computer Society’s Education Committee had launched its own efforts to 

develop an undergraduate curriculum in “Computer Science and Engineering.” As one member 

of the group explained, a major goal of this effort was to “bridge the tar pit” that existed at the 

intersection of computer science and computer engineering education (Mulder, 1975).  

One might find the committee’s use of the compound phrase “computer science and 

engineering” somewhat surprising, especially given that many members of the COSINE 

Committee had strenuously emphasized that there were important distinctions to be made 

between computer science and computer engineering, especially in the educational context. In 

subsequent chapters I follow this issue into 1970s and 1980s, with particular emphasis on the 

competing forces of disciplinary integration and fragmentation that persistently swirled around 

the sociotechnical milieu of “computer science and engineering.” 
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Figure 6.1 – Hardware vs. Software: The Two Faces of Computers 

(Jensen, 1973, p. 14) © 1973 IEEE  
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Chapter 6 

Janus-Faced Technology, Janus-Faced Field: 

(Re)Negotiating the Sociotechnical Settlements 

 

 

 
The November, 1973 issue of Computer was topically dedicated to “hardware vs. 

software: the two faces of computers.” Building on rich metaphorical foundations, the issue 

featured prominent graphical representations of Janus, the well-known Roman god of gates, 

doorways, beginnings, and endings who is often depicted with two faces gazing in opposite 

directions. In the suitable, high-technology revision of this mythology shown in Figure 6.1, an 

image of Janus – holding his traditional key and staff – was placed against a backdrop of circuit-

boards, logic gates, and flow-chart symbols (Jensen, 1973, p. 14). The “two face” title and 

associated graphics revealed the extent to which computer systems could be viewed as coherent 

entities, albeit with distinct software and hardware “faces.” This metaphor had much in common 

with the Humpty Dumpty analogy discussed in Chapter Four, which the editors of Datamation 

had trotted out in the mid-1960s. Yet the Janus image was arguably even more apt, given that it 

so effectively captured how the computer field was simultaneously – and perhaps paradoxically 

– both united yet divided, integrated yet fragmented.199 

An introductory article authored by guest editor E. Douglas Jensen further described how 

the major themes of the special issue were related to the accompanying imagery. He started by 

explaining that the “interface” between operating systems and “computer architecture” was 

historically very “one-directional” and “unbalanced” (Jensen, 1973, p. 15).200 Claiming that rapid 

                                                
199 Other historians of computing have found similar value in the Janus metaphor. Edwards, for example, 
states that “[c]omputers display, Janus-like, a double aspect. They consist simultaneously of hardware, 
whose heritage lies within the history of technology, and software, whose ancestry lies in mathematics 
and formal logic” (1996, p. xii). According to Edwards, this insight also helps explain the existence of a 
long divide in the history of computing between those accounts that focus on hardware and those that 
look at software. And like Edwards’, I see my own analysis as challenging this historiographic divide. 
200 As I discuss in more detail below, the term “computer architecture” generally refers to the fundamental 
operational structure of a computer system. 
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technological developments – such as in the area of semiconductors – were tending to further 

accentuate the divide between hardware and software, Jensen called for the establishment of a 

more “symbiotic relationship between the operating system and the architecture, which requires 

bidirectional interaction between the two disciplines from the outset of computer design” (p. 15). 

The author’s conflation of technology and discipline in this passage is telling, as it once more 

revealed the persistent intertwining of the social and technical, especially in discussions about 

the evolving relation of software and hardware.  

However, actually achieving this type of “bidirectional interaction” was a challenging 

proposition. In fact, for almost two decades a variety of outspoken commentators had 

complained about the barriers that stood between hardware and software, computer designers 

and users. And despite both rapid technological change and ongoing discussions about how to 

bridge or even overcome these boundaries, Jensen’s remarks suggest that the historical status quo 

had largely prevailed, even into the 1970s. And indeed, preceding chapters provide substantial 

support for this claim by documenting the evolving Janus-faced character of various worksites, 

educational settings, discourses, and technologies, especially from the 1950s into the 1970s. 

Yet in previous chapters I largely sidestepped the parallel historical evolution of the 

major professional societies that maintained settlements in the computer field. The present 

chapter fills in this gap by focusing on the activities of the IEEE Computer Group – renamed the 

Computer Society in 1970 – from the mid-1960s into the 1980s. More specifically, I emphasize 

how various structures and processes of sociotechnical mediation both emerged during this 

period and helped maintain a modicum of stability, both within an expanding Computer Society 

and between the Computer Society and other groups, such as the ACM. By selectively enabling 

various flows of information, technical knowledge, people, and power, these structures and 

processes helped enable the emergence of an increasingly Janus-faced system of professional 

societies that consisted primarily of the Computer Society and ACM. Hence, the respective 

sociotechnical settlements claimed by these two groups moved toward unprecedented levels of 

overlap and interpenetration. In fact, I argue that the evolving relation of these two organizations 

bore an increasingly striking resemblance to the evolving relation of hardware and software. To 

put it another way, this chapter brings into further relief the coproduction of technologies and 

professional societies. 
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From Computer Group in Crisis to a More Autonomous Computer Society  

As discussed in Chapter 3, by the mid-1960s a kind of parity had been established 

between the ACM and the IEEE Computer Group. Each society boasted more than 10,000 

members, and they cooperated as peer organizations in AFIPS and the Joint Computer 

Conferences. These groups also claimed sociotechnical settlements that were partially distinct, 

yet also partially overlapping. As Willis Ware nicely summarized in 1963, “The IEEE is largely 

the hardware population of the computing field, and the ACM, largely the software population 

which has grown into information processing through scientific computing” (p. 42). Yet despite 

the apparent balance and stability that had been achieved in this “system of professional 

societies,” countervailing forces were omnipresent. As noted previously, the joint conferences 

were increasingly dominated by ACM members and interests in the early and mid-1960s, and the 

leaders of the ACM were working hard to expand the group’s membership, scope, and influence. 

Much of the “hardware population” of the field, on the other hand, was distracted by formation 

of the IEEE Computer Group out of the AIEE CDC and IRE-PGEC. And as the dust settled in 

the wake of this merger, many commentators felt that the state of the emergent organization was 

underwhelming, especially when compared to the ACM. 

Anxiety about the position and future of the Computer Group was particularly evident in 

a series of letters and position pieces that were published in early issues of the Computer Group 

News. Established in 1966 and bearing a general resemblance in form and purpose to the 

Communications of the ACM, this new periodical was intended as an outlet for news, tutorial 

papers, summaries, and other material not suitable for publication in the more technical 

Transactions on Electronic Computers. Computer Group chair Samuel Levine opened the first 

issue with an appropriately anxious tone when he stated that “[t]he Computer Group faces a 

basic challenge in maintaining its role as the leading professional computer engineering society. 

Its membership has been relatively static in the past few years in spite of the continued rapid 

growth of the industry” (Levine, 1966). Levine went on to explain that this challenge was being 

met in a number of ways, including by publication of the News, broadening the technical 

coverage of Transactions, and initiating an aggressive membership drive. He also stressed the 

importance of the Computer Group’s technical committees, especially as the organization moved 

into new areas of interest. As Levine explained in a subsequent letter, the “[a]ctivities of the 
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Technical Committees should reflect the changing scope of the theory and practices of computer 

sciences” (Levine, 1967a). I return to this theme in more detail below. 

The Group also organized and executed its First Annual IEEE Computer Conference in 

1967. Officially described as “a forum to meet the specialized requirements of the Computer 

Group Membership,” the conference featured 38 papers and attracted more than 450 attendees 

(“First Annual,” 1967; “Report on the Chicago Gathering,” 1967). And according to a follow-up 

report published in Datamation, the event “was planned to fill what was felt to be a void in 

conferences for hardware specialists” (“Panels Feature,” 1967, pp. 109-110). As suggested by 

this overview, the first Computer Group conference was a symbolically important development. 

On the one hand, the leaders of the Computer Group likely viewed existing events – such as the 

joint computer conferences – as neither fully in tune with their needs nor amenable to reform. On 

the other hand, initiating a new annual conference created yet another point of parity between the 

Computer Group and the ACM, the latter of which had been planning and holding its own annual 

meetings since its formation in 1947. 

The conference therefore stood as a renewed symbol of independence, both for the 

Computer Group and its primary constituency of computer-oriented engineers. But the event also 

revealed persistent undercurrents of anxiety, especially as the participants took stock of their 

position in the computer field. Even before the event started, for example, a pre-conference 

digest set an appropriately introspective tone: “Due to the rapid growth of computer technology 

during the past decade, many people in the computer industry as well as academic institutions are 

confused about the role a modern electrical engineer should play in the computer field” (“First 

Annual,” 1967, p. 1). In light of such concerns, the schedule included a panel session on 

“Computer Science in Electrical Engineering Curricula,” which drew an impressive 300 

attendees (“Report on the Chicago Gathering,” 1967). According to one post-conference report, 

the resulting discussion closely paralleled other 1960s-era debates about computer science 

education, as documented in the preceding chapter. Well-known computer scientists like George 

Forsythe and Alan Perlis, for example, lobbied for the independent development of computer 

science as a discipline and in separate academic departments. Electrical engineering educator and 

COSINE member Mac Van Valkenburg, on the other hand, used the panel to emphasize both the 
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historical and prospective role of electrical engineering departments in computer science and 

associated areas.201 

Related themes surfaced at a second, smaller panel discussion at the conference that was 

topically dedicated to “The Role of Electrical Engineers in Computer Science” (“First Annual,” 

1967, pp. 3-4). Reflecting the dominant image of the field’s major sociotechnical factions, one 

report summarized that the panel was focused on “the touchy subject of the relationship between 

hardware and software (and their human representatives)” (“Panels Feature,” 1967, p. 109). 

Another post-conference session report made an even more suggestive claim, namely that “the 

electrical engineer in computer science may be … a vanishing breed” (Fife, 1968, p. 20). This 

same report indicated that the panelists discussed a number of possible future roles for engineers 

in the computer field, while placing particular emphasis on increasing levels of specialization, 

systems-oriented work, and cross-disciplinary collaboration. They also discussed the engineer’s 

role in the “messy” area of software, and one panelist noted that developing “more hardware” 

and enhancing the ability of engineers to deal with hardware/software trade-offs might provide 

some relief in this area. A final topic of discussion centered on the future role of the Computer 

Group, as well as its relationship with the ACM. And while the association of these two groups 

was described as one of possible “rivalry” or “competition,” the panelists ultimately concluded 

that “it was the responsibility of Group Members, by active participation, to make the Group into 

whatever would serve them best” (Fife, 1968, p. 20).  

Such remarks implied a bottom-up, democratic model for a professional society, where 

the group’s larger scope and agenda ultimately reflected the will of its members. While this view 

was perhaps valid to a point, the leaders of the Computer Group were also stepping forward 

around this time with their own ambitious visions for the organization. One snapshot of this 

movement can be found in a planning document that was authored by Levine and published in 

1968 in the Computer Group News (Levine, 1968). The former chairman started by once more 

noting that “the Computer Group has not advanced in pace with the rapid growth of the computer 

industry,” and he added that “independent professional Societies in the computer field have been 

                                                
201 One conference report credited Van Valkenburg with delivering an especially witty attack on the 
proponents of computer science: “Van Valkenburg, who said he had been told in Russia that the drink 
was ‘Vodka and’; Vodka alone, he was told, is colorless, odorless and tasteless. Taken with something 
else – caviar, for instance – it becomes exciting. So it is with computer science, which, alone, is colorless, 
odorless, tasteless. With EE it becomes palatable” (“Panels Feature,” 1967, p. 109). 
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progressive and effective, both in terms of growth and providing service to their membership” (p. 

16). Levine went on to argue that the group needed to reach beyond the “computer designers and 

systems engineers” who traditionally dominated the organization’s membership roster. And 

indeed, a personnel survey conducted in 1968 and published in 1969 revealed that approximately 

79% (or 7309 of 9310) of responding Computer Group members held engineering degrees 

(Davis, 1969, p. 7), while another report indicated that around 46% of Computer Society 

members were working in the hardware engineering area by the late 1960s (“Computer Society 

Members,” 1972).202 

  In order to stimulate additional growth, Levine claimed that the Group should be 

concerned with “all facets of computer technology” (p. 17), and he noted that the organization 

was beginning to make concerted moves into software and applications. He also explained that 

the group’s prospective members should include “professionals in electrical engineering, related 

engineering disciplines, computer science, programming and systems engineering” (p. 17). Such 

statements revealed the extent to which the Computer Group’s ambitions increasingly extended 

beyond the province of “computer design and engineering,” even to the point of including 

various pools of computer professionals who were much less likely to hold engineering degrees. 

Levine also argued that “the Group should strive to become a semi-autonomous Society 

within the IEEE,” thereby increasing its prestige, enhancing its appeal to those from a variety of 

disciplines, and providing the group with greater operational flexibility and better financial 

resources (p. 18). He added that such a move “would provide a basis for attracting other 

organizations to merge with the Group; for example one has indicated receptiveness to merge 

with the Computer Group if it is established as a semi-autonomous organization within the 

IEEE” (p. 18). While Levine refrained from identifying the organization in question, elsewhere 

he noted that it was desirable for the Computer Group to explore various merger possibilities, 

both within and beyond the IEEE.203 

                                                
202 When asked about occupational specialties on this same survey, the “Circuit, Component, and Logical 
Design” and “Systems Engineering Design” categories received the largest number of member responses. 
However, reasonably large numbers of members expressed involvement in other relevant areas of 
activity, such as “Systems Programming” and “Scientific and Engineering Applications.” 
203 Evidence suggests that the organization in question was the Simulations Councils, Inc. In a short 
interview with incoming IEEE President Albert Hoagland published in 1972, one question noted that 
“[t]here has been some talk that the Simulations Councils, Inc. may merge with us” (Hoagland, 1972a). 
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Succeeding chairmen largely advanced Levine’s agenda. Electrical engineer and 

consultant L. Charles (Charlie) Hobbs, for example, started his tenure as chairman with a letter 

noting that Computer Group’s Administrative Committee (or “AdCom”) was continuing to 

grapple with questions about the organization’s “proper purpose, identity, image, and course of 

action” (Hobbs, 1968a). Further, he emphasized that the Group occupied a rather “unique 

position,” sandwiched as it was between the IEEE and the rest of the computer field. And later 

the same year, he noted that the Group was ramping up a number of new programs, including 

expanded conference and publication activities, the establishment of new regional and technical 

committees, and moves toward greater operational autonomy (Hobbs, 1968b). When Edward 

McCluskey took over as chair in 1970, he placed particular emphasis on expanding Technical 

Committee activities and attracting new members to the group. In fact, McCluskey declared in 

his first letter in Computer Group News that 1970 was “The Year of the Opening,” and he 

clarified by calling for “an opening of Group membership to a new type of colleague, an opening 

of technical committees to new types of members and activities” (McCluskey, 1970a, p. 3).  

Yet a number of stubborn barriers stood in the way of realizing these objectives. As 

McCluskey was forced to acknowledge, there were persistent concerns that “the Computer 

Group would fail to realize its full potential as THE professional society for computer engineers 

as long as membership was restricted to those individuals willing and able to qualify as IEEE 

members” (p. 2). In order to address this issue, he noted that plans were being formulated to 

allow individuals to become members of the Computer Group without also having to join the 

IEEE. One important step toward realizing this goal came later in the year, when McCluskey 

announced that the IEEE had tentatively approved the Computer Group’s petition for Society 

status (McCluskey, 1970b).  

McCluskey also identified how this change was beneficial on at least two major levels.  

On the one hand, he noted that the Society’s enduring affiliation with the IEEE provided 

uninterrupted service to the group’s traditional constituency, namely “electrical engineers 

specializing in computers.” On the other hand, he explained that associated changes would allow 

the group to better serve “that newer type of professional who regards himself [sic] as a 

computer engineer or scientist rather than an electrical engineer.” McCluskey concluded his 

announcement by extending “an enthusiastic invitation to all who consider themselves computer 

scientists or engineers to join the IEEE Computer Society” (1970b). Such remarks reveal the 
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ongoing emergence of a distinct disciplinary identity for computer engineers and computer 

scientists, while also suggesting an ongoing differentiation of computer engineering and 

electrical engineering. However, many questions remained about whether these boundaries 

would deepen and expand, shift, or even fade away. 

The transition from Group to Society status also led to changes in the organization’s 

Constitution, and a number of these are worth highlighting here. To begin with, the 1965 version 

of the constitution included a statement of objective which indicated that “[t]he Group shall 

strive for the advancement of the theory and practice of the computer sciences” (“IEEE 

Computer Group,” 1965, p. 2). The 1970 revision, on the other hand, stated that “[t]he Society 

shall strive to advance the theory and practice of computer and information processing 

technology” (“Provisional IEEE Computer Society,” 1970, p. 33). As suggested by these 

passages, the leaders of the group were toning down their use of terms such as “computer 

science,” which their predecessors had eagerly embraced in the mid-1960s. And by emphasizing 

words such as “technology,” they returned to what had long been recognized as the 

organization’s core focus.  

The revisions also involved a significant adjustment to the Society’s statement of scope. 

More specifically, the detailed five-part statement that appeared in the 1965 Constitution was 

dramatically simplified: “The scope of the Society shall encompass … [a]ll aspects of design, 

theory, and practice relating to digital and analog devices, computation and information 

processing” (“Provisional IEEE Computer Society,” p. 33).204 This broad-brush declaration 

strongly reflected ongoing efforts to expand the group’s settlement into diverse domains. One 

final Constitutional change worth noting involved the rhetorical elevation of the group’s 

“Chairman” and “Vice-Chairman” posts to “President” and “Vice-President.” While this may 

appear a minor change in terminology, it was symbolically important because it created yet 

another point of parity between the Computer Society and the ACM.205 

                                                
204 This revision had much in common with the first section of the old statement, which declared that the 
group’s scope covered “[a]ll aspects of design, theory, and practice relating to systems for digital and 
analog computation and information processing” (“IEEE Computer Group,” 1965, p. 2). 
205 I realized the importance of this point in a recent conversation with Ed McCluskey. When I referred to 
him as a former chairman of the Computer Society, he quickly corrected me by noting that he had been a 
President of the organization. As McCluskey explained, “This was a big deal! Because the ACM had a 
President” (McCluskey, 2005). 
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In summary, the transition from Computer Group to Computer Society was an important 

turning point for this organization. In fact, some of the earliest calls to elevate the status and 

improve the autonomy of the group can be traced back to at least 1963 and 1964, when the AIEE 

CDC and IRE PGEC were merged with one another. And a variety of subsequent leaders – 

including Levine, Hobbs, and McCluskey – helped keep this reform movement alive through the 

1960s and into the 1970s.206 In more forward-looking terms, realizing Society status was highly 

synergistic with many of the other goals that had been set for the organization, such as attracting 

new members, building up the technical committees, nurturing new conferences, and expanding 

publications. Yet as one might suspect, the Computer Society’s enhanced autonomy and rising 

aspirations raised new questions, both about its role in the computer field generally and its 

relations with the IEEE and ACM more specifically. In the sections that follow, I document how 

new processes and structures of sociotechnical mediation helped maintain stability in this system 

of professional societies. In fact, this stability is all the more impressive given the many 

destabilizing forces – ranging from frenetic growth to rapid technical change – that increasingly 

pervaded all phases of the field. 

Expansion and Identity, Merger Talks and Mediation (Part I) 

By the late-1960s, ongoing efforts to expand the Computer Group’s membership started 

to bear fruit. To begin with, the group claimed approximately 10,000 members at the beginning 

of 1966, and more than 11,000 by 1967 (Levine, 1967b; Levine, 1968). In early 1968, chairman 

Hobbs boasted that the group’s membership had passed the 12,000 mark, making it “the largest 

group in the IEEE” (Hobbs, 1968a). And by March of 1969, membership chair Tom Lindsay 

indicated that the membership had risen above 15,000, largely through ongoing efforts to recruit 

new group members from the ranks of the IEEE writ large (Linday, 1969). Growing the 

organization by 5,000 members in less than five years was an impressive feat. Yet as 

commentators such as Levine and McCluskey argued, a much larger pool of prospective 
                                                
206 In February of 1964, for example, chairman Walter Anderson suggested that the group be renamed the 
“Society for Electronic Computers.” As Anderson explained, “We continue firm in our belief that a 
change in the group designation should include the replacement of the word ‘Group’ with one which 
signifies a larger organization” (Anderson, 1964a). And in April of the same year, Anderson noted that 
the group’s proposed constitution and bylaws included the name “Society for Computer Sciences” 
(Anderson, 1964b). At the end of the year, however, incoming chairman Keith Uncapher announced that 
the “Computer Group” name was official, at least until the IEEE overhauled its nomenclature (Uncapher, 
1964b). 
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members lay outside of the IEEE, and reaching out to them was an important long-term growth 

strategy. An appropriate affiliate or joint membership plan was sorely needed, so that individuals 

without engineering degrees or interests could join the Computer Group, but not the IEEE. 

In the early 1970s, the Computer Society’s increased autonomy and improved relations 

with the ACM helped set the stage for a new affiliate membership plan, while also triggering 

discussions about the more radical possibility of a merger. As incoming Society President Albert 

Hoagland explained in early 1972, “[W]e need to further explore the possible gains from closer 

working relations with the ACM” (Hoagland, 1972a). And just a few months later, a brief 

interview with Hoagland that appeared in Computer Group News more explicitly raised the 

question: “Should we merge with the ACM and leave the IEEE?” (Hoagland, 1972b). As 

Hoagland explained, survey data suggested that roughly one third of Computer Society members 

were also affiliated with the ACM. However, he added that approximately 75% of Computer 

Society members also belonged to other societies or groups within the IEEE. Once again, these 

data hinted at the extent to which the Computer Society was situated in a rather unique and 

perhaps even uncomfortable situation, sandwiched as it was between the IEEE and ACM, as well 

as a handful of other groups and societies. 

Acknowledging the overlapping settlements claimed by these two groups, Hoagland also 

explained that the ACM and the Computer Society maintained “mutual areas of interest,” yet he 

cautioned that “we don’t compete directly with the ACM, nor should we.” Hoagland added: “I 

don’t believe a ‘conglomerate’ computer society would better serve the diverse interests of 

professionals in the field, although the bureaucratic potential may appeal to some.” Perhaps not 

surprisingly, these remarks helped generate substantial follow-up debate and discussion. In the 

next issue of Computer Group News, for example, one letter to the editor argued that the 

Computer Society should leave the IEEE, yet the author added that “going to the ACM seems to 

be a cop-out” (Hettinger, 1972). Yet another letter similarly spoke out against a possible merger 

of the Computer Group and the ACM (Macnaughton, 1972). However, the author called for 

more interaction between the two groups, and he outlined some of the specific ways in which 

this might be accomplished. 

By early 1973 the ACM and the Computer Society were moving even closer, as reflected 

in a swapping of Presidential messages. In his editorial that was published in the January 1973 

issue of Computer (formerly the Computer Group News), ACM President Tony Ralston noted 
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the “current close relations” between the two groups, and he explained that around 5000 

individuals were probably members of both societies (Ralston, 1973a). He suggestively added: 

At one time it may have made sense to characterize the Computer Society as the 

‘hardware’ society and ACM as the ‘software’ society but it is doubtful that this 

makes sense any longer. Not only is the distinction between hardware and 

software becoming increasingly blurred by things such as microprogramming but, 

more significantly, it is becoming impossible for most ‘software’ people to do 

their jobs properly in ignorance of hardware or vice versa (p. 1). 

Such passages once more revealed the extent to which the boundaries around the Computer 

Society and ACM remained deeply intertwined with both the contemporary state of computer 

technology and the actual practice and identity of professionals in the field. In fact, the ultimate 

justification for keeping the Computer Society and the ACM separate was in part called into 

question by ongoing technological changes, which made it increasingly apparent that the 

boundaries around hardware and software were neither obvious nor fixed. 

In this same letter Ralston also explained that a special ACM committee had been formed 

to explore the Association’s relationship with the Computer Society. Further, he discussed how 

cooperation between the two groups might be improved on four different levels. The first of 

these centered on a developing a range of specific activities, such as distributing publications to 

the members of both groups, providing cross-over discounts for conference registrations and 

publications, and expanding joint sponsorship of conferences and workshops. A second and 

somewhat higher level of cooperation involved coordinating and possibly even merging various 

Computer Society Technical Committees with counterpart Special Interest Groups in the ACM. 

Third, Ralston spoke to the possibility of a joint or affiliate membership plan. And fourth, the 

ACM President pointed to the prospects of a complete merger of the two organizations, although 

he identified a series of prerequisite conditions that would need to precede such a development.  

The following month, a message from the Computer Society’s President was published in 

the Communications of the ACM. And like Ralston, Hoagland hinted at the extent to which 

reevaluating the relationship between the two societies was significantly linked to larger currents 

of sociotechnical change: 

The growing interrelationship between hardware and software activities in the 

computer field has made this relationship a subject of active interest recently – 
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since the Computer society is identified as primarily serving the engineering 

community while ACM does the same for programming (1973, p. 67). 

Hoagland went on to describe the relation of these two group as complementary rather than 

competitive, and he once again spoke to the value of “bridge building” activities. In fact, he 

announced that the Computer Society had approved its own affiliate membership plan, with the 

ACM recognized as the first qualified affiliate society. For a discounted rate, ACM members 

could joint the Computer Society while foregoing membership in the IEEE. Hoagland also noted 

the possibility of a merger, and he explained that the required negotiations would necessarily 

involve the ACM, the Computer Society, and the IEEE. He also cautioned that none of the 

groups “at this time sees an imperative for merger in terms of its own self-understood roles and 

goals” (1973, p. 68). Yet regardless of questions about the feasibility or desirability of such a 

merger, Hoagland’s comments revealed the extent to which the more autonomous and 

independent Computer Society was increasingly positioned between the IEEE and the ACM. 

It is also worth underscoring the extent to which the identity of the Computer Society and 

its members and activities remained significantly linked to computer system design and 

engineering, especially through the mid-1970s. For example, Stephen Yau – who served as the 

group’s President in 1974 and 1975 – frequently couched the identity and scope of the Computer 

Society in the terms of “computer engineering.” And in one of his Presidential messages to the 

membership, Yau noted that the Society should “aim at serving all computer engineering 

professionals rather than only those with qualified backgrounds in electrical and electronic 

engineering” (Yau, 1974a). While this comment may initially appear confusing, it suggests that 

Yau was using the term “computer engineering” to cover a rather broad array of computer 

professionals, including many programmers and computer scientists who did not happen to hold 

engineering degrees. On the other hand, such remarks hinted at thorny questions about whether it 

was appropriate to frame this array of professionals as falling within the province of engineering. 

The shifting identity of the Society and its members was also evident in its publication 

offerings and conferences. In late 1972, for example, the group’s Computer magazine was given 

a new byline: “The Voice of the Computer Design Professional.” But as one reader complained 

in a follow-up letter, the phrase was misleading given that “the majority of subscribers to 

Computer are involved in software, not in design” (Viehman, 1973). In light of such concerns the 

editors quickly adopted a new byline that read “The Voice of the Computer System Design 
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Professional,” and they explained that “The motto ... had been amended to more accurately 

reflect the magazine's concerns in both the software and hardware areas” (Viehman, 1973). 

The topical orientation of the Society’s conference series provides another window into 

these themes. In 1971, for example, the fifth annual meeting was dedicated to the topic of 

“Hardware/Software/Firmware Trade-offs” – a clear reflection of the group’s presence on the 

major boundaries of the computer field.  In 1972 this same conference was given the catchy new 

“COMPCON” name, and was also topically dedicated to “Innovations in Computer Systems 

Design.” As declared in a pre-conference report, this event was “THE conference on computer 

system design and engineering, both in hardware and software development” (“COMPCON,” 

1972). While other groups surely maintained overlapping interests with the Computer Society in 

many areas of hardware and software, emphasizing terms such as design, engineering, and 

development helped mark the group’s sociotechnical settlement as partially proprietary. 

Around this same time, a committee was formed to evaluate the conference series and 

establish a more consistent identity for the events. As committee member Rex Rice explained in 

a 1973 report, the event should primarily serve “system designers,” and should not duplicate 

ACM or AFIPS events. Further fleshing out the conference’s preferred “character,” he added: 

On the one hand we can consider applications studies insofar as they affect 

architecture, and on the other hand we can delve into components and their use so 

long as we do not stray into the physics of device design. Between these extremes 

is ample room for software subjects, hardware subjects, circuit considerations, 

and many component subjects (Rice, 1973, p. 15). 

Here we find yet another expression of the group’s settlement, in this case positioning it squarely 

between end-user applications, on the one hand, and end-user applications, on the other. This 

statement also continued a longer historical trend of excluding from the group’s purview those 

topics that were neither directly nor obviously related to the design of computer systems or 

components. In fact, and as noted above, such efforts can be traced back to the mid 1950s. 

Yet despite these questions about the identity and orientation of the COMPCON series, 

these conferences appeared effective in bringing together the Computer Society’s core 

constituency, namely computer system designers and engineers. Further, the continued success 

and vitality of the Computer Society’s conference series was reflected in the shift to a bi-annual 

schedule beginning in 1974. Around this same time, the celebrated Joint Computer Conferences 
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were experiencing a sharp decline in attendance and revenue.207 In fact, the long tradition of 

organizing two JCCs per year was ultimately deemed unsustainable, and beginning in 1974 the 

event was rechristened the National Computer Conference (NCC) and held just once per year. 

Indeed, the parallel rise of the COMPCON series and decline of the joint computer conference 

series is no historical accident. These events were surely competing with one another, and groups 

such as the Computer Society and ACM were ultimately committed to their own events.  

It is further worth underscoring how the shifting landscape of computer conferences both 

reflected and reinforced a more general reconfiguration and renegotiation of the Computer 

Society’s relation with the ACM from the late-1960s through mid-1970s. As discussed in 

Chapter Three, the Joint Computer Conferences, National Joint Computer Committee, and 

AFIPS had served as important common points of contact and negotiation for a system of 

professional societies that principally consisted of the ACM, IRE PGEC, and AIEE CDC. Yet as 

the scope, membership, and aspirations of both the ACM and the IEEE Computer Group/Society 

expanded from the mid 1960s onward, the joint conferences and AFIPS became less important in 

this system. To put it another way, the importance of these groups and events as “sociotechnical 

mediators” went into a period of decline.  

The leaders and members of the Computer Society and ACM therefore increasingly 

sidestepped these organizations and conferences, and instead started to rely on more direct 

structures and processes of mediation. In fact, Ralston’s remarks in particular hinted at how this 

mediation was being worked out on a number of different levels, ranging from joint publication 

initiatives and conference registration deals to affiliate membership plans and the coordination of 

committee activities. There also remained the possibility that the Computer Society might one 

day split off from the IEEE or even merge with the ACM. In the sections that follow I trace 

forward the Computer Society’s expanding sociotechnical settlement, as well as its evolving 

relationship with other organizations. 

Sociotechnical Expansion and Mediation: New Committees for Emergent Fields 

By the late 1960s, the Computer Society was evolving through two distinct mechanisms. 

The first of these involved the group’s expanding settlement, especially in terms of its 

                                                
207 In 1972, for example, Computer Society President Albert Hoagland noted “[t]he present downturn in 
the fortunes of the JCCs” (Hoagland, 1972a). 
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membership, scope, and activities. A second type of mechanism is more aptly captured by terms 

such as mediation and negotiation. On the one hand, various processes and structures of 

mediation maintained an overall balance within the Computer Society, even against the backdrop 

of rapid sociotechnical change. On the other hand, many of these processes and structures also 

helped create a modicum of stability between the Computer Society and other overlapping 

organizations, such as the ACM. In the sections that follow I provide a more detailed analysis of 

these processes by reviewing the Computer Society’s historical trajectory through the 1970s and 

into the 1980s. I begin by taking a detailed look at the group’s movement into emergent 

subdisciplines such as computer architecture, software engineering, and microprogramming, with 

particular emphasis on the establishment of new technical committees in these areas. 

As noted above, by the late 1960s the leaders of the Computer Group were placing 

significant emphasis on the role and activities of technical committees. And indeed, the 

establishment of new committees stood as a potent institutional expression of the group’s 

settlement in various phases of the computer field. Many of these committees also assumed 

important roles as “sociotechnical mediators.” Early evidence for these themes can be found in a 

1967 news item, where Levine summarized that the Computer Group’s Technical Committee on 

Programming was charged with 

the important task of producing an interface with the more hardware oriented 

activities of the Computer Group. In addition, it should be the focus for the 

exposition of the development of software systems as an integral part of the 

development of computer systems (“New Programming Committee Chairman,” 

1967, my emphasis). 

The use of the term “interface” in this passage is telling, as it revealed the extent to which the 

Programming committee was internally mediating the relation of the Computer Group’s more 

hardware- and software-oriented factions, just as microprogramming and operating systems were 

viewed as key interfaces between physical computing machinery and its associated software and 

ultimate application(s). Further, Levine’s remarks suggested that the programming committee’s 

activities might actually improve the integration of software in the overall design of computer 

systems, reflecting a key point of cross-over between the committee’s social and technical 

functions. By the late 1960s and early 1970s, a variety of new sub-disciplines were gaining 
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recognition in the computer field, and they became increasingly important sites for similar types 

of sociotechnical mediation. 

Computer Architecture 

The field of “computer architecture” is a particularly relevant example for the present 

analysis. As background, terms such as “architecture” and “architectural” started to creep into 

various computer publications in the mid and late 1960s, largely in the context of discussions 

about the organization and structure of computer systems. In 1969, for example, an article titled 

“Evolving Digital Computer System Architectures” appeared in Computer Group News (Joseph, 

1969). As author Earl Joseph explained, the word architecture referred rather broadly to “a style 

of design or construction of computer systems” (p. 4). The term received another important boost 

in 1970 with the publication of Caxton Foster’s Computer Architecture (Foster, 1970a). 

Describing computer architecture as both a “field” and an “art,” Foster explained that the 

primary job of the computer architect was to “assemble the units turned out by the logical 

designer into a useful, flexible tool that is called a computer” (p. xi).208 As suggested by this 

description, the title of “computer architect” was in many ways synonymous with “system 

designer,” especially given that the latter type of worker had long been responsible for turning a 

variety of functional “building blocks” into working computer systems. In fact, the content of 

Joseph’s 1969 article explicitly framed “computer system designers” as the main arbiters of 

computer architecture design decisions. 

Yet Foster’s broad use of the term placed somewhat greater emphasis on the “art” of 

computer design, and he explicitly argued that computer architecture work demanded a thorough 

familiarity with software. As Foster explained, the computer architect should be a “competent 

machine language programmer, preferably with experience in software systems” (xi). Similar 

themes surfaced in 1972, when Foster served as guest editor for a special issue of Computer that 

was dedicated to the topic of computer architecture (Foster, 1972). Foster’s introductory remarks 

described computer architecture as a “recently recognized discipline” and a “profession,” and he 

emphasized that practitioners in the new field were working on the boundaries of software and 

                                                
208 Foster also defined computer architecture as “the art of designing a machine that will be a pleasure to 
work with” (Foster, 1970a, p. xi). While perhaps tongue-in-cheek, this characterization hints at the notion 
that a computer architect is a special breed of computer designer who takes seriously the importance of 
usability and applications. 
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hardware. “A computer architect,” Foster explained, “should be aware of the problems of 

software development and the potentialities of hardware developments.” 

The boundary-spanning character of computer architecture was further evident by the 

rapid movement of both the ACM and Computer Society into this emergent sub-field. The 

Computer Society’s Technical Committee on Computer Architecture (TCCA) was established in 

1970, while the ACM’s Special Interest Committee on Computer Architecture (SICARCH) was 

founded in 1971 and elevated to SIG status by early 1972 (Foster, 1972).209 The two groups also 

quickly cultivated a cooperative relationship, as reflected in a letter that was published in 

Computer in 1972. As reported by SICARCH chair Michael J. Flynn, participants at a joint 

meeting of the SICARCH and TCCA had raised a number of pointed concerns about the overall 

lack of cooperation between the ACM and the Computer Society (Flynn, 1972). In response, the 

two groups passed a unanimous resolution: 

Resolved ACM-SICARCH and IEEE CS-TCCA request that their parent 

organizations develop policies which will support our operational mergers within 

technical components, within chapters, and within students chapters the two 

societies appropriate to their mutual benefits. 

Flynn went on to report that the Computer Society had 17,000 members and the ACM about 

25,000, and he added that “a large number (five to ten thousand; no one seems sure) of these are 

joint members.”210 He also asked how the interests of the field might best be served. Relating 

these issues to the educational sphere, Flynn noted that “the bifurcated professional attitude is 

reflected too often at universities with overlapping Computer Science and Electrical Engineering 

Department structures.” 

                                                
209 The founding of SICARCH also reflects the ACM’s movement into emergent boundary areas. In fact, 
Caxton Foster complained in a 1970 letter about the lack of ACM involvement in the area of computer 
organization (Foster, 1970b). "In glancing over recent publications of the ACM,” Foster explained, “I was 
struck by the dearth of papers on the subject of machine organization or architecture. ... [A] total of 6 out 
of some 330 publications of the Association for Computing Machinery bear on the subject of the design 
or organization of machinery for computing.” Foster concluded his letter by tentatively proposing the 
establishment of a Computer Architecture SIC. As noted above, it was founded the following year. 
210 According to an AFIPS survey that was conducted and published in 1971, approximately 20% (or 633 
of 3,110) of responding ACM members also belonged to the IEEE, while 35.4% (or 633 of 1,790) of 
responding IEEE members also belonged to the ACM (Dickmann, 1971, p. 2). Extrapolating these figures 
to the full member populations suggests that at least 5,000 to 6,000 individuals were joint members of the 
two groups in the early 1970s. 
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It was fitting that these two particular groups stepped forward with such a call, especially 

given the extent to which the emergent field of computer architecture was positioned on the 

boundaries of computer science and computer engineering, software and hardware. And while 

the members of SICARCH and TCCA could do only so much to encourage a merger of their 

parent organizations, their cooperative activities helped model how the boundaries around the 

ACM and the Computer Society could actively be blurred. In 1973, for example, the two groups 

organized and co-sponsored the first in a long series of joint symposia on computer architecture. 

The second such symposium was held in 1975, and thereafter the event was held annually. 

Summarizing the state of the field, a report on the second symposium explained that the program 

for event was based on “the relatively unsophisticated but exacting view that architecture is the 

study of those aspects in the analysis and design of computers which specifically relate their 

structure and their function” (King and Garcia, 1975, p. 79). A 1976 description of the TCCA, on 

the other hand, noted that the committee itself was primarily concerned with “research and 

development in the integrated hardware and software design of both general-purpose and special 

purpose digital computers” (“IEEE Computer Society, 1976, p. 26). In fact, some of the first 

tools and techniques for developing such integrated systems were emerging around this time, and 

they helped stimulate the eventual emergence of a growing body of research in the area 

appropriately known as “hardware/software codesign.” I return to this theme below. 

As this overview reveals, the TCCA was acting as an important “interface” between the 

Computer Society and the ACM, just as computer architects were playing an increasingly pivotal 

role in mediating computer “structure” and “function,” such as by improving the integration of 

software and hardware. Yet this same committee was also serving a similar role within the 

Computer Society. As noted above, the TCCA collaborated with the Technical Committee on 

Operating Systems to organize a “Workshop on the Interaction of Operating Systems and 

Computer Architecture” in early 1973. As nicely summarized in one report, the event was 

intended to encourage “further dialogue and interaction between operating systems and computer 

architecture” (Jensen, 1973, p. 15). Materials from the workshop were also published in a special 

issue of Computer, and guest editor E. Douglas Jensen explained that the publication might help 

“stimulate further dialogue and interaction between the two disciplines from the outset of the 

computer design.”  
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Such comments reveal that improving the interface between software and hardware was 

viewed by many as a social and disciplinary problem as much as a technical challenge. In fact, 

one might surmise that one way to overcome the stubborn hardware-software divide was to 

encourage improved cooperation and communication between computer architects, systems 

programmers, and other factions of the computer design process. And indeed, this is precisely 

what commentators such as Carr had championed in as early as the 1950s. Hence, these types of 

workshops and publications helped ameliorate some of the sociotechnical barriers that were 

characteristic of the computer field generally, as well as the vertical organization of the 

Computer Society’s technical committees more specifically. These themes are brought into 

further relief in the following sections, where I focus on the Computer Society’s movement into 

the areas of software engineering and microprogramming.  

Software Engineering 

While the Computer Society’s involvement in the emergent field of computer 

architecture in the 1970s is largely a story of intra- and inter-society mediation, the group’s early 

movement into the domain of software engineering helps bring themes of both expansion and 

mediation into further relief. As background, the term “software engineering” first started to 

surface around 1967, when the first calls were made for an international conference dedicated to 

this newly-named domain. And as noted in the previous chapter, by 1967 ACM President 

Anthony Oettinger praised the emergence of the notion of software engineering (Oettinger, 

1967), while his successor Richard Hamming argued in a 1968 lecture that “more than the usual 

engineering flavor be given to computer science” (Hamming, 1969, p. 3). While these 

commentators surely had manifold reasons for promoting an engineering-oriented view of 

software and computer science, they were clearly responding to a number of major challenges 

that were being grappled with around this time. Many critics, for example, were starting to 

complain that theoretically-oriented computer science programs were turning out graduates who 

were ill-prepared to undertake large programming projects. And just as importantly, discussions 

about a so-called “software crisis” were rising to a fever pitch, especially as software 

development budgets skyrocketed and hardware costs continued to fall. 

The concept of software engineering gained further momentum in 1968 and 1969 through 

back-to-back conferences that were sponsored by the Science Committee of the North Atlantic 
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Treaty Organisation (NATO). As the organizers of the first conference explained, the phrase 

“software engineering” was deliberately selected as a “provocative” unifying theme for the 

event, although Mahoney has argued that the phrase was only provocative to the extent that it 

relied on terminology and metaphors that were vague, ill-defined, or uncommon (Mahoney, 

2004, p. 9). Yet like other terms such as “computer science,” the lack of a clear definition for the 

term was quickly overshadowed by its appeal, and by the late 1960s and early 1970s the phrase 

“software engineering” was appearing with increasing frequency in a variety professional and 

trade journals, including those published by the ACM and the Computer Society. 

The Computer Society made its first formal claims in this emergent domain in the mid 

1970s. In 1974, for example, the Computer Society Board approved both the formation of a 

Technical Committee on Software Engineering (TCSE) and the publication of a new periodical 

titled IEEE Transactions on Software Engineering  (Yau, 1974a; 1974b). As President Sephen 

Yau summarized, this new journal covered “all aspects of specifications, design, development, 

management, test, maintenance, and documentation of computer software” (1974b, p. 2).211 The 

Computer Society’s movement into software engineering was also evident in May of 1975, when 

a special issue of Computer was dedicated to the topic. In addition, the Computer Society and the 

National Bureau of Standards (NBS) co-sponsored the First National Conference on Software 

Engineering, which was held in September of 1975. With 700 total attendees, the event was 

deemed a success. And in late 1975, a Prospectus for the Software Engineering TC was 

published in Computer (“Software Engineering Prospectus,” 1975). By providing both a 

definition for the phrase “software engineering” and a description of the typical professional 

responsibilities of “software engineers,” the prospectus further bolstered the group’s settlement 

in this area. 

The ACM made its own formal moves into software engineering in 1976 with the 

establishment of a Special Interest Committee on Software Engineering (SICSOFT) (Sammet, 

1976). From the very beginning, the group established a cooperative relationship with its 

counterpart committee in the Computer Society. In the group’s first newsletter, for example, 
                                                
211 In a subsequent announcement, the scope of the journal was outlined in more detail: “Devoted to the 
engineering aspects of computer software, the new Transactions will present state-of-the-art research 
papers in such specific areas as programming methodology, software reliability, system performance 
evaluation, software development management, and software development tools. Other areas covered will 
include hardware-software interface, man-machine interaction, software development for minicomputers, 
and the use of automatic programming” (“Announcing a Major new Publication,” 1975). 
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editor Peter Neumann noted the “obvious overlap in scope between SICSOFT and the IEEE 

Computer Society Technical Committee on Software Engineering” (Neumann, 1976, pp. 2-3).212 

Further, he added that differences in the membership of each organization and the difficulties of 

a possible merger of the ACM and Computer Society helped justify this “duplication,” and he 

explained that Tony Wasserman was acting as a liaison between the two groups through his role 

as both SICSOFT Vice Chairman and TCSE executive committee member (p. 3). The close 

relation of the two groups was also reflected in the Second International Conference on Software 

Engineering, which was jointly sponsored in 1976 by the ACM, IEEE, and National Bureau of 

Standards (NBS) (“Conference Report,” 1976). When Wasserman took over as chair in 1977, 

SICSOFT claimed an impressive 2000 members, and by mid-1977 it was upgraded to SIG status 

(Wasserman, 1977a; 1977b). By this time it was clear that both SIGSOFT and the TCSE were 

well established. 

Given that the leaders of the Computer Society appeared eager to expand the group’s 

settlement into software and applications, the concept of “software engineering” emerged at an 

opportune time. By moving into this domain the organization could make strong claims in the 

sphere of software, while simultaneously retaining the engineering-oriented image of the group 

and its members. Publications such as the Transactions on Software Engineering helped 

legitimate and secure the Computer Society’s settlement in this area, while the ACM’s parallel 

movement into software engineering was mediated through the cooperative efforts of the TCSE 

and SIGSOFT groups. And just as the emergence of software engineering itself tended to call 

into question some of the deeply entrenched schisms that separated engineers and engineering 

from computer scientists and computer programming, the reasonably close and cordial relation 

of the TCSE and SIGSOFT revealed another important point of overlap between the ACM and 

the Computer Society. 

Microprogramming  

The area of “microprogramming” provides further evidence for some of the processes of 

sociotechnical mediation that were at work in the 1970s. Yet unlike relatively young fields such 
                                                
212 Neumann also noted overlaps between SICSOFT and other ACM SIGs, including SIGPLAN 
(Programming Languages) and SIGOPS (Operating Systems) (Neumann, 1976, p. 2). Yet he countered 
that SICSOFT might provide “a more global viewpoint,” especially by emphasizing the many common 
subjects and interests that spanned these various groups. Hence, the SICSOFT group was assuming a 
mediating role both within the ACM and between the ACM and the Computer Society.  
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as software engineering and computer architecture, microprogramming had a longer history, and 

it was somewhat more closely bound to technology and the technological state of the art. Credit 

often goes to British computer pioneer Maurice Wilkes for coining the term in 1951, used to 

describe a new type of computer design with a modifiable rather than fixed instruction set 

(Wilkes, 1989).213 With such a machine, a computer designer or programmer could more easily 

modify existing – or even create entirely new – operation codes. While this was certainly a novel 

and promising concept, limitations in memory technology, conservative cultures of computer 

design, and deeply entrenched schisms between computer designers and users all helped stall the 

commercial realization of the idea. However, the EDSAC 2 finally went into operation at 

Wilkes’ own University of Cambridge in 1958 as the first microprogrammed computer, thereby 

helping to establish the feasibility of the concept (Wilkes, 1992). 

An even more important development came in the early-1960s when computer giant IBM 

decided to implement microprogramming in a number of different models in their new 360 line 

of computers (Smotherman, 1999). And while successfully implementing the idea required 

significant research in memory technology, the company came to realize that microprogramming 

technology could greatly improve compatibility across a range of different computer models. By 

the mid-1960s, the proliferation of microprogrammed machines from IBM and other vendors 

also stimulated new approaches to simulation and emulation, where one type of computer could 

be configured to operate like another model. In light of these and other virtues – such as 

dramatically increasing the flexibility of a given system – microprogramming techniques were 

increasingly common from the late 1960s onward, as evidenced by an expanding assortment of 

publications on the topic, including full-length texts such as Microprogramming: Principles and 

Practices (Husson, 1970). As nicely summarized in one historical account: “Because of the 

success of the IBM System/360 product line, by the late 1960’s microprogramming became the 

implementation technique of choice for most computers except the very fastest and the very 

simplest. This situation lasted two decades” (Smotherman, 1999).  

Given that the technology of microprogramming was squarely situated on the boundaries 

of software and hardware, it is perhaps not surprising that the Computer Society and ACM 

maintained overlapping interests in this area. Yet collaboration once again prevailed over 

                                                
213 It is worth noting that Wilkes’ background was not in engineering, but rather mathematics. Once again, 
we find an important development in the area of computer design coming from a non-engineer. 
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competition. By the late 1960s, for example, the Computer Society and ACM were co-

sponsoring a series of annual workshops on microprogramming, which were continued in the 

1970s as the two groups made more formal moves into this domain. By at least 1970, an ACM 

Special Interest Group on Microprogramming (or SIGMICRO) was ramping up its activities, 

including through the publication of a newsletter (Carlson, 1970). On the other hand, the 

Computer Society’s Technical Committee on Microprogramming was finally established in 1974 

(Yau, 1974b, p. 3). Cross-talk between the TC and the SIG was very evident, as suggested by the 

continued joint sponsorship and organization of a long series of annual microprogramming 

workshops. And by 1975, a single individual – IBM microprogramming expert J. Michael Galey 

– was simultaneously serving as the chair of both ACM SIGMICRO and the Microprogramming 

TC (Galey, 1975). To a significant extent, the two groups were functioning like a single entity. 

It is worth noting that the increasingly close alignment of these and other committees and 

groups was recognized at the time. As nicely summarized in a 1975 Computer Society 

subcommittee report, “Many Technical Committees of the Computer Society are paralleled by 

similar Special Interest Groups/Committees within the ACM. The overlap in interest has been 

significant enough in some cases that the TC and SIG have operated virtually as a single 

organization with key individuals holding dual offices” (Salisbury, Snyder, and Smith, 1975). 

However, the authors added that ongoing efforts to operate some combined TCs and SIGs as a 

single organization “have generally been opposed by the parent organizations, placing emphasis 

on differences between the two societies rather than the similarities.” Such remarks once again 

revealed the many challenges faced by those who favored a partial or even full merger of the two 

parent organizations. 

In August of 1975, the aforementioned Galey served as guest editor for a special issue of 

Computer that was topically dedicated to “Microprogramming: The Bridge between Hardware 

and Software.” In a simple illustration that accompanied Galey’s introduction to the feature 

articles, a computer chip appeared suspended in a chasm, acting as a sort of bridge for a curving 

road that flowed from one side of the valley to the other. It was an apt visual metaphor, given 

that microprogramming technology had grown up on the boundaries of hardware and software. In 

fact, new terms such as “firmware” emerged and started to gain traction in the late 1960s to 
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describe this expanding, intermediate level of computer technology. A 1967 Datamation article 

by Ascher Opler is often credited as the original source of this term (Opler, 1967). 214  

Yet in light of the preceding historical review, this line of analysis can be taken one step 

further. That is, the bridge metaphor worked equally well in describing how the Technical 

Committee on Microprogramming and its SIGMICRO counterpart had emerged as crucial bridges 

between the ACM and the Computer Society. To put it another way, these two groups – as well 

as a number of other TCs and SIGs – acted as the metaphorical “firmware” between the more 

hardware-oriented Computer Society and the software- and applications-oriented ACM. Further, 

it was no coincidence that these sorts of bridging activities grew up in areas where these 

organizations and their members maintained overlapping interests. Below, I discuss in more detail 

this striking similarity between the actual organization of computer technology and the structure 

and relation of these two professional societies. Yet in order to provide additional background 

details for this argument, it is first necessary to more generally document the Computer Society’s 

technical committee structure through the 1970s and into the 1980s, as well as the group’s more 

general evolution and expansion. 

Expansion and Identity, Merger Talks and Mediation (Part II) 

As detailed in the preceding section, technical committees were an increasingly important 

part of the Computer Society’s growth in the 1970s. In fact, by 1976 the Society consisted of 17 

technical committees (“IEEE Computer Society Technical Committees,” 1976), and in 1978 the 

ongoing expansion of the committee structure prompted the formation of two umbrella Technical 

Interest Councils (TICs) (“Technical Interest Councils,” 1979). With one TIC encompassing the 

area of “Systems Technology” and another dedicated to “Software and Applications,” the TICs 

were established to review, coordinate, and manage an increasingly large and unwieldy 

assortment of committees. Further, one cannot help but notice that the divide between the TICs 

roughly reflected the persistent hardware-software schism. The establishment of the TICs can 
                                                
214 As Opler explained, “I believe it worthwhile to introduce a new word into our vocabulary: firmware. I 
use this term to designate the microprograms resident in the computer’s control memory, which 
specializes the logical design for a special purpose, e.g., the emulation of another computer” (p. 22, 
author’s emphasis). Referencing Opler’s article, microprogramming pioneer Maurice V. Wilkes 
summarized in 1969 that “firmware may take its place along with software and hardware as the main 
commodities of the computer field” (Wilkes, 1969, p. 143). 
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therefore be viewed as a structural fix that brought the Computer Society’s two faces into further 

relief, especially as the group’s settlement covered an ever-larger sociotechnical territory. 

The growth of the Society continued in subsequent years, and by 1979 the group claimed 

20 technical committees. President Oscar Garcia noted that the number of TCs had increased to 

26 by early 1982, and he added that committees had recently been formed to cover “such new 

areas as distributed processing, multiple-valued logic, optical processing, computer graphics, 

computers and the handicapped, computational medicine, VLSI [Very Large Scale Integration], 

and office automation” (Garcia, 1982). The number of committees jumped to 30 by late 1982, 

and the roster of newly established TCs covered areas as diverse as computer languages, 

personal computing, and robotics (“Chairmen Named,” 1982). And in a 1983 report, Roy Russo 

– the Computer Society’s Vice President for Technical Activities – nicely summarized the 

pivotal role that the technical committees had assumed within the organization (Russo, 1983). To 

begin with, he noted that the TCs were extensively involved in running conferences, developing 

standards, publishing newsletters, and sponsoring special issues of Computer Society 

publications (p. 3). Referring to the TCs as “the backbone of the Computer Society,” his remarks 

also hinted at the role that the committees were playing as sociotechnical mediators. “[O]ur 

technical activities,” Russo explained, “provide the principal mechanism for cooperation with 

other professional organizations both within and outside the IEEE, for example, the 

Communications Society [of the IEEE] and the ACM” (Russo, 1983, p. 6). 

Membership contests and other campaigns helped the Computer Society maintain a 

steady pattern of growth into the mid 1970s, and total membership finally passed the 20,000 

mark by the end of 1974 (Yau, 1975, p. 3). By 1975 the group was entering a period of more 

rapid development, fueled in part by both the expansion of the Society’s activities and the 

addition of large numbers of new affiliate and student members. As outgoing President Yau 

boasted in 1976 – the year of the group’s 25th anniversary – “the Society is stronger and healthier 

than ever,” and he added that membership had risen above 23,000 (Yau, 1976, p. 4). Subsequent 

announcements revealed that the society was comprised of 33,000 members by late July of 1978 

– an increase of more than 10,000 individuals in less than two years (Smith, 1978). As explained 

by Computer Society President Merlin Smith, these statistics were attributable to both the growth 

of the computer field and the responsiveness of the Society to member interests. But regardless 

of the ultimate reasons, the expansion largely continued unabated.  
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References to the Computer Society as mainly a computer engineering society were also 

increasingly rare in the mid and late 1970s, and a 1977 update to the Society’s constitution 

helped made more explicit the group’s increasingly expansive settlement. For example, the terms 

“application” and “science” were inserted into the group’s stated objectives: “The society shall 

strive to advance the theory, practice, and application of computer and information processing 

science and technology” (“IEEE Computer Society Constitution,” 1977, p. 108, my emphasis). A 

similar change was also made to the Society’s official statement scope, with the updated version 

declaring: “The scope of the society shall encompass all aspects of theory, design, practice, and 

application relating to computer and information processing science and technology” (p. 108). 

And if there remained any doubts about the group’s wide-ranging agenda around this time, 

President Merlin G. Smith explained that “society leadership is now committed to provide 

technical programs and publications across much of the total hardware, software, and 

applications spectrum” (Smith, 1977a). 

From the late 1970s onward this broad commitment was realized in a variety of ways, 

including through the formation of technical committees, as noted above. New publications and 

conferences provide additional evidence for this trend. As noted above, Transactions on 

Software Engineering was added as the group’s third major publication in 1975. IEEE 

Transactions on Pattern Analysis and Machine Intelligence was launched in 1979, while IEEE 

Computer Graphics and Applications and IEEE Micro (which was dedicated to microcomputers 

and related topics) were added in 1981. The addition of IEEE Design and Test of Computers and 

IEEE Software in early 1984 raised the group’s total number of regular publications to eight. 

New conferences and workshops also reflected the group’s growth, and by the early 1980s the 

Society was annually sponsoring or co-sponsoring as many as 45 to 50 special interest 

conferences, workshops, and symposia (Yau, 1981).  

One new conference of particular note was the first IEEE Computer Society International 

Computer Software and Applications Conference (COMPSAC), first held in 1977. As one pre-

conference report explained, “COMPSAC 77 will bring together computer practitioners, users, 

and researchers to share their ideas, experiences, and requirements for applications software, 

management techniques, and software development support, including automated techniques” 

(“COMPSAC 77,” 1977). As suggested by this description, the Computer Society was serious 

about expanding its settlement to cover significant swaths of software and applications. 
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Membership growth was also rather dramatic from the late 1970s into the 1980s. In fact, 

by early 1980 the size of the Society had reached parity with the ACM, with both groups 

claiming about 44,000 members (McCracken, 1980, p. 66; “Record Growth,” 1980). By the end 

of 1981, total membership rose above 62,000. On the one hand, this number made the Computer 

Society the largest society within the IEEE, by a factor of three (Bonn, 1982, p. 4). In fact, 

Division Director Dick Simmons noted in 1982 that the Computer Society was growing at twice 

the rate of any of the IEEE’s 31 technical societies (Simmons, 1982, p. 6). On the other hand, the 

leaders of the Computer Society could finally boast that they were at the helm of the “the largest 

professional technical society devoted to computers” (“IEEE-CS Membership,” 1982). This was 

no small feat, as the expansion of the ACM had long outpaced the Computer Society. And in 

October of 1982, President Oscar Garcia noted that the membership stood at 66,605, which 

represented a doubling of the size of the organization in less than four years (Garcia, 1983, p. 5). 

For reference, ACM President David H. Brandin reported around this same time this his 

organization was comprised of about 57,000 members (Brandin, 1982a, p. 769).  

In a replay of the early 1970s, this level of expansion helped trigger renegotiations of the 

Computer Society’s relations with both the IEEE and ACM. On the IEEE side, for example, the 

Computer Society made bold moves in 1980 and 1981 to change the name of the parent institute. 

As Dick Simmons – who at the time was serving as a division director on the IEEE Board of 

Directors – explained: 

Now might be the time to consider changing the name of the institute from the 

Institute of Electrical and Electronics Engineers to the Institute of Electrical and 

Computer Engineers. In my opinion this would encourage increased participation 

of the computer professional in both the Computer Society and the IEEE 

(Simmons, 1980).  

This was a striking development, as it suggested the field of computer engineering was taking on 

a distinct professional and disciplinary identity. And while this particular measure had broad 

support among the leaders of the Computer Society, in 1981 it failed to gain sufficient traction 

among the leaders of the parent organization (Feng, 1980; Bonn, 1982, p. 4). The Computer 

Society was more successful in 1982 when it secured a second division director slot on the IEEE 

Board (Bonn, 1982; Garcia, 1983). This new position gave the Computer Society control of two 
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of eight total division director slots, effectively doubling the group’s representation in the top 

leadership structure of the IEEE (Bonn, 1982, p. 4). 

Yet as many surely recognized at the time, the Computer Society’s prominent position – 

both with regard to the IEEE specifically and the computer field generally – was at least partially 

due to an expanding roster of affiliate members. Membership and Information President Dennis 

Fife reported that the Society was comprised of almost 72,000 members by the end of 1982, and 

he noted that roughly a quarter of the 10,000 members that had been added in 1982 were affiliate 

members. “Many of these members are not engineers by training,” Fife explained, “but many of 

them either participate heavily in or, in fact, lead activities of the society that benefit all 

members” (Fife, 1983, p. 6). And in 1984, when the Computer Society boasted somewhere in the 

neighborhood of 80,000 members, an editorial on the group’s relationship with the ACM 

revealed that somewhere between 15,000 and 20,000 individuals were paying dues to both 

organizations (Carlson and Simmons, 1984).  

As suggested by such statistics, the expansion of the Computer Society had deepened the 

group’s overlap with the ACM, while also eroding the dominant image of the Society as first and 

foremost a computer engineering organization. In fact, questions about whether it was 

sustainable or desirable to maintain this bifurcation between the computer field’s two major 

professional societies received renewed attention in the early and mid 1980s, especially under the 

leadership of Computer Society President Oscar Garcia. Some of the earliest evidence for this 

trend can be found in a special message from ACM President David H. Brandin that was 

published in the November 1982 issue of Computer. While ostensibly concerned with the topic 

of technology transfer – at a time of growing concern about the global competitiveness of the 

U.S. computer industry – Brandin added that “Oscar Garcia has said that there are no two 

technical societies on the face of this earth that have more in common than ACM and the IEEE-

CS. I agree with him” (Brandin, 1982).  

Another important touchstone for this movement surfaced in mid-1983, when Garcia and 

Bradin authored a special joint message that was published in both Computer and the CACM. 

Suggestively titled “Where do parallel lines meet? or The Common Goals of ACM and the 

IEEE-CS” (Brandin and Garcia, 1983), the two Presidents noted that “[t]he distinction between 

the two societies is no longer clear,” and they added that increasing levels of intersociety 

competition reflected ongoing efforts “to break out of the binary mold of thinking – hardware vs. 
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software, engineering vs. computer science” (p. 6). The two presidents indicated that both the 

Computer Society Board and the ACM Council had recently voted in favor of resolutions that 

supported accelerated cooperation and possibly even a merger between the two groups, and they 

added that an ad hoc Committee for Intersociety Cooperation had been established (pp. 6-7). 

In a summary report published in early 1984, the leaders of this committee identified a 

series of common objectives for the two groups, as well as some areas were cooperative progress 

was being made (Carlson and Simmons, 1984). In fact, they discussed five key areas of interest 

or concern that were shared by the two groups, namely membership overlap, educational 

activities, conferences, technical committees and special interest groups, and publications. As a 

more specific example of the cooperative efforts that were once more gaining momentum, 

Carlson and Simmons pointed to a 1983 analysis that revealed that 19 of the Computer Society’s 

Technical Committees had “a significant correspondence” to an equal number of ACM Special 

Interest Groups (p. 89). Conversely, only 12 TCs and 14 SIGs had minimal or no overlap.  

Such statistics revealed the increasingly overlapping and interpenetrating character of the 

settlements claimed by these two professional societies, while also revealing the potential for 

further crosstalk and coordination. As the authors explained, an aggressive program for 

promoting cooperation between TCs and SIGs had been proposed, and a joint meeting of all TC 

and SIG chairs was planned for later in the year. The report also noted that plans were underway 

to develop a new joint publication for the members of both societies, although the authors 

acknowledged that preliminary discussions had revealed that such an endeavor was beset by 

problems that were “editorial, technical, administrative, legal, financial, and even political in 

nature” (p. 89). In light of such challenges, Carlson and Simmons admitted that “a full merger 

will not occur rapidly,” but they nonetheless spoke to the value of ongoing efforts to identify 

common areas of interest and improve service to the members of both groups. 

Martha Sloan – who served as Computer Society President from 1984 to 1985 – ended 

her term by repeating the message that the organization should “[b]uild stronger bridges to IEEE 

and ACM,” and she called on her colleagues to “meet the challenge of unifying the computing 

profession by improving coordination with ACM while exploring possibilities of a merger” 

(Sloan, 1985, p. 7). Yet in the wake of Sloan’s Presidency, merger discussions were gradually 
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superceded by more pressing matters.215 In fact, both groups were making important moves in 

the area of conferences in the latter half of the 1980s. For example, the cordial mid-1970s 

relation of the ACM and the Computer Society helped lead to the establishment of a new Fall 

Joint Computer Conference (FJCC) series. Intended as a replacement to the ACM’s National 

Conference and the Computer Society’s Fall COMPCON, the first meeting was held in 1986 and 

attracted 3000 people (“ACM and IEEE-CS Launch,” 1987). Yet in a somewhat surprising turn 

of events, low attendance at the second of these events in the led the Computer Society and ACM 

to cancel FJCC 88 and its successors (“The Last FJCC,” 1987). 

In a sense, this turn of events symbolized the extent to which the two parent organizations 

had once again backed away from a possible merger. It is also worth noting that the failed revival 

of the FJCC was organized outside the purview of AFIPS. In fact, the event looked like 

something of a throwback to the mid-1950s, when the joint computer conferences emerged as an 

important common point of contact and negotiation for three main groups, namely the ACM, 

AIEE CDC, and IRE-PGEC. And despite the failure of this new joint conference, other 

developments made it clear that the leaders of the ACM and the Computer Society preferred to 

work out their relationship directly, rather than through intermediaries such as AFIPS.  

This theme was brought into further relief in 1987, when both organizations gave notice 

that they were formally withdrawing from the National Computer Conference series (Abrahams, 

1987; “Computer Society Votes,” 1987). After attendance peaked at 100,000 in 1983, the NCCs 

entered a downward spiral, and by 1987 attendance was estimated at a paltry 14,000. Both 

groups expressed concerns that the events were no longer meeting the needs of the professional 

community, and were also a potential financial liability for the sponsoring organizations. In fact, 

the Computer Society Board even went so far as to pass a movement calling for the cancellation 

of all future NCCs (“Computer Society Votes,” 1987). The leaders of AFIPS voted to continue 

the event, but by this time the writing was on the wall. The last NCC conference was held in 

1987, and AFIPS itself was dissolved in 1990.  

                                                
215 In a 1987 commentary on the ACM’s development over roughly the preceding fifteen years, Eric 
Weiss noted that the ACM had long maintained “cordial working relationships” with “natural rivals” such 
as the Computer Society, yet he added that “attempts to merge the two always fail” (). 
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Conclusion 

On the one hand, the demise of the Joint Computer Conference series in 1987 marked the 

end of a historical era that can be traced back to the first such event in 1951. On the other hand, 

by the late 1980s it was clear that other and more direct forms of sociotechnical mediation had 

emerged to maintain stability both within an expanding Computer Society and between the 

Computer Society and the ACM. These mediators ranged from affiliate membership plans and 

jointly-sponsored conferences to coordinated publication activities. In this chapter I also placed 

particular emphasis on the mediating role of the Computer Society’s Technical Committees and 

the ACM’s Special Interest Groups. As noted above, from the 1970s onward these sub-groups 

became key points of contact and negotiation – or “interfaces” – between the two parent 

organizations. More specifically, these groups and their activities helped smoothed the flow of 

information, people, and power, both within and between the Computer Society and the ACM.  

On a closely related note, my analysis also describes the striking structural similarities 

between the dominant model of computer system design and the structure and relation of these 

two professional societies. Just as the SIGs and TCs acted as “interfaces” between the hardware-

tilted Computer Society and the software- and applications-oriented ACM, so too did 

intermediate levels of technology such as firmware and operating systems act as bridges between 

the physical hardware of computing and the associated software and applications. Further, many 

of the SIGs and TCs that were cooperating most closely – sometimes even to the point of near-

merger – were situated in sociotechnical boundary-areas, such as microprogramming, computer 

architecture, and software engineering. The Janus-faced character of computer technology was 

therefore both reflected in and reinforced by the computer field’s Janus-faced professional 

societies. 

Yet my claims about the historical coproduction of the social and the technical are not 

entirely without precedent. In a 1968 Datamation article, for example, researcher Melvin E. 

Conway tentatively worked in similar directions when he argued that “organizations which 

design systems … are constrained to produce designs which are copies of the communication 

structures of these organizations” (1968, p. 31). He used the term “homomorphism” to describe 

these “structure-preserving relationships,” and he cleverly noted that a given organization will 

tend to “stamp out an image of itself in every design it produces” (p. 30). Applying this idea to 

the example of working computer systems, the author discussed how the hardware, system 
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software, and applications associated with such systems were frequently linked to three distinct 

sets of “designers,” namely the computer manufacturer’s engineers and system programmers, 

and the end-user’s application programmers. Emphasizing the extent to which the design of a 

technology often reflected pre-existing channels of organizational communication, Conway also 

noted “[t]hose rare instances where the system hardware and software tend to cooperate rather 

than merely tolerate each other are associated with manufacturers whose programmers and 

engineers bear a similar relationship” (p. 30-31). Following this line of reasoning, the author 

argued that effective design required a flexible and lean organization with good communication 

between design groups. 

The ideas presented by Conway in this article remain novel and thought provoking, and 

his main thesis eventually gained fame in computer circles as “Conway’s Law.”216 Yet the thrust 

of his article remains limited by its unidirectional character. That is, it posits that technological 

design can be inflected by organizational structures, but it fails to discuss the reciprocal shaping 

of organizations by the structure or design of technology. A more recent text helps fill out the 

other half of this equation. In Design Rules, Volume 1: The Power of Modularity, business and 

economics experts Carliss Baldwin and Kim Clark analyze the historical evolution of computer 

technologies, firms, and markets (2000). In so doing, they emphasize the crucial importance of 

modularity in computer design and development from the 1960s onward, especially against the 

backdrop of dramatic increases in the complexity of computer technology. The more specific 

cases they discuss include the IBM 360 and Digital PDP computer lines, both of which featured 

modular designs that helped enable the establishment of new “modular clusters” of 

manufacturing firms in a variety of niche vertical markets, producing add-on products ranging 

from disk drives and display terminals to circuit boards and pre-packaged software. In summary, 

Baldwin and Clark essentially reverse Conway’s Law by documenting “the structure of the 

design [of computer systems] influencing the structure of firms and markets in the surrounding 

industry” (p. 15).  

                                                
216 As described in one well-known hacker’s dictionary, Conway’s Law is “[t] he rule that the 
organization of the software and the organization of the software team will be congruent; commonly 
stated as ‘If you have four groups working on a compiler, you'll get a 4-pass compiler’. The original 
statement was more general, ‘Organizations which design systems are constrained to produce designs 
which are copies of the communication structures of these organizations’” (“Conway’s Law,” 2003). 
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In line with the work of Carliss and Baldwin, the structure and relation of the Computer 

Society and the ACM significantly reflected the dominant structure of computer technology. Yet 

one must be wary of the technological determinism that can accompany such a description, 

where computer technology is implicitly or explicitly framed as a primary or even singular 

shaper of social structure. Carliss and Baldwin also place significant emphasis on the market, 

which at times shades into economic determinism. Conway’s analysis therefore acts as a 

corrective to this view by suggesting that the structure of organizations and institutions can 

powerfully inflect the processes and products of technological design. And indeed, this type of 

thinking resonates with a long line of reformers who argued that the improved integration of 

physical computer machines and their ultimate application could be achieved by encouraging 

enhanced communication between – and perhaps even the integration of – hardware and 

software design groups.  

For the present analysis, however, I set aside questions of directionality – even if one 

may find specific cases and examples that provide additional support for either Conway’s Law or 

the claims of Carliss and Baldwin. Instead, my primary focus is on larger patterns of 

sociotechnical coproduction that span diverse contexts. My account emphasizes the persistent 

intertwining of the social and technical structure, reflecting and reinforcing one another, 

sometimes even to the point of being indistinguishable. In fact, my approach has some continuity 

with Peter Galison’s analysis of 1940s-era plans for the organizational structure of the Radiation 

Laboratory at MIT, which tended to mirror the various technological systems that were in 

development there. As summarized by Galison, “Material objects – those building blocks of 

microwave devices – were inseparable from … questions of administrative and conceptual 

control” (1997, p. 247). As suggested by Galison’s use of the term “inseparable” in this passage, 

the theoretical concept of “co-production” nicely captures this deep intertwining of social and 

technical structure. 

And while the present chapter traced these processes of coproduction in the sphere of 

professional societies, in prior chapters I analyzed similar phenomena in the context of worksites 

and educational settings. In fact, my analysis reveals that the structural similarities that are 

evident in these diverse contexts are not a historical accident, but rather the outcome of mutually 

reinforcing processes. In the following chapter I return to the academic sphere in order to 

document how these larger currents of sociotechnical mediation and change inflected the 
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ongoing evolution of educational programs in computer engineering, computer science, and 

related areas. My analysis also speaks to the importance of educational contexts as crucial sites 

for both the building and differentiation of disciplines. In fact, the present chapter hints at the 

extent to which the Computer Society’s sociotechnical settlement expanded well beyond the 

domain of computer design and engineering, especially through the 1970s and 1980s. As a result, 

university departments and programs became increasingly important sites for establishing, 

defining, and growing computer engineering as a distinct educational and disciplinary domain. 



www.manaraa.com

 273 

 

Chapter 7 

Bridging the Tar Pit?:  

Constructing CSE and Computing Education, circa 1974-1991 
 

 

 
Imagine for a moment that the year is 1973. The setting is one of the offices of the Sperry 

Rand corporation. Down one long corridor we find the office of Michael Mulder, a mid-level 

manager in the company’s UNIVAC division. Peering into the office, we find that Mulder is in 

the midst of an interview – one of many that he has conducted in recent months with fresh 

college graduates. In its ongoing efforts to assume and maintain its position as a key player in the 

fast-moving and cutthroat computer business, Sperry Rand has an almost insatiable appetite for 

new technical staff. Yet despite the fact that the current interviewee has been trained in a 

computer-oriented degree program within a department of electrical engineering or computer 

science, he appears woefully unprepared for the type of work that he will face as a new Sperry 

Rand employee. Mulder is increasingly discouraged.217   

In light of his own academic and professional background – including a Ph.D. in 

electrical engineering earned a few years prior, as well as extensive stints in computer system 

design and development at Sperry Rand and elsewhere – Mulder had a sense for what it takes to 

be successful in the field, and many of his interviewees simply did not seem to have the right 

types of knowledge and skills. As Mulder later explained in an article he authored, “Potential 

new hires … lacked adequate breadth of training for industry. All too often their academic 

background appeared to be confined to one or the other of the two major divisions of our 

profession – hardware or software” (Mulder, 1977, p. 70). While preceding chapters reveal that 

similar concerns over the computer field’s sociotechnical schisms can be traced all the way back 

                                                
217 This introductory narrative is inspired by Mulder’s own accounts of how he came to get involved in a 
variety of curricular reform movements in the mid-1970s (Mulder, 1977, p. 70; Jones and Mulder, 1984, 
p. 24). I have taken an educated guess at both the year of this event and setting in which it unfolds. My 
gendering of the interviewee as male in this passage also reflects an unfortunate historical reality, namely 
that most of the candidates for such positions would have been men. 
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to the 1950s, Mulder’s comments suggest that the divide between the hardware- and software-

oriented factions had become particularly acute in the educational sphere. And as a rising leader 

in the engineering profession, Mulder was eager to probe the cause of this problem and begin 

working toward a solution. 

Recognizing that the relevance of this issue extended well beyond the bounds of his own 

company, Mulder took his concerns to the IEEE Computer Society. He quickly found the 

sympathetic ear of C. V. Ramamoorthy, who at the time was serving as chair of the group’s 

newly-formed Education Committee (Mulder, 1977, p. 70). As a result of their exchange, Mulder 

soon found himself serving as the chair of a new Model Curricula Subcommittee. Mulder’s 

timing was right. The Computer Society’s interests and activities in the educational arena were 

beginning to gain momentum, especially as the group started to pick up where the COSINE 

Committee had left off. Yet in contrast to COSINE – which in the early 1970s had promoted the 

development of computer engineering programs and options within electrical engineering – 

Mulder and the rest of the Computer Society’s new school of educational reformers quickly 

adopted the boundary-spanning phrase “computer science and engineering” (CSE) as they 

worked to improve the training of future generations of computer-oriented professionals.  

The Computer Society’s embrace of the term “computer science and engineering” might 

appear a somewhat surprising turn of events, especially given the significant fragmentation of 

computer science and computer engineering education through the 1960s and into the early 

1970s. On the other hand, the previous chapter hinted at some of the unifying trends that were 

sweeping through the field beginning in the 1970s. The scope and identity of the Computer 

Society, for example, expanded to encompass an ever-wider swath of  “computer science and 

engineering.” In fact, it was increasingly rare to find the Computer Society framed as primarily a 

“computer engineering” or even “engineering-oriented” organization, especially as the Society’s 

publications and activities gradually expanded to cover “much of the total hardware, software, 

and applications spectrum” (Smith, 1977a).  

The present chapter therefore sheds additional light on how the emergence of the “CSE 

movement” was not a coincidental development, but rather part of a larger array of mutually 

reinforcing processes and forces, many of which also played a role in the parallel expansion of 

the Computer Society’s membership and scope. Even more importantly, my account reveals the 

extent to which the efforts of Mulder and other CSE reformers was both inspired and constrained 
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by the sociotechnical milieu in which their work was situated, just as the Computer Society was 

but one node in a larger system of professional organizations. To put it another way, these 

educational reformers faced what institutional theorists call a pre-existing “organizational field” 

that on the whole tended to preference conservatism, standardization, and incrementalism over 

the more fundamental types of reforms that the Computer Society’s Education Committee was 

ostensibly promoting.218 In fact, Mulder forcefully hinted at this theme when he later adopted the 

metaphor of the “tar pit” to describe the challenges that he and others faced as they worked to 

develop curricula that “mesh computer science and engineering” (Mulder, 1975, p. 28).  

Below I document a variety of efforts to achieve this meshing, beginning with the 

Computer Society’s promotion of CSE from the mid-1970s to mid-1980s, and culminating with 

the rise of the “Computing as a Discipline” movement in the late 1980s and early 1990s. This 

chapter also aims to provide a much richer description of the “tar pit” context in which these 

reforms developed. More specifically, my analysis places particular emphasis on a series of 

foundational “axes of similarity/difference” on which ongoing debates over the professional and 

disciplinary boundaries of the computing field were frequently constructed during this time 

period. To be sure, prior chapters have already shed some light on this theme, especially through 

my analysis of the evolving relationships between hardware and software, and science and 

engineering. Further, my discussions about the persistent tensions between fragmentation and 

unification in the various fields and subfield of computing – as aptly captured by the two-faced 

Janus metaphor – provides additional framing for this chapter. Yet the sections that follow look 

even more closely at how the privileging of “core” versus “peripheral” concepts and concerns led 

various groups and authors to very different understandings of what it means to adopt or 

privilege various sociotechnical identity markers, whether it be computer scientist or computer 

engineer, systems engineer or software engineer, or others. 

In contrast to prior chapters, the sections that follow also place somewhat greater 

emphasis on yet another important axis of similarity/difference, namely that of discipline-

profession. As a caveat, it is worth noting that concerns over disciplinarity and professionalism 

                                                
218 For more on the concept of “organizational field” – as well as a discussion about the tendency for such 
fields to promote standardization and homogeneity over variation and diversity – see DiMaggio and 
Powell (1983). As the authors summarize, “Once a set of organizations emerges as a field, a paradox 
arises: rational actors make their organizations increasingly similar as they try to change them” (p. 147). 
DiMaggio and Powell also offer valuable discussions about the many ways in which professionalization 
often encourages institutional isomorphism in a given organizational field (pp. 152-154). 
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were often noted in prior chapters, especially given the extent to which this particular distinction 

can often be mapped onto another axis, namely that of science and engineering. Yet the present 

analysis brings into further relief some of the key tensions between disciplinary and professional 

outlooks or perspectives, tensions that became increasingly evident in the 1970s and 1980s. 

More specifically, I document the difficulties and instabilities that emerged from the fact that the 

domain of computers and computing has long been partially shared by engineering – which is 

frequently viewed as a profession first and a discipline second – and computer science, which 

since its inception has primarily been conceived as an independent academic discipline.  

As further background, the rich body of scholarship reviewed in the introductory chapter 

of this dissertation revealed contrasting perspectives on the organization of discipline and 

professions. More specifically, Abbott has promoted the “settlement” metaphor to describe the 

relatively loose and intertwined claims of disciplines, while he uses the term “jurisdiction” to 

frame the more rigid and entrenched character of the sociotechnical boundaries between 

professions. Further, many studies of professions tend to place primary emphasis on worksites 

and working practices, while studies of disciplines often focus on the academic context and the 

development of theory and abstract knowledge.  

Hence, this chapter helps reveal how ongoing efforts to unify or integrate computer 

science and engineering challenged some deeply entrenched boundaries, not only between 

hardware and software, or even science and engineering, but also between discipline and 

profession. The success of these efforts therefore rested in large part on their ability to both work 

against a pre-existing and deeply entrenched organizational field and bring into a stable state of 

alignment a number of major axes of similarity/difference. Further, my analysis speaks to the 

importance of discourse in the construction, maintenance, and blurring of professional and 

disciplinary boundaries. In fact, the present chapter provides further support for the claim that 

disciplines and professions can be viewed as heterogeneous ensembles that are constructed out of 

diverse sociotechnical elements, ranging from discursive markers and abstract bodies of 

knowledge to technological artifacts and institutional infrastructures.  

In light of this introduction, is it any wonder that the subject(s) in question appear 

persistently elusive and unstable? Yet no matter how messy the tar pit, my goal for this chapter is 

to develop a reasonable likeness of this complex and dynamic field, including its ongoing 
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evolution and development. And by focusing on the academic context in recent decades, this 

chapter also begins to point toward opportunities for critically engaged intervention and reform. 
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Claiming CSE: The Computer Society Makes Moves in Education 

At the annual Spring Joint Computer Conference (SJCC) in 1971, the Computer 

Society’s Education Committee was established in ad hoc form (“Computer Society Starts,” 

1971). The Committee achieved full standing committee status later in the same year 

(“Education Committee Added,” 1971).219 These were important developments, as they 

suggested that the Society was getting more serious about its role in the educational arena. And 

as the group was gaining its initial footing and establishing a tentative agenda, the last of the 

COSINE Committee reports graced the pages of Computer in 1972 and 1973, reflecting the 

reasonably cordial relationship between the Computer Society and this alternate body of 

educational reformers (Denning et al., 1972; Booth et al., 1973). When the COSINE Committee 

disbanded around 1972, commentators such as Martha Sloan raised concerns about the ability of 

the Computer Society to pick up the torch of curricular development and reform (Sloan, 1974). 

Yet by the mid-1970s such concerns were beginning to look overstated, especially given the 

1975 publication of one of the first major reports of the Computer Society’s Education 

Committee on “A Course of Study in Computer Hardware Architecture” (Rossman et al., 

1975).220  

Even more importantly, Mulder’s prodding helped lead to the establishment of the Model 

Curricula Subcommittee in mid-1974 a branch of the Computer Society’s Education Committee 

(Mulder, 1977, p. 70). Mulder himself served as the first chair of the group, and former COSINE 

contributors such as David Robinson and Martha Sloan joined as members.221 Mulder and the 

rest of the Subcommittee quickly went to work on the development of new model curricula for 

four-year undergraduate degree programs in the area they suggestively dubbed “Computer 

Science and Engineering.” Their first progress report was published in early 1975, and the final, 

full draft of the curriculum was completed in late 1976 and disseminated more widely in 1977 

through derivative and supplemental publications. The scale of the undertaking was impressive. 
                                                
219 In comparison, evidence suggests that the ACM’s Education Committee was formed and active by at 
least 1960, with Louis Fein serving as one of the group’s first chairmen (Huskey, 1960b). By 1970, the 
relative maturity of the Education Committee was clearly reflected in its structure, which included a total 
of four special interest groups (SIGs) and six sub-committees (Carlson, 1970b). 
220 In fact, this six-member group included C. Gordon Bell, who had been extensively involved with the 
COSINE Committee in the early 1970s.  
221 Robinson was a member of the COSINE Task Force on Minicomputers (also known as Task Force 
VII). Sloan’s work in and around the COSINE Committee are documented in significant detail in the 
preceding chapter. 
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Producing the final version of the report involved roughly two and one-half years of effort, 20 

primary authors, 15 solicited contributors, 19 reviewers, approximately 20,000 man-hours of 

work, and more than $20,000 of Computer Society funds (Mulder, 1977, p. 70). In recognition of 

this fact, Computer Society President Merlin G. Smith bestowed upon the twelve main members 

of the Subcommittee a “Group Special Award” in late 1977 (Smith, 1977b). Contrary to Sloan’s 

earlier concerns, the Subcommittee had carried forward the torch of curricular development and 

reform with an impressive level of ambition and enthusiasm. 

Yet it is worth taking a closer look at the development of the group’s recommendations, 

especially to highlight some of the major themes – and tensions – that surfaced in their work. In 

fact, many of these themes were evident in the group’s first presentations, delivered at the Spring 

1975 COMPCON meeting (Mulder et al., 1975). As background framing, Mulder and his co-

authors articulated their concerns about the adequacy of computer-oriented degree programs: 

The voiced opinion from the computer industry is that the academic community is 

failing to provide the blend and the depth of computer-oriented instruction 

necessary to allow these new hires to be productive without considerable 

additional training. Students voice the opinion that they were not properly 

prepared to meet the demanding challenges of the computer industry (p. 33). 

As this statement reveals, many students in computer-oriented degree programs and their 

prospective employers were no longer satisfied with the historical status quo, in which 

undergraduate education in fundamentals was supplemented by considerable amounts of formal 

and informal training in industry. And discontent with this educational model was only 

exacerbated by perpetual increases in both the technical complexity of computer technology and 

the rate of technological change, which made the provision of training by industry ever-more 

extensive, time-consuming, and costly. Just how did this mismatch between the educational 

sector and the needs of the computer industry come about?  

Working toward an explanation, the authors noted the emergence of two distinct 

educational camps, one that preferred the development of degree programs grounded in science 

and theory, and another that privileged programs that were more pragmatic and engineering-

oriented. More specifically, the report noted the long-standing tendency for Computer Science 

Departments to focus on abstracts and theory while neglecting subjects related to hardware, 

hardware/software interfaces, and systems. Conversely, they chided Electrical Engineering 
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Departments for being “slow to extend their programs beyond the hardware or electronic aspects 

of computer systems” (p. 33). As documented in preceding chapters, such comments echoed 

critiques that had been circulating since at least the mid-1960s.  

Yet as this preliminary report made clear, this new group of reformers largely followed 

their predecessors when they placed primary blame on computer scientists – rather than 

engineers – for the inadequate training of computer professionals. In fact, a 1968 COSINE 

conference paper by C. L. Coates on “University Education in Computer Engineering” was 

particularly influential on the group’s position.222 In a section suggestively labeled “The 

Problem,” the authors followed Coates rather directly when they noted that computer science 

was hamstrung by two “fundamental limitations,” namely the arts and science background of 

most computer science faculty and the institutional location of computer science departments 

with arts and science colleges. In light of these factors, they argued that computer science 

departments were ill-suited to provide the more practical and engineering-oriented flavor of 

education that the subcommittee favored – and that industry was supposedly clamoring for. 

Much of the remainder of this same report was dedicated to outlining the subcommittee’s 

platform for reform. Yet unlike Coates – who was instrumental in shifting the agenda of the 

COSINE Committee away from the development of the “computer sciences in electrical 

engineering” and toward degree programs and options in “computer engineering” – the group 

adopted a more Janus-faced position that was focused on the domain they called “computer 

science and engineering.” As they explained: 

It is the conclusion of this committee and others that have preceded it that we 

must recognize that computer science education and computer engineering 

education are not the same and that there is a need for both. The solution may 

well be the definition of model curricula that are interdisciplinary in nature with 

more emphasis placed on computer engineering (p. 33). 

On the one hand, computer science and computer engineering education were marked by the 

authors as “not the same.” On the other hand, their use of the phrase “computer science and 

engineering” suggested the need for educational programs in which the two domains were 

somehow blended or merged to form a single and more coherent curriculum. While this vision 
                                                
222 This particular interim report also featured a list of nine other COSINE Committee reports. Yet 
interestingly enough, the COSINE Committee’s 1967 report on Computer Sciences in Electrical 
Engineering was omitted. 
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looked like throwback to the mid-1960s efforts of Zadeh and other engineers to embrace the term 

“computer science,” it was also clear that the agenda of this new committee was unique, in no 

small part due to the changing sociotechnical context in which they worked. 

Fleshing out what an interdisciplinary curriculum in “Computer Science and 

Engineering” might look like, the group explained that such academic programs should cover 

three intersecting areas, namely hardware systems technology, software systems technology, and 

processors/logic technology (p. 34). The report also argued that such programs needed to place 

“more emphasis on computer engineering, proper emphasis on computer science, and a flexible 

structuring of the curricula” (p. 34). The subcommittee’s preference for the term “technology” 

and phrase “computer engineering” looked like a corrective to the dominant mode of computer 

science education, which tended to emphasize theory, programming, and software. Further, their 

strategic and guarded use of the term “computer science” looked like an attempt by these 

engineers to selectively and strategically claim portions of this adjoining disciplinary domain. In 

fact, the authors followed Coates by arguing that computer science departments were not 

amenable to the development of programs in “computer science and engineering,” especially 

given their association with faculties and colleges of “arts and science.”223 And elsewhere the 

report reiterated that education in the area of “computer science and engineering” was “best 

provided in the domain of engineering (i.e., Electrical or Computer Engineering)” (p. 34).  

Given this overview, one might also wonder how the Subcommittee came to couch their 

work under the aegis of “Computer Science and Engineering.” In fact, this particular phrase was 

never promoted in earlier COSINE Committee reports, and it appeared only occasionally in 

professional publications through the early and mid-1970s, even as the Computer Society 

expanded its purview beyond computer engineering and into other areas. The Model Curricula 

Subcommittee also failed to offer an explanation for its choice of words. My own research 

suggests that the aforementioned Anthony Oettinger was one of the first individuals to widely 

promote this particular phrase. As documented in Chapter 5, Oettinger served from 1966 to 1968 

as President of the ACM, and during this time he expressed significant ambivalence about the 

status of computer science as a discipline. In a 1967 commentary, he explicitly claimed that the 

term “computer science” was a misnomer, and in as early as 1966 he was using the alternate 

                                                
223 In fact, Coates’ original 1968 comments about the affiliation of computer science with the arts and 
sciences appeared in near-verbatim form in this committee report. 
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phrase “computer science and engineering” (Oettinger, 1966b, p. 839). A 1968 letter by 

Oettinger also referenced “Computer Science and Engineering,” with capitalization used to 

suggest that this was indeed a recognized and distinct field of activity (Oettinger, 1968b, p. 293). 

Even more importantly, Oettinger spearheaded the establishment of a Computer Science 

and Engineering Board (CSEB) at the National Academy of Sciences in 1968, amidst growing 

concerns about the relatively low visibility and influence of computer professionals and their 

interests in Washington (“Computer Science and Engineering Board,” 1968; Titus, 1968). In 

addition to acting in an advisory capacity to both the Academy and the government on a wide 

range of computer-related issues, the group also promoted the interests of the computer field, 

especially in areas such as funding for research. Yet in spite of both Oettinger’s efforts and the 

formation of the CSEB, the application of the term “computer science and engineering” 

remained rather infrequent and scattered through the early 1970s.224 In fact, the CSEB itself was 

disbanded by late 1973, which might have been the demise of the phrase had the Model 

Curricula Subcommittee not embraced it shortly thereafter (Ralston, 1973b, p. 725).  

But even as “CSE” was being brought back to life by this other group of actors, 

numerous questions remained about the extent to which these engineers were claiming computer 

science, or some portion thereof. Through a series of additional papers and presentations, the 

group gradually refined its vision and provided a more detailed picture of what educational 

programs in “Computer Science and Engineering” might look like. And over time, the work of 

the subcommittee started to look more like a discipline-building project, albeit in ways quite 

distinct from Oettinger’s prior efforts. In the sections that follow, I review a number of the 

group’s subsequent publications. My analysis brings into further relief the group’s evolving 

agenda, as well as the numerous barriers that stood in the way of realizing educational programs 

bearing the mark of CSE, much less an entire discipline. 

Bridging the Tar Pit?: Toward a Curriculum in Computer Science and Engineering 

Another snapshot of the Education Committee’s activities appeared in the December of 

1975 issue of Computer, which was topically dedicated to “Computer Education.” In a lead 

article, Mulder reviewed the ongoing work of the Model Curricula Subcommittee. And while the 
                                                
224 As documented in the preceding chapter, Lotfi Zadeh also adopted this particular phrase when he 
noted in a 1971 paper that “electrical engineering has a special responsibility to train its students in both 
the basic and applied aspects of computer science and engineering” (1971, p. 153). 
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general message of the report followed prior documents closely – at times in verbatim or near-

verbatim form – Mulder embellished his account with an evocative analogy. As the author 

explained, prior efforts to develop “model curricula that mesh computer science and 

engineering” were akin to the “tar pits” of prehistoric lore, where great beasts engaged in mortal 

struggle (Mulder, 1975, p. 28). Further, he explained that the committee’s work toward a new set 

of model curricula for Computer Science and Engineering programs represented an effort to 

“bridge the tar pit” (p. 28). Emphasizing the value of a more integrated or unified approach to the 

education of computer professionals, Mulder explained that the work of the subcommittee was 

“the first effort to bridge the gap between computer science and computer engineering. And this 

is the difference between past and current efforts” (p. 31).   

On the one hand, individuals such as Zadeh and some of the early COSINE reports can 

be credited with taking some tentative first steps toward this type of bridging. On the other hand, 

both Mulder’s tar pit analogy and the committee’s use of the “computer science and engineering” 

moniker suggested that this new reform movement was more explicitly concerned with working 

toward some sort of curricular unification that spanned these two sociotechnical domains. In fact, 

the author noted that the model curricula project was focused on an “integration” of the 

“hardware and software disciplines,” and he added that the subject areas identified by the 

subcommittee represented “the domain of computer science and engineering” (p. 29). Such 

statements reveal the extent to which the development of curricula can quickly shade into a form 

of discipline-building. And indeed, the subject areas and courses identified in Mulder’s article 

covered a broad array of topics that were at least partially germane to the work of computer 

engineers and computer scientists, ranging from digital logic and computer organization to 

operating systems, software engineering, and computing theory.225 The author also explicitly 

declared that “a merging of computer science and computer engineering disciplines is both 

desirable and possible” (p. 31).  

Yet in spite of Mulder’s ambitious remarks, the uptake of this early draft of the 

subcommittee’s model curricula was probably limited, especially given that it was short on detail 

and marked as “interim.” Further, building metaphorical bridges on paper was far easier than 

                                                
225 The minimal “core” and more extensive “typical” curricula presented in the report also covered a wide 
range of material, albeit with greater emphasis on boundary-spanning topics such as computer 
organization, operating systems, and software engineering. The peripheries of hardware and theory 
received somewhat less attention. 
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realizing a “unified approach to education in computer science and engineering” in the “tar-pit” 

milieu of actual academic institutions. Two additional papers published during this same time 

period provide additional insights regarding the historical context for – as well as the Janus-faced 

character of – the Computer Science and Engineering movement. The first of these was 

published alongside Mulder’s article in the same 1975 issue of Computer, and it presented the 

results of a survey of electrical engineering and computer science departments (Sloan, 1975). 

Spearheaded by Model Curricula Subcommittee member Martha Sloan, this project was 

described as an update to the 1972 COSINE survey, which I reviewed in Chapter 5.  

Given that it was mailed to 222 electrical engineering and 95 graduate-level computer 

science departments, the survey revealed the extent to which the latter discipline was well-

established at a large numbers of schools. And the results of the survey provided other important 

insights about the departmental and curricular boundaries that had grown up in the realm of 

computer-oriented education. Sloan’s data showed, for example, that the vast majority of the 160 

responding departments carried the name “Electrical Engineering” or “Computer Science,” while 

only three used the combined “Electrical Engineering and Computer Science” (p. 36). The author 

also noted the tendency for many departments to fall rather predictably on one side or the other 

of the hardware-software divide: “The distinction between CS departments predominating in 

software and EE departments predominating in hardware is well established, at least in the 

aggregate” (p. 40). Along similar lines, Sloan reported that joint faculty appointments and joint 

course offerings between the two types of departments were rare, and she added that “[E]ven 

when a department does teach a course traditionally belonging to the other department, it colors 

the course with its own orientation” (p. 40). These deeply entrenched curricular and departmental 

bifurcations help reveal the salience of Mulder’s “tar pit” analogy. 

With regard to the field of computer engineering more specifically, Sloan indicated that 

only 3 of the 160 responding departments carried the name “Electrical and Computer 

Engineering,” although a much more impressive 51% of all responding electrical engineering 

departments offered some type of CS or CE degree program or option (p. 36). As these data 

reveal, computer engineering remained largely positioned as a branch or “dimension” of 

electrical engineering education, rather than as a distinct discipline unto itself. In addition, 

Sloan’s analysis suggested that this situation was not likely to change, at least in the near term. 

She noted, for example, that the growth of computer science and computer engineering courses 
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and options was slowing within EE departments, although she added many opportunities 

remained to “consolidate and improve curricula” for computer science and/or computer 

engineering programs (p. 40).  

And indeed, the term “consolidation” appeared an apt characterization of the curricular 

reform efforts that were underway around this time. Yet her survey also revealed major barriers 

to the development of academic programs in the area of “computer science and engineering,” 

including the persistent division of computer science and computer engineering programs, 

courses, and faculties, which were often situated in entirely different departments and even 

colleges. By contrast, computer science departments and graduate programs – both of which 

serve as key markers for disciplinary identity and crucial sites for disciplinary development in 

the American academic context – had proliferated from the mid-1960s onward. Truly unifying 

the disciplines of computer science and computer engineering therefore appeared a formidable 

task, especially given the various schisms that had grown up between these two fields in the 

educational arena. On the other hand, those at the forefront of the CSE movement appeared 

increasingly interested in developing their own flavor of computer science and engineering 

education within schools and departments of engineering, and with little concern for the ultimate 

role or fate of computer science departments and programs. 

Many closely related themes were evident in a 1976 review article titled “Computer 

Science and Engineering Education,” authored by Education Committee chair and Model 

Curriculum Subcommittee member C. V. Ramamoorthy (Ramamoorthy, 1976). Published in a 

special 25th anniversary issue of the IEEE Transactions on Computers, Ramamoorthy’s article 

started by briefly chronicling “the evolution of CSE education,” from the development of logic 

design and programming courses at a handful of pioneering institutions in the 1950s to the rise of 

Computer Science departments and programs in the 1960s. And with regard to more 

contemporary matters, Ramamoorthy acknowledged the many different institutional realizations 

of “CSE education,” including through separate Computer Science and Electrical Engineering 

Departments (Illinois at Urbana, Northwestern, Stanford, and Texas at Austin), combined 

Departments of Computer Science and Electrical Engineering (MIT and California at Berkeley), 

and the relatively recent emergence of Electrical and Computer Engineering Departments 

(University of Michigan and University of Wisconsin at Madison). Turning to the historical 

development of curricula, the author reviewed a series of key milestones, including the ACM’s 
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Curriculum 68, various COSINE Committee reports, and the ongoing work of the Computer 

Society. He also discussed a number of major trends and key issues with regard to CSE 

education, including accreditation and certification efforts, the development of laboratory 

facilities, and debates over the value of theory versus practice in computer-oriented degree 

programs. 

On the one hand, the author’s wide-ranging review revealed a desire among reformers to 

strategically frame “Computer Science and Engineering” as a single domain, in spite of the 

extensive historical segregation of computer science and computer engineering in the academic 

context. On the other hand, Ramamoorthy clearly delineated the computer field’s two 

sociotechnical faces. He explained, for example, that “the computer scientist is interested in the 

theory and science of computation and programming,” while “the computer engineer is 

interested in the specification, design, implementation, and utilization (operation) of data 

processing systems including both hardware and software” (pp. 1200-1201). Even more 

suggestively, the author noted that “[t]he computer engineer (including the software engineer) 

uses the principles of computer science and/or electrical engineering in specifying, designing, 

implementing, and utilizing computer systems for specific applications” (p. 1201).  

As suggested by these remarks, engineers such as Ramamoorthy were inclined to frame 

computer engineers as claiming an ever wider swath of sociotechnical territory, including 

relevant portions of software, software engineering, and even computer science. And even 

though he adopted the phrase “computer science and engineering,” his comments also 

perpetuated the idea that computer scientists and computer engineers were associated with 

distinct disciplinary and professional identities, even if he admitted that the former might draw 

on the theoretical knowledge and principles developed by the latter. In fact, the reasons for 

holding onto these distinct identities were both historic and pragmatic. That is, the term 

“computer engineer” emerged in the early 1950s and was used with increasing frequency 

through the 1950s and beyond, while “computer scientist” was coined in the late 1950s and 

widely applied in the 1960s. These monikers had seeped deeply into the discursive infrastructure 

of the computer field, and replacing them would likely require a more compelling alternative 

than an awkward and seemingly paradoxical phrase such as “computer scientist and engineer.” 

In summary, the three articles reviewed here shed important light on the fundamental 

tensions that came with calling for the establishment of integrated educational programs in the 
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area of “Computer Science and Engineering.” Even more specifically, I have documented the 

Janus-faced character of this movement, where various reformers framed computer science and 

computer engineering as distinct fields, albeit somehow united under the aegis of CSE. Further, 

my analysis hints at the extent to which the discursive construction of CSE as a unified or 

integrated domain was significantly in conflict with the persistent structural segregation of 

computer science and computer engineering courses, programs, and faculties in separate 

academic departments and even colleges. And Ramamoorthy’s comments in particular reveal the 

deeply entrenched distinction between the respective identities of computer scientists and 

computer engineers.  

While the members of the Model Curricula Subcommittee were likely cognizant of at 

least some of these issues, the following sections reveal that the group’s continued optimism 

regarding the development of educational programs dedicated to Computer Science and 

Engineering. My analysis also brings into further relief the extent to which these reformers were 

concerned with encouraging and overseeing the development of CSE within colleges and 

departments of engineering. 

A(n Engineer’s) Curriculum in Computer Science and Engineering 

Following a long series of interim reports, conference presentations, workshops, and 

revisions, the final version of A Curriculum in Computer Science and Engineering was dubbed 

“Revision 1” and initially published in early 1977 (Education Committee, 1977). As background 

for this lengthy report, the authors explained that their recommendations were designed to 

provide sufficient curricular breadth and depth, bridge the gap between hardware and software, 

and be suitable for implementation in a variety of institutional contexts (pp. 1-2). The 

organization of the curriculum had also evolved considerably since the group’s first reports, and 

the authors ultimately settled on recommending four main subject areas for coursework, namely 

digital logic, computer organization and architecture, software engineering, and theory of 

computing.226 The report also featured detailed outlines, instructional objectives, and lists of 

                                                
226 These four subject areas were the result of a gradual evolution that started with the aforementioned 
division of CSE into hardware systems technology, software systems technology, and processor/logic 
technology. In late 1975, an intermediate report by Mulder revised this spectrum to include hardware 
systems, software systems, and computing theory (Mulder, 1975, p. 30). This report also added a new, 
parallel set of categories that included digital logic, computer organization, operating systems and 
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reference materials for a total of 22 courses and 6 laboratories. A smaller subset of courses and 

labs were identified as a minimal “core curriculum” for schools in the early stages of developing 

and/or implementing CSE programs. 

Acknowledging the ambitious character of their proposed curriculum, the authors 

explained that the recommendations represented “the global continuum of computer science and 

engineering” (p. 3). Yet despite such discipline-building rhetoric, the authors were strategic in 

what they included, as well as what they left out. For example, only four courses were 

recommended in the subject area marked “Theory of Computing,” and these tended to emphasize 

the theoretical foundations of analysis and design rather than the more abstract and theoretical 

topics that were typically associated with computer science education.227 In addition, only a 

relatively small portion of the Theory of Computing subject area fell within the prescribed core 

curriculum, which seemed to reflect the committee’s aforementioned commitment to placing a 

“proper emphasis on computer science.” The recommended coverage of the hardware-oriented 

“Digital Logic” area was also comparatively minimal. In fact, this part of the curriculum featured 

just four classes, and only a fraction of this content was included in the core curriculum. Both the 

Software Engineering and Computer Organization and Architecture subject areas, on the other 

hand, dominated the report generally and the core curriculum specifically. These emergent 

boundary fields were therefore implicitly framed as unifying cornerstones for CSE education, as 

well as for CSE writ large. 

Yet the development of the model curriculum was not happening in isolation, and it is 

worth noting that the group’s recommendations paralleled larger trends in the computer field. As 

noted in the preceding chapter, for example, the impressive expansion of the Computer Society’s 

size and scope in the 1970s was in part linked to the group’s strategic movement into various 

subfields on the boundaries of computer science and computer engineering. In fact, many of the 

group’s new technical committees, workshops, conferences, and publications were focused on 

precisely those domains that were at the core of the new Model Curriculum, such as Computer 

Architecture, Operating Systems, and Software Engineering. The shifting boundaries of both the 

                                                                                                                                                       
software engineering, and theory of computing. The original categories were eventually dropped and 
replaced by the new category names as listed here. 
227 In fact, the authors of the report noted that the area of “Theoretical Computer Science and 
Engineering” had historically developed in a two-pronged manner, with “one concerned with hardware 
design (automata theory) and the other with programming language and compiler design (formal 
languages)” (p. 64). 



www.manaraa.com

 289 

Computer Society and the proposed model curriculum therefore reflected and reinforced one 

another, as well as the technological state of the art. Further, the expanding claims of engineers 

in these boundary-spanning subfields helped legitimize their adoption of the phrase “computer 

science,” as well as their selective borrowing of subjects and topics that had historically been 

associated and/or shared with computer science. 

This same report also hinted at the extent to which colleges and departments of 

engineering remained the authors’ preferred site for the development of CSE programs. To begin 

with, the minimal core curriculum appeared well-suited for implementation as a new option 

within existing engineering programs. And even more importantly, an Appendix tacked on at the 

end of the report provided an outline for a four-year “Electrical and Computer Engineering 

Curriculum” that was designed to meet accreditation guidelines that had been established by the 

Engineers Council for Professional Development (p. 98). While the authors offered little in the 

way of explanation regarding this supplemental documentation, it revealed this group’s 

preference for the development of “Computer Science and Engineering” education within 

colleges and departments of engineering. This appendix also hinted at the rising importance of 

accreditation, a point I discuss in more detail below. 

The work of the Subcommittee received even wider distribution in late 1977 through the 

publication of a special issue of Computer on the topic of “Computer Science and Engineering 

Education.” In addition to a series of articles on the proposed curriculum and related topics, this 

same issue also included an article that compared and contrasted the Computer Society’s Model 

Curriculum with another set of curricular recommendations that were being developed by the 

ACM’s C3S, and which were first published in draft form in mid-1977 (Engel, 1977). Author 

Gerald Engel – who at the time maintained close ties with the ACM, including through his role 

as liaison between the ACM’s Education Board and the Computer Society’s Education 

Committee – explained that the two reports reflected “differences in background and philosophy 

between the computer engineer and the computer scientist trained in the liberal arts tradition” (p. 

121).  

Yet rather than belaboring this point, Engel instead emphasized the overlap between the 

two sets of recommendations, especially in core subject areas such as software engineering and 

“programming design.” Noting the potential for closer cooperation between the Model 

Curriculum Subcommittee and C3S, Engel concluded on an optimistic note: “One day, perhaps, 
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computer science and computer engineering will no longer exist as separate entities, but instead 

as a single program representing options of a common core of fundamental material. This 

common core is the essence of our profession” (p. 123). While Engel’s claim that the so-called 

“core” represented the unity of the computer field, the continued development of separate 

curricular recommendations by the ACM and Computer Society revealed the persistence of the 

field’s two sociotechnical faces, as well as the continued importance of “peripheral” domains of 

technology and knowledge for the various actors and groups in this story.  

However, various committees and initiatives seemed to bring the educational activities of 

these two professional societies into closer alignment, especially in the late 1970s and through 

the 1980s. This time period was also marked by expanded efforts to establish and promote the 

discipline of “Computer Science and Engineering.” These trends hinted at the tentative 

emergence of a more unified discipline. Yet the ultimate success of this movement was far from 

assured, especially given that it required the assembly of rather complex – and fragile – ensemble 

of heterogeneous sociotechnical elements. In the following sections I continue to trace out this 

complex tangle of interests and forces, both within the Computer Society’s Education Committee 

and beyond. 

Supporting Curricular Reform in Electrical Engineering Education 

While the mid-1970s ambitions of the Model Curricula Subcommittee were impressive, 

other groups and events provided the group with both direct and indirect forms of support. For 

example, the participants in the Digital Systems Education (or DISE) Project spearheaded a 

variety of activities that were synergistic with both the work of the Subcommittee and the earlier 

efforts of the COSINE Committee.228 After meeting for the first time in 1974, this inter-

university and inter-industry working group secured three years of NSF funding for the 

development of educational materials in the “digital systems” area (Cain and Hoelzeman, 1977). 

As explained in one of the group’s reports, the project was largely prompted by the difficulties 

that educators faced as they tried to keep pace with rapid technological and theoretical change 

(Cain and Hoelzeman, 1977, p. 145). In support of their goals, the group established a newsletter 

and a repository for instructional materials, and a variety of DISE task force groups led the 
                                                
228 Taylor Booth was the only former COSINE member to participate in the DISE Project. J. T. Cain and 
Ronald Hoelzeman, on the other hand, were members of both the Model Curriculum Subcommittee and 
DISE Committee. 
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development and collection of materials in areas ranging from digital systems to software 

engineering (Cain, 1975). Another DISE task force concerned itself with improving 

communication and cooperation between universities and industry (Cain, 1975). The group also 

organized a Workshop on Microprocessors and Education in 1976, and select papers from this 

event were published in the January 1977 issue of Computer.  

On the one hand, the DISE Project was significant because it continued one of the major 

areas of reform led by the COSINE Committee, namely the reorganization of electrical 

engineering education around digital systems and related topics. DISE efforts to promote the 

development of software engineering education also fit into this larger movement, and one DISE 

report even framed software engineering as a “‘new’ area or approach within the digital systems 

area” (Cain, 1975, p. 15). On the other hand, the overall impact of DISE was likely limited, 

especially given that the group appears to have been disbanded after NSF funding ran out in 

1977. Further, the concept of “Digital Systems Education” as promoted by DISE was largely a 

subset of larger, parallel efforts to develop educational programs in computer science and 

engineering. In fact, Ramamoorthy noted in his 1976 review of computer science and 

engineering education that the efforts of the DISE Committee to collect and develop educational 

materials were in part being guided by the curricular recommendations being developed by the 

Computer Society’s Model Curricula Subcommittee (Ramamoorthy, 1976, p. 1202). 

Two additional branches of the Computer Society’s Education Committee provided other 

types of support for the work of the Model Curricula Subcommittee. The Regional HELP 

Subcommittee, to begin with, was formed to provide assistance to those schools wishing to 

establish programs or departments dedicated to computer science and/or computer engineering 

(Ghosh, et al., 1975). This group was therefore designed to overcome the challenges of 

implementation and reform at actual institutions, a problem that the COSINE Committee had 

tried to address with its less-than-successful site visit program.229 The specific activities of this 

group were not widely publicized, which makes it difficult to document its overall impact and 

agenda. However, a 1976 report of the group’s activities revealed that its members were working 

closely with a handful of schools, with the goal of developing computer engineering programs 

that were in agreement with the recommendations of the Model Curricula Subcommittee (Rine, 
                                                
229 By 1979 the Regional HELP subcommittee was renamed “Curriculum Implementation and 
Assistance,” and by 1982 it was titled “Curriculum Assistance.” Additional research is needed to 
determine the overall role and impact of this evolving group. 
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et al., 1976). The authors also noted that a series of regional HELP Workshops were being 

planned, where interested faculty could begin to think about and plan for the implementation of 

the Computer Society’s model curricula on their own campuses. And finally, this report 

identified a number of programs that might serve as “models” for CSE education, and the list 

featured a number of well-known institutions such as UC-Berkeley, Stanford, Illinois, Carnegie-

Mellon, and MIT (p. 210). 

The Subcommittee on Coordination, on the other hand, was established to coordinate 

matters of mutual interest between the Computer Society’s Education Committee and other 

groups and organizations (Salisbury, Snyder, and Smith, 1975). In fact, the ACM’s Standing 

Committee on Curriculum in Computer Sciences (C3S) was the group’s sole initial focus (p. 41). 

Noting that the “common educational concerns between the Computer Society and the ACM 

mirror in large measure the overlapping areas of interest of the two organizations,” the authors a 

1975 subcommittee report put forward the “oversimplified” view that the ACM tended to focus 

on the development of the “computer science” curriculum, while the Computer Society was 

concerned with “computer engineering” (p. 41). This same report also noted that one of the 

major functions of the subcommittee was to “eliminate duplication of effort in those areas where 

the two curricula can properly follow a common core” (p. 41). In order to work toward this goal, 

“observers” from the ACM and Computer Society were selected to attend relevant meetings in 

each counterpart organization. The report also noted the close relation of the Coordination group 

with both the Model Curriculum and Survey Subcommittees.  

As suggested by this overview, the Subcommittee on Coordination was framed as an 

“interface” and “channel of communication,” both within the Computer Society and beyond. It 

therefore acted as a sociotechnical mediator, in a manner akin to many of the other ACM SIGs 

and Computer Society TCs that maintained overlapping interests. Further, it is worth noting that 

the relation of these two professional societies on educational manners was generally cooperative 

around this time, especially given that individual institutions rather than professional societies 

were the primary sites for battles over discipline building and curricular reform. In fact, the 1978 

publication of A Library List on Undergraduate Computer Science, Computer Engineering, and 
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Information Systems – which was prepared by a joint committee of the ACM and the Computer 

Society – provides further evidence for this cordial relationship (Joint Committee, 1978).230  

A series of Workshops on Computer Science and Engineering (CSE) Curricula provided 

additional support for the Education Committee and its various subcommittees. The first three of 

these events – which took place in 1976 and 1977 – were primarily concerned with the overall 

development and site-specific implementation of the Computer Society’s Model Curriculum in 

CSE.231 The third workshop was also noteworthy for its explicit concern with both bridging the 

gap between hardware and software and incorporating microprocessor technology in CSE 

education. The fourth and final workshop was organized in early 1978 and emphasized the 

adaptation of CSE materials for use by smaller institutions, community colleges, and 

introductory courses at large schools. The impact of these workshops was likely significant, 

given that each event attracted anywhere from 80 to 130 or more participants. Digests of papers 

were also published for the latter two events, further disseminating the content of these meetings. 

While the various committees and events reviewed in this section provided various types 

of support for the development of CSE in the academic context, the term “computer science and 

engineering” was also being adopted for other purposes and projects, especially in the late 1970s 

and early 1980s. In fact, these projects were projecting the outward image of a full-blown 

discipline-building project, supported by an impressive cadre of actors and groups. Yet as my 

analysis reveals, these projects managed to only thinly veil the underlying sociotechnical 

tensions that came with them. 

Disciplining CSE: Taxonomies, COSERS, and Encyclopedias, oh my! 

As noted above, many of the publications and presentation of the Model Curricula 

Subcommittee indicated that the group’s proposed curriculum was a sort of outline or map of the 

boundary-spanning discipline dubbed Computer Science and Engineering. This is perhaps not 

surprising, especially given the extent to which the building of curricula – not to mention 

associated departments and degree programs – is often deeply intertwined with the building of 

                                                
230 The overall organization of this extensive list of books and other reference materials was itself an act 
of boundary-work, in that it involved the development of a taxonomic organization scheme for computer 
science, computer engineering, and information systems. The report probably provided inspiration some 
of the subsequent taxonomy projects that I discuss in more detail below. 
231 My summary of these events is based primarily based on the remarks of Rine and Lee (1978) as a part 
of their introduction to the published proceedings of the fourth such workshop in 1978. 
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disciplines. Yet in the middle and late 1970s, at least three major projects got underway that were 

quite explicitly concerned with outlining the historical trajectory, contemporary contours, and 

future research horizons of the discipline ostensibly dubbed “computer science and engineering.” 

These large and ambitious undertakings spanned multiple years, required significant financial 

backing, and involved large numbers of coordinators, authors, and reviewers. These three 

projects were also explicitly concerned with producing final reports that were accessible to those 

outside of the field, thereby reflecting growing concerns about the proper image and perceived 

legitimacy of the computer field and its branches, both in society generally and in communities 

of scientists, technologists, and policy-makers specifically. 

Initiated by the American Federation of Information Processing Societies (AFIPS) in 

1977 and published in 1980, the Taxonomy of Computer Science and Engineering report was the 

result of three years of work by a committee of eleven, along with seventy additional authors and 

reviewers, many of them well-known in the field (Ralston, 1980). The project also received 

financial support from the Institute of Computer Science and Technology of the National Bureau 

of Standards and the Air Force Office of Scientific Research and the Office of Naval Research. 

Committee chairman Mathematician, computer scientist, and former ACM President Anthony 

Ralston explained in a preface to the group’s final report that the development of the taxonomy 

involved “a study of the structure of a discipline which appears to be unique among the sciences 

and almost unique among all disciplines” (p. v). Further outlining the motivations behind the 

project, Ralston added that the project was designed as a response to persistent 

misunderstandings about “what computer science and engineering is,” especially by those 

outside of the field, and especially in light of its rapid growth and development (p. v). Among a 

variety of possible uses, the authors suggested that the taxonomy could serve as a reference for 

definitions or bibliographic sources, or as a guide for allocating research grants, classifying jobs, 

or organizing publications. 

The taxonomy itself was organized as a “tree” with nine major branches, namely 

hardware, computer systems, data, software, mathematics of computing, theory of computation, 

methodologies, applications/techniques, and a residual category dubbed “computing milieux.” 

As the authors explained, the organization of the taxonomy in this manner reflected the 

committee’s view that “Hardware and Software are the ‘pure’ endpoints of a core computer 

science and technology continuum” (AFIPS Taxonomy Committee, 1980, p. 416). Yet as in 
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previous reports and commentaries, the taxonomy came to reflect various disciplinary and 

professional bifurcations, in spite of its stated objective of codifying the structure of “Computer 

Science and Engineering.” It included, for example, a series of suggestive taxonomic 

descriptions of occupational titles and organizations, including the following: 

9.6.1 Occupational Titles 
 9.6.1.1 Computer scientist 
 [A person involved in computer research or advanced 

development.] 
 9.6.1.2 Computer engineer 
 [A person involved in design or development of 

computer hardware.] 
 …  
9.6.2 Organizations 
 9.6.2.1 Technical Societies 
  … 
  9.6.2.1.2 ACM 

[The Association for Computer Machinery whose 
members are mainly computer scientists and 
programmers.] 
… 
9.6.2.1.4 IEEE Computer Society 
[The Institute of Electrical and Electronic 
Engineers Computer Society whose members are 
mainly computer engineers.] 

 
(AFIPS Taxonomy Committee, 1980, p. 11) 

 

To begin with, these entries once again acknowledged the existence of distinct social and 

professional identities for computer scientists and computer engineers. Further, the 

accompanying organizational descriptions revealed the respective and persistent linking of these 

two identities with the field’s two main professional societies, in spite of increasing overlap and 

coordination between the two groups. 

In summary, the dominant image of the field’s social and professional boundaries stood 

in marked tension with the authors’ claim that Computer Science and Engineering could indeed 

be viewed as a single discipline. Yet in a discussion of philosophical and technical issues 

included at the end of the taxonomy, the authors acknowledged some of the tensions that came 

with their project. They noted, for instance, that CSE was a “new and rapidly changing field,” 

thereby impeding the ability of this group to establish a high degree of “conceptual unity and 

stability” in the proposed taxonomy (p. 415). As a more specific example of these challenges, the 
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report acknowledged that significant controversy had erupted over the “Computer Systems” 

node, which reviewers had apparently criticized as a “misconceived hybrid” (p. 416). While 

certainly a suggestive turn of phrase, in the context of the present analysis it quite naturally leads 

to the question of whether “computer science and engineering” was itself a misconceived hybrid, 

especially for those uneasy about blurring the disciplinary and professional boundaries that 

traditionally separated science from engineering. 

One finds similar tensions evident in COSERS, or the “Computer Science and 

Engineering Research Study,” which was conceived in 1974 and launched in 1975 with financial 

support from the NSF (Arden, 1980, Preface). The COSERS steering committee featured thirteen 

well-known computer scientists and engineers, including university, government, and industry 

affiliates. The committee also included three members of the aforementioned AFIPS Taxonomy 

Committee.232 According to Bruce Arden – who chaired the project while serving as the head of 

Princeton’s Department of Electrical Engineering and Computer Science – the major objectives 

of the COSERS study involved identifying and describing the boundaries of research in the 

domain marked “computer science and engineering” (Preface). According to the group’s final 

report, this description would also serve as an “operational definition” for the formative field. 

Revealing one of the main motivations for their ambitious undertaking, Arden noted in one his 

earlier reports that the development of such a definition “will have a salutary, self-organizing 

effect on this relatively new research area and … the resulting report will be useful for technical 

administrators in their task of research-support allocation” (Arden, 1976, p. 673). Such 

comments reveal some overlap between the goals of this project with both the AFIPS Taxonomy 

work and prior projects, including Oettinger’s efforts to promote research in “Computer Science 

and Engineering,” including through the establishment of the short-lived CSEB. 

The final COSERS report – titled What Can Be Automated: The Computer Science and 

Engineering Research Study – was published in 1980 by The MIT Press and featured the work of 

eighty contributing authors. In most general terms, the report was organized around eight 

primary subject areas. In “decreasing order of longevity,” these subjects included numerical 

computation, theory of computation, hardware systems, programming languages, artificial 

intelligence, operating systems, database systems, and software methodology. The group also 

                                                
232 The three overlapping members included Bernard Galler, Jean Sammet, and Stephen Yau. The two 
projects also involved a number of overlapping authors and reviewers. 
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described research in a diverse variety of “application” areas, ranging from algebraic 

computation and computational linguistics to computer applications in medicine and air traffic 

control. Yet in contrast to the AFIPS taxonomy, the COSERS project was somewhat more 

explicitly concerned with identifying and describing future directions for research. Following 

Mahoney, the COSERS participants were attempting to codify the disciplinary agenda of 

computer science and engineering, especially around the question “What can be automated?”233 

Yet the impressive breadth of the final report revealed that the actual research agenda was both 

wider in scope and more fragmented than suggested by any single, unifying question. 

In his introductory remarks, Arden also acknowledged ongoing debates regarding the 

respective boundaries around the science and engineering aspects of computing, and he reviewed 

a series of justifications for maintaining this division. For example, he noted that computer 

scientists tended to focus on explanatory models and “understanding,” while computer engineers 

were more concerned with applications and implementation. Arden countered, however, that 

common concerns with efficiency made it difficult to maintain the science-engineering 

distinction. The author also noted that the two fields were frequently divided according to their 

relative proximity to physical equipment: “In short, there is currently an operational difference 

between computer science and computer engineering, which corresponds roughly to how close 

interests are to the levels of physical implementation of algorithms, or the machine level” 

(Arden, 1980, p. 7). Yet he questioned this rationale as well, arguing that concerns about “the 

cost of algorithms at all levels” tended to blur this difference. Following another closely related 

theme, the report also summarized ongoing efforts to develop a succinct and universal definition 

of computer science, while noting both the inherent difficulties with such a task and the author’s 

preference for an “operational” rather than “simple” definition.234 As suggested by this overview, 

                                                
233 As Mahoney explains, “The agenda of a field consists of what its practitioners agree ought to be done, 
a consensus concerning the problems of the field, their order of importance or priority, the means of 
solving them, and perhaps most importantly, what constitutes a solution” (2000). 
234 Interestingly enough, Arden added: “Since computer engineering, no matter how it is distinguished 
from computer science, rests ultimately on the same definition, it has not generated independent 
candidates for definition” (Arden, 1980, p. 7). While perhaps overstated, this remark once again revealed 
the extent to which computer science and computer engineering had evolved in relation to one another. 
This comment also hints at the extent to which the development of computer engineering as a distinct 
field tended to involve implicit rather than explicit discipline-building activities, such as the ongoing 
development of curricula, programs, social identities, etc. 
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Arden was intent on framing “Computer Science and Engineering” as a single field, in spite of 

both its broad span and history of segmentation and fragmentation. 

Various subsequent publications also perpetuated the image of a unified field, at least on 

the surface. For example, the Encyclopedia of Computer Science – which was first released in 

1976 – was published in second edition form in 1983 under the modified title Encyclopedia of 

Computer Science and Engineering (Ralston and Meek, 1976; Ralston and Reilly, 1983).235 This 

name change was not entirely surprising, given that the aforementioned Anthony Ralston served 

as an editor for both editions. As Ralston explained in a Preface to the second edition, “This 

change is both an attempt to describe the contents of this book more accurately and an explicit 

recognition of a greater emphasis on this edition than in the last on computer technology” 

(Ralston and Reilly, 1983, p. xi). In addition, Ralston noted that the major categories used to 

classify the articles in the encyclopedia largely corresponded to those presented in the AFIPS 

Taxonomy. Hence, these two projects were in part mutually reinforcing. 

Yet a closer look at these tomes reveals a continued privileging of the computer science 

outlook. The first and second editions, for instance, included entries for “computer science,” but 

none for “computer engineering” or even “computer science and engineering.” However, the 

1983 edition acknowledged that computer science maintained significant overlap with both 

mathematics and electrical engineering, and at one point even claimed that computer science “is 

also considered an engineering science,” especially given the role of design-oriented activities in 

many phases of the field (p. 366). An appendix in the second edition also included a list of 

universities in the United States and Canada that offered the Ph.D. degree in computer science or 

closely related fields (pp. 1598-1600). Of 83 such schools, more than three-quarters offered 

Ph.D. degrees that were situated in departments or programs of computer science, computing 

science, or similar. On the other hand, just eleven of the listed programs and departments 

included the word “engineering” in their title, and these varied widely in naming. This appendix 

therefore put forward the image of computer science as a bona fide discipline, complete with 

well-established departments and programs that were steadily churning out doctorate degrees in 

computer science. 

While Oettinger can be credited with first popularizing the term “computer science and 

engineering” and the Model Curricula Subcommittee later promoted the development of 

                                                
235 For a recent, article-length history of the Encyclopedia of Computer Science, see Ralston (2004). 
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educational programs bearing this moniker, the AFIPS, COSERS, and Encyclopedia projects 

reveal that the disciplinary development of CSE had entered a new phase. More specifically, 

these projects variously attempted to identify and in part codify the structure of the discipline, 

including via hierarchically ordered lists of various constituent categories, sub-categories, and 

subjects. In addition, these projects were framed as contributing to ongoing efforts to garner 

additional support for the field of computer science and engineering, with particular emphasis on 

improving how uninitiated outsiders understood the character and contours of the field. In fact, 

the COSERS project in particular placed significant emphasis on identifying a unifying agenda 

for the field, as well as a variety of more specific research horizons. These projects were strategic 

and political, as they promoted an outward image of unity in the domain marked computer 

science and engineering, despite the various internal schisms that divided the field. 

My discussion of these projects also reveals that the discipline-building project of CSE 

had at least partially transcended the Computer Society and its cadre of educational reformers. In 

fact, these projects brought together a variety of actors who maintained close ties with the ACM 

and the Computer Society, computer science and computer engineering, and industry and the 

academy. On the other hand, the Computer Society’s Education Committee largely retained 

control of the phrase “Computer Science and Engineering” for its own model curricula, and these 

recommendations tended to privilege the needs and perspectives of the many engineers and 

engineering educators who dominated the group. In the following sections, I document how this 

tension persisted through much of the 1980s, and then partially reversed in the late 1980s 

through the “Computing as a Discipline” movement. As my account makes plain, the shifting 

disciplinary landscape of the computer field was persistently suspended between the abstract 

ideals of discipline builders and the extant realities of pre-existing institutional structures, 

professional identities, divisions of labor, accreditation processes, discursive constructs, and 

technological developments. In the following sections I take a closer look at some of the currents 

and undercurrents that accompanied the emergence of “Computer Science and Engineering.” 

Managing Complexity: The Hybridization of Hardware and Software Engineering 

While my analysis has hinted at the importance of technological change as a backdrop for 

the evolving professional and disciplinary landscape of computing, it is worth bringing this 

theme into further relief. More specifically, this section reveals the persistent blurring of not only 



www.manaraa.com

 300 

the software-hardware boundary, but also the various bodies of knowledge and techniques 

associated with these domains. In doing so, my goal is not to paint technology is a cause or prime 

mover behind the various movements documented in this chapter, but rather as one important 

factor among many. As background, I also engaged with a number of closely related themes in 

the preceding chapter, including through my review of the emergence of some new domains of 

expertise. More specifically, the development of new technologies, design techniques, and 

bodies of expertise contributed to the establishment of new subfields such as computer 

architecture and microprogramming. Further, work in these areas revealed a continued blurring 

of the boundaries between software and hardware, especially at the intermediate levels of 

computer design. 

However, the preceding analysis tended to gloss over another important aspect of this 

history, namely the spectacular increases in the complexity of the technological art of computer 

design, especially from the 1970s onward. One finds, for example, dramatic increases in both the 

density and scale of integrated circuits, leading from medium-scale integration (or MSI, with 

hundreds or thousands of transistors on a chip) to large-scale integration (or LSI, many 

thousands of transistors on a single chip) to very large-scale integration (or VLSI, with many 

tens-of-thousands to hundreds-of-thousands transistors on a chip) within the span of just over a 

decade.236 As one might suspect, designing and producing reliable devices of this scale – not to 

mention incorporating them into even larger and more complex systems – proved a formidable 

challenge, even for the most seasoned individuals and design teams.237 

In fact, in his 1989 article on the co-evolution of electronics technology and computer 

science from the 1940s to 1970s, historian Paul Ceruzzi framed “the management of complexity” 

as a common concern of both electronics engineers and computer scientists, and he largely 

credited the field of computer science for providing engineers with the ability to cope with the 

task of building chips that consisted of hundreds of thousands of individual transistors (Ceruzzi, 

1989). And while Ceruzzi’s assumptions in this article about the respective boundaries around 

computer science and computer engineering are certainly debatable, it is worth probing in more 

                                                
236 Wikipedia provides a reasonable overview of the defining characteristics and major time periods for 
the historical development of integrated circuit technologies, including MSI, LSI, and VLSI (“Integrated 
circuit,” n.d.). 
237 Tracy Kidder’s Pulitzer Prize-winning The Soul of a New Machine (1981) provides a persuasive 
account of how two design groups at a well-known computer company grappled with these types of 
challenges in the mid-1970s. 
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detail the movement of knowledge and technology between the more “hardware” and “software” 

ends of the computing spectrum, especially through the 1970s and into the 1980s.  

For example, hardware and system designers benefited greatly from the continued 

development and application of new hardware description languages (HDLs), especially from the 

1970s onward. In addition to revealing how the knowledge and techniques of programmers and 

computer scientists could usefully be applied to the engineering of ever-more complex 

computing devices, HDLs were often viewed as providing an important bridge between 

hardware and software design. More specifically, these languages provided computer engineers 

and designers with a much greater appreciation for the behavorial as well structural aspects of 

hardware.238 To put it another way these languages provided not only the ability to describe the 

physical structure and interconnections of a given integrated circuit and/or system, they also 

improved the ability of designers to specify in detail how that circuit or system would behave. 

Further, the development of common specification languages for both hardware and software 

helped enable the simulation of combined hardware-software systems. Such simulations also 

helped enhance the ability of designers to analyze the increasingly important trade-offs that came 

with shifting functionality between hardware and software. 

HDLs – coupled with a variety of supporting technologies and developments – seemed to 

provide crucially important scaffolding for the emergence of a truly integrated approach to 

hardware and software design. In fact, it didn’t take long for observers to sense the larger 

significance of these developments. In as early as 1974, for example, F. J. Mowle of Purdue 

noted the potential impact of HDLs in the educational sphere. As Mawle explained, the 

emergence of hardware description languages, new semiconductor technologies, and shifting 

divisions of system design labor pointed toward “an integrated education in hardware and 

software principles by use of a suitable combination of hardware description language and high-

level programming language … This will be a promising approach to overcoming the pedagogic 

efficiencies of the conventional methodological segregation and its consequences” (as quoted in 

Chu, 1974, p. 20). Mowle’s comments help bring into further relief the currents of change that 

seemed to be afoot as the Computer Society’s educational reformers went to work on developing 

their ambitious new boundary-spanning curriculum in CSE, and as other groups worked more 

generally to outline the contours of CSE. 

                                                
238 I draw significant inspiration here from the remarks of R. Hartenstein, as quoted by Chu (1974, p. 20). 
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On the one hand, the rise of HDLs seems to provide support for Ceruzzi’s claim that the 

engineers had greatly profited from the prior innovations of computer scientists. Yet the 

movement of knowledge between these two groups clearly flowed both ways. In fact, just as the 

engineers learned much from the more behavioral or procedural perspective of computer 

scientists and programmers, so too did computer scientists learn from the structural outlook of 

the engineer-cum-designer. At risk of overgeneralizing, the emergence of the field of “software 

engineering” provides evidence for this trend, where the tools and techniques of engineers were 

used to cope with the increasing complexity of software. For example, one finds the application 

various design methodologies and cycles to the domain of software. Further, many of the metrics 

long-privileged by engineers for the design of physical artifacts – such as simplicity, reliability, 

modularity, economy, and adaptability – were imported wholesale into the realm of software 

design. Hence, if the increasing complexity of integrated circuit technology showed the limits of 

a purely structural approach to engineering design, so too did the increasing complexity of large-

scale software projects begin to reveal the limits of both computer science theory and purely 

procedural approaches to programming. 

The emergence of the next major generation of integrated circuit technology – dubbed 

very large-scale integration, or VLSI – sheds additional light on the continued interplay between 

the realms of software and hardware development.239 Commentator Ben Spaanenburg, for 

instance, suggestively summarized that the “VLSI 81” conference held in Edinburgh, Scotland 

was largely organized around the question: “Will VLSI be solved by (computer) science or 

(electrical) engineering?” (1982). Describing the event as a “staging area for a clash” between 

science and engineering, the author presented a somewhat lopsided view of the event by 

emphasizing the continued influx of computer science into engineering and microelectronics. In 

fact, he noted in that one participant in the event had put forward the view that “software is the 

key to VLSI design, with the crucial skill being complexity management.”  

While such comments seem to support Ceruzzi’s claims, other evidence reveals that the 

flow of technology and knowledge in and around the domain of VLSI was altogether more 

                                                
239 As other commentators have noted, the difference between LSI and VLSI was not only a matter of the 
number of transistors that could be packed onto a chip, but also associated differences in design 
philosophies. LSI technologies allowed computer systems to be developed by wiring together standard 
LSI modules. VLSI, on the other hand, opened the way for entire systems to be placed on a single chip. 
As this overview suggests, the design of systems based on VLSI rather than LSI technology required very 
different design methodologies and approaches. 
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complex. Later in the same year, for example, a three-day workshop “on the engineering of VLSI 

and of Software” was organized by the Computer Society. According to one announcement, the 

workshop was conceived to examine “the role, utility and value of [s]oftware engineering 

practices applied to VLSI” and “VLSI technology and engineering practices applied to software” 

(“Call for Participation,” 1982). Rather than promoting the tired image of persistently 

fragmented field, this particular event suggested that many of the technical boundaries between 

software and hardware had been breached. On the other hand, Spaanenburg’s remarks revealed 

that images of science and engineering as distinct domains continued to have much currency in 

the field, even if it was increasingly difficult to determine where the tools, techniques, and 

knowledge of the computer scientist ended and the computer engineer began. 

Research Directions in Computer Engineering: (Re)Defining the Discipline 

While many of the technological currents outlined above appeared largely synergistic 

with the philosophy and motivations of the “Computer Science and Engineering” movement, 

other 1980s era developments simultaneously undermined it. In order to document this trend I 

begin in the early 1980s, when a handful of engineers worked to both (re)establish a definition 

for computer engineering and promote the field as a distinct discipline and domain of research. 

Evidence for this movement can be found in a published report on a 1981 NSF workshop on 

“Research Directions in Computer Engineering” (Freeman, 1982; 1983). In terms of 

composition, the fourteen participants at this event included six industry affiliates, while another 

eight hailed from the academy (p. 80). Electrical engineer Herbert Freeman of Rensselaer 

Polytechnic Institute served as chairman, and C. V. Ramamoorthy was among the participants 

(Freeman, 1983, p. 81).  

As Freeman noted in a follow-up report – which was published in Computer – the 

workshop participants were ostensibly gathered to discuss the future of research in the area of 

computer engineering, yet they quickly surmised that it was necessary to first establish the field’s 

definition, scope, position, and goals. More specifically, this same report indicated that the group 

spent considerable time on the topic of “What is computer engineering?” “Computer engineering 

has never been clearly defined” (Freeman, 1983, p. 80), Freeman explained, and he suggested 

that this condition largely stemmed from both the relative newness and rapid development of 
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computer technology. The author then summarized the participants’ efforts to clear up some of 

this ambiguity, including via their own attempt at a definition: 

[C]omputer engineering is the discipline that deals with the design and 

development of computer systems and emphasizes such factors as function, 

performance, cost, size, power requirements, reliability, maintainability, and 

societal impact. Intrinsic to computer engineering is the concept of design as it 

applies to all aspects of a computer system – the hardware, the software, the 

algorithms used – and the application for which it is intended (p. 80, authors’ 

emphasis). 

The report also emphasized that computer engineering was neither science nor mathematics, 

especially given the orientation of engineers toward applying theory and focusing on matters of 

implementation. As this overview reveals, the workshop participants leveraged the historical 

links between engineering and design to frame computer engineering as covering a wide swath 

of sociotechnical territory. In fact, the authors used their rather expansive definition to claim that 

“most people working in the computer industry (other than pure science) are computer 

engineers” (p. 80).  

To be sure, many self-described computer scientists probably recoiled at such claims. The 

suggestion that the group’s definitional work was largely novel was also questionable. As 

documented in prior chapters, many prior commentators had made implicit and explicit claims 

about the scope and contours of computer engineering. For example, the COSINE Committee’s 

widely-distributed 1970 recommendations for computer engineering options quite explicitly 

defined computer engineering, while also hinting at how the education and work responsibility of 

computer engineers differed from their computer science and electrical engineering ilk. And as 

noted above, Ramamoorthy himself put forward a rather succinct definition for computer 

engineering in his 1976 review article on “Computer Science and Engineering Education.” 

In light of this evidence, how do we account for this collective case of amnesia – this 

apparent lack of disciplinary memory – which led this group to claim that computer engineering 

had never been defined? To begin with, many earlier publications had framed computer 

engineering as a branch of engineering or dimension of electrical engineering, rather than as a 

discipline unto itself. In fact, one finds a similar tendency among the NSF workshop participants, 

especially as they worked to distinguish computer engineering and computer science. As 
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Freeman summarized: “[c]omputer science tends to stress understanding and insight,” while 

“[c]omputer engineering emphasizes practical, economic systems” (p. 80). This statement 

implied that the workers in each of these domains possessed their own distinct outlooks or 

perspectives, and these roughly cleaved along the science-engineering boundary. Freeman added 

that this difference was especially apparent in the academic context, where computer engineering 

students were schooled not only in computer hardware and software, but also in basic science, 

engineering science, and engineering design. The author quite suggestively added that computer 

engineering students enrolled in ABET accredited programs were educated as “engineers first 

and computer engineers second” (p. 81). Such comments support the claim that the development 

of computer engineering as a recognized discipline was often and persistently overshadowed by 

ongoing efforts to turn engineering undergraduates into appropriately qualified professional 

engineers.  

The parallel promotion of “Computer Science and Engineering” as an all-encompassing 

disciplinary and professional moniker only caused further confusion about both the past and 

present landscape of the computer-oriented disciplines. And in line with this alternate view of the 

field, Freeman acknowledged that computer engineers and computer scientists maintained 

overlapping interests in many of the same epistemological and technological territories. “Except 

for the very theoretical aspects of computer science and the very strong hardware aspects of 

computer engineering,” the author explained, “the domain of interest of computer science and 

computer engineering are virtually the same” (p. 80). Echoing many prior commentators, 

Freeman ultimately concluded that the two disciplines should be regarded as “complements” 

rather than “competitors” (p. 82). And the workshop group even went so far as to identify the 

“integration of hardware and software disciplines” as one of 16 major five-year research goals 

for the field (p. 82). 

As this overview reveals, over the span of roughly three decades the field of computer 

engineering had largely failed to achieve an independent disciplinary identity, even for those 

who self-identified with the field. In fact, computer engineering appeared stubbornly suspended 

between electrical engineering and computer science, profession and discipline, and the NSF 

workshop hinted at some of the potentially deleterious consequences that came with the field’s 

boundary-spanning position. The report raised questions, for example, about the extent to which 

university administrators, students, funding agencies, and the lay public understood what 
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computer engineering encompassed. Perhaps even more suggestively, Freeman added that “the 

choice of name for a university department can have far-reaching implications on the types of 

students it attracts, its faculty, the kind of research support it will receive, and its ultimate growth 

and development” (p. 81). While the author failed to elaborate on this comment, its probable 

meaning is easily inferred, namely that working the phrase “computer engineering” into 

departmental titles was an important step toward its recognition as an academic discipline.  

Yet as the following section makes clear, promoting the institutional, disciplinary, and 

discursive legitimacy of computer engineering stood in at least partial tension with not only this 

group’s comments about integrating the hardware and software disciplines, but also with those 

who continued to lobby for a more unified approach to computer science and engineering 

education. And indeed, the Computer Society’s next major curriculum development project was 

once again framed under the boundary-spanning guise of CSE, even as others were beginning to 

raise questions about the extent to which the group’s work actually promoted the blurring or 

crossing of disciplinary boundaries. 

From Curriculum to Program: The Engineers Revisit CSE Education 

Through the late 1970s and into the 1980s the Computer Society’s Education Committee 

continued to expand, both in terms of its membership and level of activity. In 1979, for example, 

chairman David Rine boasted that the group consisted of about 300 members, and he added that 

approximately 35 papers related to the committee’s activities had recently been presented at 

conferences (Rine, 1979, p. 3; 4). Around this time the group was involved with assisting 

educators with the implementation of model curricula, developing new curriculum reports for 

other educational levels (including pre-college, community college, and graduate), and 

establishing new recommendations for more specific subfields, including graduate-level 

programs in software engineering (Rine, 1979). Committee members were also increasingly 

involved in accreditation-related work, as discussed in more detail below. The committee’s 

institutional prominence was further elevated when it officially became the Educational 

Activities Board (EAB) in the early 1980s (Booth, 1982). As a result of this change, the group’s 

leader was recognized as a voting Vice President on the Computer Society’s governing board. 

Within the span of a decade, education had clearly emerged as a centrally important domain of 

activity for the Computer Society and many of its members. 
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Not content to rest on its laurels, by late 1981 the group was pondering a review of its 

1977 curricular recommendations for CSE. Reports suggest that Ramamoorthy initiated this 

undertaking, and he and the other reviewers quickly concluded that a major revision of the model 

curriculum was needed, especially in light of ongoing and rapid technological changes (Cain, 

Langdon, and Varanasi, 1983, p. vi). When Taylor Booth took over as head of the EAB in 1982, 

he was instrumental in expanding the project to more explicitly address faculty and resource 

issues as well as curriculum (p. vi). This expansion of the project strongly reflected the full range 

of implementation challenges that many institutions faced as they attempted to establish 

educational programs in CSE and related areas. The group’s final report was first published in 

late 1983 and also appeared in summary form in an April 1984 issue of Computer that was 

dedicated to “Computers in Education” (Model Program Committee, 1983; Cain, Langdon, and 

Varanasi, 1984). 

In summary, the new model program took an evolutionary rather than revolutionary step 

beyond the group’s earlier work.240 One change worthy of noting centers on the core curriculum, 

where outlines for individual courses were replaced with descriptions of 13 core subject areas, 

with 9 of these marked as lecture/recitation and 4 as laboratory.241 The report also identified a 

diverse assortment of 15 advanced subject areas, and recommended that any given program 

should provide in-depth coverage of at least two. Elsewhere in the report, the authors stressed the 

importance of striking a balance between hardware and software-oriented CSE programs: “The 

curriculum component of the program is intended to provide potential graduates with a well-

balanced education in fundamental principles of hardware and software design, reinforced with 

experiential skills” (16). 

The Committee also echoed the COSERS and AFIPS Taxonomy projects by explicitly 

framing Computer Science and Engineering as a discipline. The authors of the report described 

electrical engineering and mathematics as the main “sister fields” (p. 99) or “sister disciplines” 

                                                
240 Engineer V. Rao Vemuri – who served as a member of the committee that produced the 1983 Model 
Program in CSE – nicely captured in a 1993 article the tendency for model curricula to develop in a 
conservative manner: “Indeed, there has never been a shortage of studies on model curricula. … What 
seems to impede progress is that curricular recommendations have the tendency to exhibit tremendous 
‘implementation inertias.’ They resist all but the most incremental changes” (Vemuri, 1993, p. 108). 
241 The nine lecture/recitation areas included Fundamentals of Computing, Data Structures, System 
Software and Software Engineering, Computing Languages, Operating Systems, Logic Design, Digital 
Systems Design, Computer Architecture, and Interfacing and Communication. The subject area of 
Discrete Mathematics was also identified as a crucial supporting topic for CSE. 
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(p. 120) of computer science and engineering, for example, and elsewhere they noted that 

“computer science and engineering is now recognized as a separate, identifiable discipline” (p. 

98). Such comments once more reveal the strategic importance of building disciplines through 

discourse, especially given that only a handful of departments and programs actually carried the 

title of “computer science and engineering” by this time. In fact – and like the advocates of 

computer science before them – the authors of the model program report were forced to 

acknowledge the potential for wide variation in how CSE might be realized in diverse 

institutional contexts. “The administrative structure used to support programs in this area,” the 

report explained, “can take a variety of forms” (p. 98).   

Once again, we find a persistent and unresolved tension in the disciplinary landscape of 

computing. To whit, the authors’ insistence on the existence of CSE as a distinct disciplinary 

field was accompanied by a lack of consensus regarding the prevailing or even preferred location 

for its associated educational programs. And elsewhere in this report, the authors revealed their 

preference for linking CSE with engineering, even as they emphasized that the field spanned the 

hardware-software spectrum: 

The undergraduate program in computer science and engineering must contain a 

core that gives each student a comprehensive understanding of the hardware and 

software principles underlying the computer area. In addition, the student must 

also have a strong background in mathematics, the basic sciences, and the 

engineering sciences (p. 123). 

As one might suspect, the “core” summarized in this passage seemed to have much in common 

with other types of engineering programs. That is, engineering students in diverse sub-fields 

were expected to pass through a reasonably standard sequence of foundational courses in math, 

science, and engineering science before moving on to more specialized engineering subjects. 

Still other publications revealed that various actors were eager to promote and oversee 

the development of CSE departments and programs within colleges and departments of 

engineering. In a 1984 review article on the topic of “Computer Education,” for example, former 

COSINE Committee member and Computer Society EAB Vice-President Taylor Booth echoed 

the Model Program report when he noted that “computer science and engineering has matured 

into a well-defined disciplined” (p. 64). Yet even more suggestively, the author added: 
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[M]any schools are reconsidering their departmental structures and creating 

computer science and engineering departments, apart from electrical engineering. 

This trend should accelerate in the next few years, and by the 1990’s, the 

computer science and engineering department will be considered key to any 

engineering school that wishes to offer a full-spectrum program” (Booth, 1984, p. 

64). 

Booth’s comments reveal growing recognition among educational reformers regarding the 

importance of building the discipline computer science and engineering through the 

establishment of thusly-named departments and programs, albeit within colleges and schools of 

engineering. In fact, Booth noted that recent revisions to ABET criteria for computer science and 

engineering programs had been “revised to reflect the fact that it [CSE] is a distinct engineering 

discipline” (p. 64). 

On a closely related note, Booth was also a member EAB task force that was formed in 

1984 to analyze the role of “design education” in computer science and engineering. In addition 

to dovetailing with both the Computer Society’s 1983 model program and ABET accreditation 

criteria that I discuss below, the group’s recommendations – which were published in 1986 – 

emphasized the integral role of engineering design in the field of computer science and 

engineering, especially given “the many conceptual levels involved in information systems, from 

hardware components to complex software systems” (Booth, et al., 1986, p. 26). This same 

report revealed the potential for engineers to strategically leverage their historical monopoly on 

“design education” in order to retain control of the domain dubbed Computer Science and 

Engineering. “In the world of technology,” the authors explained, “design has been the 

traditional province of the engineer and differentiates the engineer from the scientist” (p. 21). 

And while the ongoing development of software engineering courses and programs in a variety 

of departments suggested that both engineers and non-engineers maintained overlapping interests 

and claims in the arena of software design, the following section reveals the importance of 

accreditation structures and processes in ongoing efforts to establish and police the boundaries 

around engineering and design. 
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Engineering Accreditation and The Discursive Politics of Professional Certification 

Given its mediating role betwixt profession and discipline, industry and the academy, 

accreditation is an important topic. In fact, the present case helps illustrate the pivotal role that 

professional societies often assume at the intersection of profession and discipline, especially as 

their members undertake tasks such as developing accreditation criteria and reviewing individual 

academic programs. As further background on the topic, it is worth briefly reviewing some 

relevant history.242 In the wake of the 1930 publication of the influential Wickenden report on 

engineering education, a climate of cooperation helped enable the 1932 founding of the 

Engineers’ Council for Professional Development (ECPD). With the early support and active 

participation of seven major engineering professional societies, the group went to work, 

approving its first set of accreditation criteria for engineering programs in 1933 and issuing its 

first accreditations in 1936. The group was quickly recognized as the accreditation body for U.S. 

educational programs in engineering, engineering technology, and related fields. 

The ECPD maintained a single set of accreditation criteria for all types of programs for 

many decades, and these grew longer and more complex through the 1960s and 1970s as the 

various fields and subfields of engineering continued a long historical pattern of evolution and 

diversification. And indeed, computer engineering was one among many fields that emerged and 

were eventually recognized by the ECPD. As reported by Jones and Mulder (1984, p. 25), in 

1971 the computer engineering program at Case Western Reserve University became the first 

accredited engineering program with the word “computer” in its title. Syracuse University and 

the University of Connecticut followed close behind, with the former named “computer 

engineering” and the latter dubbed “computer science” (p. 25).  

The accreditation of these programs was an important step in the recognition of computer 

engineering as a partially or perhaps even wholly distinct field or discipline, although the 

existence of Connecticut’s engineering-oriented computer science program revealed continued 

uncertainty over how such programs should be named. Further, these programs were accredited 

under “special” EPCD guidelines since no specific criteria existed for these relatively new types 

of degrees. Amidst growing concerns that more specific guidelines were needed for computer-

oriented engineering programs, a Computer Society committee chaired by Ramamoorthy went to 

work on the problem in 1975 (Jones and Mulder, 1984, p. 25). The ECPD approved the group’s 
                                                
242 This brief historical review is largely based on the accessible account developed by Stephan (2002). 
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recommendations for “Computer Engineering” in 1978, and they were first used for accreditation 

visits in 1979 (p. 25). In addition to “amplifying” and “interpreting” the ECPD’s general criteria, 

the IEEE guidelines stressed the importance of education in the areas of engineering design and 

the engineering sciences (IEEE Educational Activities Board, 1978).243  

The EPCD was renamed the Accreditation Board for Engineering Technology (ABET) in 

1980, and by October of the same year the organization had accredited a total of 10 bachelor’s 

level and 3 master’s level programs in the “Computer” program area (ABET, 1980). In the early 

1980s the Board also spearheaded the development of more specific “program criteria” that 

would be used for the accreditation of programs in various sub-fields of engineering, thereby 

reducing ongoing confusion over the publication of separate, supplemental guidelines by various 

professional societies (Jones and Mulder, 1984, p. 25; ABET, 1982). The IEEE responded with a 

set of program criteria for “computer and similarly named engineering programs,” and these 

were approved and in active use by the mid-1980s (Jones and Mulder, 1984, p. 26).  

As noted above, the Computer Society’s development and promotion of A Curriculum in 

Computer Science and Engineering in the mid- and late-1970s dealt with the matter of 

accreditation rather lightly, although the inclusion of an “Electrical and Computer Engineering 

Curriculum” designed to meet EPCD guidelines revealed that this group was at least nominally 

interested in making their recommendations accreditation-friendly.  The Computer Society’s 

1983 Model Program, on the other hand, revealed the increasing importance of explicitly 

dovetailing the group’s educational recommendations with ABET criteria. The first major 

section of the program report, for instance, featured detailed information about the ABET 

general criteria, as well as draft criteria for what the group variously referred to as “Computer 

Science and Engineering Programs” or “Computer and Similarly Named Engineering Programs” 

(Model Program Committee, 1983, pp. 3-6). The curricula section of the report also featured 

three sample course-by-course implementations of four-year CSE programs, all assumed to be 

situated in schools of engineering, and all satisfying ABET accreditation criteria (pp. 89-97). 

Interestingly enough, no other sample implementations were presented, which further suggested 

that the group’s primary interests did indeed center on the development of CSE or CE programs 

within departments and schools of engineering. 
                                                
243 According to one preliminary report, these guidelines were intended for “computer engineering, 
computer science, information science, and similar programs for which ECPD accreditation is request” 
(IEEE Educational Activities Board, 1978, p. 67). 
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In 1984, a Computer article co-authored by Michael Mulder and Edwin C. Jones also 

dealt rather extensively with the matter of accreditation. In addition to summarizing the historical 

development and contemporary status of accreditation in the area of “Computer Science and 

Engineering,” the authors outlined a series of “Issues and Concerns” that they felt warranted 

further study. It is worth quoting the authors at length here, as they nicely captured many of the 

persistent concerns and tensions that accompanied both the ongoing development of computer-

oriented curricula and the changing disciplinary landscape of the computer field: 

 

1) What is the role of basic science in computer science and engineering 

education, and what are the appropriate basic sciences for CSE programs? 

2) What is the role of programming courses? The general trend today is not to 

allow programming courses to be considered in any of the five major 

curriculum classifications because they are considered skills, not course 

material in engineering science or design. 

3) What is computer engineering? How does it differ from computer science? 

Are the distinctions worth noting? Could the discipline be called computer 

science engineering [sic] or some other title? Should the professional societies 

move toward combining these disciplines if they are separate? 

4) What is software engineering and is it really “engineering”? Some people tend 

to look at the software problem and argue that, since it does not involve 

hardware, it is other than an engineering concern. This view is, of course, 

disputed by those who see the decision to make a trade-off in design between 

hardware and software as purely an engineering problem. 

5) What should we do with model programs? New model programs have been 

prepared to set goals and provide guidance. In the near future, we should try to 

incorporate these ideas into the program criteria. 

 (Jones and Mulder, 1984, p. 27) 

 

In most general terms, this list of issues revealed many points of instability in the milieu of 

computer-oriented education. In fact, one is struck by the extent to which these authors were 

questioning the fundamental nomenclature and identity of their own disciplinary field and its 
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related subfields – especially in contrast to other reports published around this same time period. 

As noted above, for example, the 1983 Model Program had rather confidently declared that 

“computer science and engineering” was indeed a “separate” and “identifiable” discipline. 

Three additional and more specific themes are also worth highlighting here. First, one 

finds tensions running through this passage regarding what should or should not be counted as 

engineering, and how engineering was related to the sciences. Second, the authors once again 

adopted a Janus-faced position, especially by implying that there was such a thing called 

“computer science and engineering education,” and then raising questions about whether 

computer science should be distinguished from computer engineering. Third, Jones and Mulder 

questioned whether the professional societies might somehow “move toward” a merger of the 

computer engineering and computer science disciplines, thereby putting forward an image of the 

professional societies as key loci of disciplinary development. While my account certainly 

speaks to the role of such societies in the emergence and building of disciplines, the present 

chapter also emphasizes both the heterogeneous nature of discipline building in general and the 

importance of the academic context in particular. 

Data culled from a series of ABET annual reports provides a more detailed view of the 

ongoing development of computer-oriented engineering degrees and programs in the early and 

mid-1980s. To begin with, the number of accredited programs in the so-called “computer area” 

continued to rise. By October of 1985, for example, the number of ABET recognized programs 

at the bachelor’s-level had risen to 34 (ABET, 1985, p. 37). On the surface, these numbers may 

appear rather small, especially given that many hundreds of electrical engineering and computer 

science departments and programs were in existence by this time. However, this data only 

reflected those programs that were specifically accredited by ABET in the computer area. In fact, 

there were surely many ABET-accredited electrical engineering programs that offered options in 

computer engineering, computer science, and related areas. Yet the incorporation of computer 

engineering as part of a multi-option degree structure suggested that computer engineering was a 

branch or subfield of electrical engineering, rather than a discipline unto itself.244 

These same ABET reports also revealed important trends in the naming of programs. To 

begin with, the term “Computer Engineering” remained popular and influential, and by 1985 it 
                                                
244 As noted above, Sloan’s data from 1974 showed that 51% of EE departments responding to her survey 
offered CS or CE degrees or options. And as noted in Chapter 5, a similar survey conducted by Sloan in 
1972 revealed that 49% of responding EE departments maintained Computer Engineering degree options. 
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was being used to describe 18 of 34 accredited programs (ABET, 1985, p. 60). The phrase 

“Computer Science and Engineering” also became more widespread in the early part of the 

1980s, appearing in just two accredited program titles in 1982 and a more impressive seven in 

1985 (p. 60). By 1985, other program names included “Computer Science” (3 programs), 

“Computer Systems Engineering” (3 programs), and a smattering of more unusual one-offs (p. 

60).245 And on a closely related note, a new ABET guideline in the mid-1980s mandated that all 

accredited engineering programs must include the word “engineering” in their titles after 1985 

(Jones and Mulder, 1984, p. 26). According to one account, the phrase “and engineering” was 

simply appended to many program names in order to satisfy this requirement (Yeargan, 2002, p. 

111). Nonetheless, this anecdote forcefully reveals that the policing of discourse can play an 

important role in ongoing efforts to construct and maintain professional and disciplinary 

identities. 

CSAB and CSAC: Independent Accreditation for an Independent Discipline 

No matter how any given degree program was named, it was clear that the criteria and 

guidelines published and used by ABET were by definition intended for engineering programs. 

Hence, computer science and other computer-oriented programs situated outside of colleges and 

departments of engineering lacked a suitable and widely-recognized accreditation processes. Yet 

the need for such an accreditation system had been recognized much earlier. In fact, interest in 

the matter among ACM members and leaders can be traced back to at least the late 1960s and 

early 1970s, with ACM President Walter Carlson identifying accreditation as one of his top goals 

for the organization in 1969. More specifically, he called on the group to issue curricular 

recommendations for all levels of computer education by 1972, and accredit at least fifty percent 

of all computer-oriented educational programs by 1980 (Carlson, 1969). 

Yet many within the ACM were skeptical about the potentially stifling effect of 

accreditation on computer science programs, even if they were willing to support some sort of 

certification process for courses of study in programming and related areas, many of which were 

being offered by trade and technical schools. As summarized by the Secretary of the ACM 

SIGCSE, “In view of the developing nature of computer science it was observed that an 
                                                
245 These other program names included Computer and Electrical Engineering (Purdue), Computer and 
Information Engineering Sciences (University of Florida), Computer and Systems Engineering (RPI), and 
Computer Science Engineering (San Jose State University) (ABET, 1985, p. 60). 
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accrediting committee might serve to stifle rather than encourage the natural development of 

computer science curriculae. … After lengthy interchange the only consensus was that 

accreditation in computer science similar to accreditation procedures in other more established 

disciplines is not in the immediate future” (Matula, 1969). 

In striking contrast to the engineering community – where accreditation had for many 

decades played a pivotal role in the development and recognition of educational programs – the 

computer science camp privileged their independence, thereby stalling Carlson’s ambitious 

agenda. In fact, it wasn’t entirely clear what it would mean to “professionalize” computer science 

through accreditation programs, especially since the field’s dominant image was largely based on 

its status as an academic discipline. Certifying professional programmers, on the other hand, was 

a somewhat more palatable prospect since programming was often viewed as closely linked to – 

but also partially distinct from – computer science.  

These tendencies were reflected in the 1973 establishment of the Institute for the 

Certification of Computer Professionals (ICCP) by eight professional organizations, including 

the ACM and IEEE Computer Society (McCracken, 1979, p. 145). Through the 1970s the ICCP 

initiated and administered the Certificate in Computer Programming (CCP), yet this credential 

was primarily aimed at individual programmers. It therefore had only indirect bearing on both 

computer science generally and computer-oriented degree programs specifically. In 1977 the 

ACM finally approved its first set of accreditation guidelines for “Bachelor’s Degree Programs 

in Computer Science,” but even these were primarily intended for use by individual institutions 

for informal, self-study, and/or for use in connection with regional accreditation procedures 

(ACM Accreditation Committee, 1977).  

As both the number of computer science programs continued to expand the concerns 

about their quality persisted, around 1981 the ACM and the Computer Society finally took the 

first steps toward developing a new accreditation process that was tailored for computer science 

education (Mulder and Dalphin, 1984, p. 30). A joint task force co-chaired by Michael Mulder of 

the Computer Society and John Dalphin of the ACM went to work on the problem, and in 1982 

they recommended the establishment of a new accreditation body (p. 30). This led to the 1984 

founding of the Computing Sciences Accreditation Board (CSAB) as an independent, non-profit 

organization, with the Computing Sciences Accreditation Committee (CSAC) established shortly 

thereafter to oversee the actual accreditation process. During the first accreditation cycle in the 
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Fall of 1985, a total of 31 schools were reviewed and 23 approved (Booth and Miller, 1987, p. 

379). On a closely related note, this same report noted that the ACM maintained a master list of 

more than 450 institutions that offered some type of four-year undergraduate degree in computer 

science. The CSAB clearly had a long list of prospective clients (p. 378).  

The joint creation of the CSAB by the ACM and Computer Society stands as another 

testament to the reasonably close relation of these two professional societies in the early and 

mid-1980s. In fact, this same time period was marked by other signs of cooperation, including 

renewed discussions about the possible advantages of merging the two groups. Yet just as the 

Computer Society remained institutionally suspended between the IEEE on the one side and the 

ACM on the other, the accreditation criteria and processes for computer-oriented degree 

programs had developed in a similarly bi-furcated manner, with both ABET and the CSAB 

pursuing partially independent goals and certifying different types of programs.  

In fact, Figure 7.1 – which was originally presented by Mulder and Dalphin in their 1984 

article on Computer Science accreditation – suggestively depicts these tensions. On the one 

hand, we find Electrical Engineering and Computer Science Engineering explicitly aligned with 

both Schools of Engineering and ABET Accreditation, while Computer Science and Information 

Science were linked to “Liberal Arts and Science.” Yet the anticipated “program range” for 

CSAC accreditation was framed as covering a broad span of the so-called “Computing 

Sciences,” even reaching into the domain of “Computer Science and Engineering.” As I note 

below, reconciling the overlapping jurisdictions of ABET and CSAC emerged as an increasingly 

important issue, especially in the late 1980s and into the 1990s. 

 
Figure 7.1 – Distribution of Computer Science Programs with Present and  
Projected Accreditation (Mulder and Dalphin, 1984, p. 31) © 1984 IEEE 
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In following section I document how the close relation of the ACM and Computer 

Society led to another unprecedented project, namely the joint development of a common 

curriculum. On the other hand, my analysis once again reveals a variety of incongruities between 

the development of new model curricula, the historically dominant structure of academic 

departments and programs, and the ongoing evolution of accreditation criteria and processes. 

The Diversification of Computer Science Curricula 

If the development of the CSAB/CSAC hinted at a continued independent streak among 

computer science programs and departments, so too did a series of 1980s-era publications on 

computer science curricula. In fact, many of these documents allowed various groups and actors 

to refine their definition of computer science, while also resisting or simply ignoring the alternate 

educational agenda that was being developed by the Computer Society. The ACM, to begin with, 

selectively updated its curricular recommendations in the early and mid-1980s. In 1981, for 

instance, the ACM C3S published a set of “Recommendations for Master's Level Programs in 

Computer Science” (Magel, et al., 1981). The report offered little in the way of surprises, as the 

group’s recommendations were significantly informed by a number of M.S. programs in 

Computer Science that were already in existence at various schools. 

More specifically, the report proposed curricular coverage in a number of predictable 

subject areas, such as programming languages, theoretical computer science, and data and file 

structures. Courses in a fourth topical area, namely “Operating Systems and Computer 

Architecture,” provided students with some exposure to hardware and systems, although it was 

clear that these programs were more generally rooted in computer science rather than 

engineering. And a pair of subsequent ACM task force committees developed revised curricula 

for the first two courses recommended in Curriculum ’78, namely “CS1” and “CS2.” 

Respectively published in 1984 and 1985, these new recommendations were framed as a 

responding to both an increase in computer science knowledge and the need for greater emphasis 

on software engineering (Koffman, Miller, and Wardle, 1984; Koffman, Stemple, and Wardle, 

1985). 

Other groups were also leading the development of curricula in the early and mid-1980s, 

and these tended to reflect some of the schisms that were growing both within computer science 

and between computer science and computer engineering. The Carnegie Mellon Curriculum for 
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Undergraduate Computer Science (Shaw, 1985), to begin with, was the result of a three-year 

effort by an eight-member group affiliated with Carnegie Mellon’s Computer Science 

Department. This undertaking was largely prompted by the decision to establish an 

undergraduate Bachelor’s degree in Computer Science at the school, although Carnegie Mellon’s 

Computer Science Department and associated Ph.D. program had been in existence since 1965 

(Preface). The authors also framed their work as forward-looking, and they complained that the 

ACM’s prior recommendations were overly conservative, disunified, and lacking in mathematics 

content (pp. 18-19). 

The authors of this report also critiqued the Computer Society’s curriculum as “heavily 

biased toward hardware,” and they noted that it “fails to expose the important common 

fundamentals in joining hardware and software” (p. 19). They went on to conclude that the 

proposed curriculum “might be reasonable for a curriculum directed purely at the electrical 

engineering side of the discipline, but the designers claims that the curriculum is suitable for 

computer science” (p. 19). As suggested by these remarks, these computer scientists clearly 

viewed the Computer Society’s curriculum as ultimately focused on “computer engineering,” 

despite the discursive garb of “computer science and engineering” that surrounded it.246 The 

group responded with their own nearly 200-page report. In addition to once again revisiting 

questions about the nature and definition of computer science, the authors emphasized the 

balanced integration of theory and practice, outlined a total of 30 courses, and proposed overall 

requirements for undergraduate degree programs. 

“A Model Curriculum for a Liberal Arts Degree in Computer Science” (Gibbs and 

Tucker, 1986), on the other hand, was based on another partially unique set of interests and 

philosophies. In part developed through two major workshops, this project was funded by the 

Alfred P. Sloan foundation. In their final report, co-authors Norman E. Gibbs and Allen B. 

Tucker noted the increasing obsolescence of the ACM’s Curriculum ’78, and they critiqued the 

more recent CSAB accreditation standard “for its inflexibility and for its strong bias toward a 

professional engineering education” (p. 203). Along similar lines, they credited the Carnegie 

Mellon report for promoting a “liberal professional education,” but nonetheless faulted its 

“significant engineering point of view” (p. 203). The authors of the report went on to stress that 

                                                
246 The authors of the Carnegie-Mellon report even referenced the “IEEE computer engineering 
curriculum,” in spite of the fact that it was actually titled “computer science and engineering” (19). 



www.manaraa.com

 319 

“computer science is science,” and they emphasized that “[i]n defining computer science, we 

should be able to distinguish it from computer engineering, just as chemistry is distinguished 

from chemical engineering, and physics from mechanical and electrical engineering” (p. 204, 

authors’ emphasis). The curriculum outlined by the group – which was largely organized around 

just four core courses – was explicitly framed as leading to B.A. degree within a liberal arts 

setting. As suggested by this overview, this curriculum represented a growing bifurcation of 

computer science education, where the needs and interests of particular schools and faculties 

appeared increasingly divergent from other types of institutions. The Gibbs and Tucker report 

also revealed an explicit resistance to the educational imperatives of industry, which by this time 

were increasingly influential on the curriculum development and accreditation activities of 

groups such as the Computer Society and ACM. 

One therefore finds in these various reports and recommendations a continued 

diversification of computer science curricula. Perhaps not surprisingly, this posed challenges to 

those who preferred a more unified model for a wide range of educational programs, ranging 

from computer science programs oriented to the liberal arts to computer engineering options 

deeply rooted within engineering. Yet as the following sections make clear, these challenges did 

not stop the actors and groups involved with the “computing as a discipline” movement from 

making their own moves toward unifying computer-oriented education. 

From Discipline in Crisis to Computing as a Discipline 

While the aforementioned Liberal Arts report was clearly inflected by the location of its 

authors in a particular type of institutional location, this group also expressed hope that their 

efforts might be viewed as a contribution to a complete overhaul of Curriculum ’78. And while a 

liberal arts point of view was explicitly included in the ACM’s next set of curricular 

recommendations, it would be a number of years before this important next chapter in history of 

computer-oriented curricula got underway. As background, the “Computing as a Discipline” 

movement laid the initial foundations for a complete revision of the ACM’s recommended 

curricula. Largely led by well-known computer scientist Peter Denning, the origins of this 

movement can be traced back to the biennial Snowbird conferences, which were organized by 

and for the leaders of doctorate-granting computer science programs. Designed to grapple with 

the major issues that were facing the field at any given time, the 1980 and 1982 meetings were 
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noteworthy for their explicit emphasis on the so-called “crisis in computer science,” which 

involved an ongoing and acute shortage of trained personnel in the computer field, especially at 

the Ph.D. level. The reports that came out of these two events included a number of 

recommended improvements to the environment in computer science departments, in hopes of 

attracting more students and turning out more graduate degrees (Denning, et al., 1981; Yau, et 

al., 1983). 

While the 1984 Snowbird report trafficked in much the same territory, it also grappled 

more explicitly with the topic of “computer science as a discipline.” Noting “[t]he continued 

skepticism of scientists from other disciplines concerning the substance of computer science,” 

the authors added that “computer scientists have no single picture of the nature of their own 

field. … [N]o core description is universally accepted” (Tartar, et al., 1985, p. 102). Such 

comments reveal the somewhat anomalous character of computer science in the academic 

landscape. In spite of two decades worth of history – not to mention the existence of 

approximately 1200 undergraduate degree programs bearing the stamp of computer science – the 

discipline seemed to lack a widely-recognized definition or description. And as the report 

acknowledged, computer-related courses and programs occupied diverse positions within the 

university structure, and the authors complained that “this situation fragments resources and 

weakens the cases made by these departments for additional funding” (p. 102). In light of these 

issues, the authors urged improved cooperation among the leading departments in the field. Just 

as importantly, they called for the development of a “unifying image of computer science” (p. 

105).247 

One finds striking parallels here with the aforementioned 1981 workshop on “Research 

Directions in Computer Engineering.” But while the NSF workshop seemed to generate 

relatively little in the way of follow-up action, the Snowbird report helped stimulate the 

establishment of the ACM’s Task Force on the Core of Computer Science in 1985, with Denning 

acting as chair (Denning, et al., 1989a, p. 9). The Computer Society cooperated enthusiastically 

in the undertaking, and no less a figure than Michael Mulder served as a member of the group (p. 

                                                
247 Denning likely played a leading role in the development of this agenda. In a commentary piece that 
was both passed on his opening address at Snowbird 84 and later published in both the CACM and 
Computer, Denning urged his academic colleagues to revisit faculty salaries, equipment and facilities, 
promotion and tenure, and the treatment of junior faculty. However, he also stressed the importance of 
long-range planning, revisiting the core curriculum, improving relations with other disciplines, and 
moving into new research areas. 
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9).248 Originally charged with developing a description for computer science, proposing a 

teaching paradigm for the field, and outlining an introductory course sequence, the group 

ultimately developed what they described as a “new intellectual framework for our discipline and 

a new basis for our curricula” (Denning, et al., 1989a, p. 10). And while originally focused on 

the domain of “computer science,” the group quickly extended its work to cover computer 

engineering, reasoning that “no fundamental difference exists between the two fields in the core 

material” (p. 10). In fact, the group’s final report was titled “Computing as a Discipline,” 

reflecting their desire to “embrace all of computer science and engineering” with a new moniker 

that was boundary-spanning, catchy, and succinct. The work of this task force was also 

distributed widely. In addition to being published in stand-alone form, condensed versions of 

their final report also appeared in Communications of the ACM and Computer (Denning, et al., 

1988; 1989a; 1989b). 

One central feature of the group’s report was its emphasis on the three fundamental 

“paradigms” or “cultural styles” of computing, namely theory, abstraction (or “modeling”), and 

design. As the authors explained, these three paradigms were respectively rooted in mathematics, 

experimental science, and engineering. And although they acknowledged that so-called computer 

scientists tended to focus on theory and abstraction while computer engineers were more 

concerned with the abstraction and design, the authors developed a boundary-spanning definition 

for work in all phases of the field: 

The discipline of computing is the systematic study of algorithmic processes that 

describe and transform information: their theory, analysis, design, efficiency, 

implementation, and application. The fundamental question underlying all of 

computing is, “What can be (efficiently) automated?” (Denning, et al., 1989a, p. 

12). 

The concluding question presented in this passage reveals the influence of the aforementioned 

COSERS report on this group’s work. The authors’ efforts to position “computing” within a 

larger disciplinary landscape also advanced arguments that had been variously trotted out in 

previous publications, such as the COSERS report. They emphasized, for example, that the roots 

of the field extended deeply into both mathematics and engineering, and elsewhere they claimed 

                                                
248 In a reciprocal gesture, the Computer Society established a task force on computing laboratories, with 
the cooperation of the ACM (Denning, et al., 1989a, p. 9). 
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that “The science and engineering [of computing] are inseparable because of the fundamental 

interplay between the scientific and engineering paradigms within the discipline” (p. 16). The 

authors were clearly focused on the core of this settlement rather than its many peripheries. 

Further fleshing out their vision for the discipline of computing, the authors proposed the 

segmentation of the field into nine distinct sub-areas, including algorithms and data structures, 

programming languages, architecture, numerical and symbolic computation, operating systems, 

software methodology and engineering, database and information retrieval systems; artificial 

intelligence and robotics, and human-computer communications (Denning, et al., 1989a, p. 12). 

And given that each of these areas could also be viewed in terms of theory, abstraction, and 

design, the authors presented the discipline writ large as a nine by three matrix, and in an 

attached appendix they included summary descriptions for all twenty-seven of the constituent 

boxes. These were then used to inform the development of a new curriculum for an introductory 

course sequence, which was also elaborated in significant detail in an Appendix to the group’s 

full-length report (Denning, et al., 1988, pp. A-II-1-18). 

At least on the surface, “Computing as a Discipline” looked like an important document. 

It was developed under the auspices of the ACM but with the cooperation of the Computer 

Society, and it put forward an innovative new integrative structure for all phases of the 

computing field. The authors had carefully articulated a definition for the proposed discipline 

that both built on prior work and pointed the way toward the further development of curricula. 

The efforts of the task force also helped stimulate another unprecedented development, namely 

the establishment of an ACM/IEEE-CS Joint Curriculum task Force in early 1988 (Tucker, et al., 

1991). This new group was co-chaired by Allen B. Tucker – who was a key player in the 

development of the aforementioned liberal arts computer science curriculum – and Bruce Barnes, 

an NSF division director with both longstanding ties to the computer science community and 

significant earlier experience with curriculum development. And while the chairmen of the group 

seemed to reflect a bias toward computer science, the other members of the fourteen-member 

task force included well-known engineering reformers such as Michael Mulder and J. Thomas 

Cain.  

The activities of the task force spanned a period of roughly two years, and included eight 

major working meetings and numerous panel presentations. The group’s recommendations also 

went through three major rounds of reviews, involving dozens of educators. Ultimately dubbed 
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“Computing Curricula 1991” (CC1991), the group’s final recommendations were first published 

in late 1990, and were summarized in both CACM and Computer in 1991 (Tucker, et al., 1991; 

Tucker, 1991; Tucker and Barnes, 1991). In summary, the authors’ recommendations were 

extensively informed by the results of the “Computing as a Discipline” project. They explained, 

for example, that their curricular recommendations were intended “for baccalaureate programs in 

the discipline of computing, which includes programs with the titles ‘computer science,’ 

‘computer engineering,’ ‘computer science and engineering,’ and other similar titles” (Tucker, et 

al., 1991, p. v).249 The group also reiterated the importance of theory, abstraction, and design as 

the three main processes or “point of view” in the computing field, and they explained that the 

nine major subject areas identified by their predecessors “cover the entire discipline.” In 

organizing the common requirements for all undergraduate curricula in the discipline, these nine 

areas were further broken down into smaller “knowledge units.”  

Yet the CC1991 report went beyond prior efforts, including by identifying a set of twelve 

“recurring concepts” that were framed as fundamental for the discipline. These diverse, 

boundary-spanning themes ranged from complexity and efficiency to security and tradeoffs, and 

the report noted that they could help play a unifying role in the development of courses and 

curricula. “By pointing out and discussing the recurring concepts as they arise,” the authors 

explained, “the conscientious instructor can help portray computing as a coherent discipline 

rather than as a collection of unrelated topics” (Tucker, et al., 1991, p. 15). Perhaps more than 

any prior author or group, this task force can be credited with articulating a unified core of 

knowledge, skills, and concepts that truly spanned the full spectrum of the field in question. 

But even as the authors worked to present a single, coherent set of underlying principles 

for the design of their curricula, their recommendations once more reflected the Janus-faced 

character of “computing.” In outlining the motivations behind their work, for example, the 

authors pointed out that “the discipline and its pedagogy have changed significantly in recent 

years,” and they went on to note “growing recognition of substantial curricular commonalities 

among programs, despite strong and fundamental differences” (Tucker, et al., 1991, p. 2). The 

tension between commonalities and differences was particularly evident in an appendix featuring 

twelve detailed sample curricula. Nine of these curricula were framed as preparatory for entry 

                                                
249 The authors went on to clarify that “[p]rograms in related areas, such as information systems, were not 
considered by the Task Force” (Tucker, et al., 1991, p. 2). 
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into the “computing profession,” and these were further broken down into three specific 

implementations for Computer Engineering programs, four for Computer Science, one for a 

liberal-arts-oriented Computer Science, and one for Computer Science and Engineering 

(Appendix A). These nine implementations were also predictably linked to corresponding 

accreditation criteria, with Computer Engineering programs designed to satisfy EAC/ABET 

guidelines, the Computer Science programs designed to satisfy CSAC/CSAB criteria, and the 

CSE implementation designed to meet both.  

The report also included three additional implementations that largely ignored 

accreditation criteria in order to meet goals other than the training of so-called “computing 

professionals” (pp. 136-154). These implementations included two computer science programs 

that were even more explicitly oriented toward the liberal arts, clearly reflecting the influence 

and interests of task force members such as Tucker. The third such program, on the other hand, 

emphasized mathematics, theoretical foundations, and formal methods, thereby providing 

foundations for graduate studies in computer science or related areas. This twelfth curriculum 

once again reflected an emphasis on disciplinarity among many computer scientists.  

Perhaps more than any other report or document from this time period, Computing 

Curricula 1991 captured in a single document the Janus-faced character of educational programs 

in the domain of “computing.” On the one hand, the underlying philosophy of CC1991 centered 

on the idea that all phases of the computing field were united via both a common concern with 

abstraction and a shared interest in various overlapping subject areas and recurring concepts. 

Placing further emphasis on the “core” of the field, the developers of CC1991 carefully and 

strategically crafted a set of “common requirements” that were framed as foundational for 

educational programs in all phases of the field. On the other hand, the twelve sample 

implementations revealed the extent to which the multiple faces of computing were stubbornly 

persistent in the academic context, with ABET-accredited computer engineering programs at one 

end of this spectrum to liberal arts-oriented Computer Science programs at the other. CC1991 

therefore reflected both the core and the peripheries of computing, and it rather uneasily 

straddled some of the major axes of difference – such as science-engineering, theory-design, and 

discipline-profession – that constituted yet simultaneously divided the field. In spite of the 

premise and promise of CC1991, its authors remained partially constrained by the organizational 

field in which their work was situated. And continued instability in the disciplinary and 
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professional boundaries of the field profoundly shaped this work, while also setting the stage for 

later developments. 

The Shifting Institutional Landscape of Computing 

It is worth taking another step back to more generally assess the institutional backdrop for 

the development and publication and CC1991. As noted above, available data suggests that more 

than half of all electrical engineering departments were offering programs or options in computer 

engineering by the late 1970s, while the number of departments offering ABET accredited 

undergraduate degrees in computer engineering and closely related areas had risen to 34 by late 

1985 (ABET, 1985, p. 37). Yet as subsequent ABET annual reports revealed, there was a very 

noticeable uptick in the number of undergraduate programs in the computer area in the late 

1980s and early 1990s. More specifically, by November of 1988 there were 55 such programs at 

the bachelor’s level, and by November of 1990 there were 58 (ABET, 1989, p. 37; ABET, 1990, 

p. 34). These reports also reveal important naming trends. In 1990, for example, 43 programs 

carried the title “Computer Engineering,” 9 were dubbed “Computer Science and Engineering,” 

and the handful of remaining programs carried designations ranging from “Computer Systems 

Engineering” to “Computer Science” (ABET, 1990, p. 66). Not only do these data reveal the 

continued establishment of a partially distinct professional and disciplinary identity for 

computing engineering, they also suggest that the term “Computer Science and Engineering” had 

gained only modest traction in the academic context, despite of the Computer Society’s prior 

promotional work. 

These same reports also hint at the extent to which ABET-accredited programs in the 

computer area were primarily focused on the training of future professionals, especially via the 

granting of bachelor’s degrees. In fact, only two computer programs at the master’s level 

maintained ABET accreditation during this time period. Another perspective on these trends can 

be gleaned from the results of the Taulbee survey, which annually solicits data from those U.S. 

and Canadian departments that grant doctoral degrees in computer science and computer 

engineering. According to the 1989-1990 Taulbee report, the survey was sent to a total of 136 CS 

and 34 CE Ph.D.-granting departments (Gries and Marsh, 1992, p. 133). These numbers alone 

reflect the ongoing tilting of computer science toward the trappings of disciplinarity, where 

doctoral degrees and independent departments reign supreme. By contrast, computer engineering 
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remained more professionally oriented, although the existence of 34 CE graduate programs 

suggested an ongoing expansion of the field’s disciplinary identity, especially through academic 

research and same-named graduate degrees. 

This same Taulbee survey also revealed continued instability in the naming of 

departments – and a scattered assortment of other institutional homes – for graduate programs in 

CS and CE. First, the authors reported that an impressive 96 of the surveyed departments (and 

other Ph.D.-granting academic units) carried the title of “Computer Science” or “Computer 

Sciences,” revealing the continued salience of this disciplinary identifier (Gries and Marsh, 1992, 

p. 134). Second, the term “Computer Engineering” and its closest variations were counted a total 

of 42 times in the survey, including a further breakdown of 23 instances of the name “Electrical 

and Computer Engineering,” 12 of “Computer Science and Engineering,” 4 of “Computer 

Engineering,” and a handful of one-off variations such as “Computer Engineering and Science,” 

“Electrical, Computer, and Systems Engineering,” and “Electrical Engineering and Computer 

Engineering” (p. 134).250 As suggested by these data, the frequent concatenation of the term 

“computer engineering” with other titles revealed the continued lack of a distinct and 

independent disciplinary identity for the field. Further, the twelve occurrences of the name 

“Computer Science and Engineering” once again reflected the relatively meager take-up of this 

boundary-spanning moniker.  

In fact, the existence of departments and programs that included both “computer science” 

and “engineering” in their titles led to concerns in the late 1980s about which organization(s) 

should handle their accreditation. Following a 1989 directive from the Council on Postsecondary 

Accreditation (COPA), the directors of ABET and CSAB jointly declared that “[a] program 

whose title implies that it could be accredited by both ABET and CSAB must be evaluated and 

accredited by both agencies simultaneously” (Yeargan, 2002, p. 112). Once again, it was clear 

that a dense web of professional and disciplinary politics surrounded the naming of computer-

oriented educational programs, regardless of their precise location or even content. And in even 

more pragmatic terms, this ruling imposed significant logistical and financial burdens for the 

                                                
250 The other department/unit names reported in this same survey included Computer and Information 
Science(s) (10 instances), Electrical Engineering and Computer Science (8), Electrical Engineering (3), 
Computer Science and Operations Research (2), Mathematical and Computer Sciences (2), Computing 
Science (2), Information and Computer Science (1), Advanced Computer Studies (1), Applied Sciences 
(1), and Computer Science and Electrical Engineering (1) (Gries and Marsh, 1992, p. 134). 
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institutions that wished to maintain accredited programs with boundary-spanning names. In fact, 

no less a school than MIT petitioned ABET in 1992 to retain their “Computer Science and 

Engineering” program while foregoing CSAB accreditation (Yeargan, 2002, p. 112). With strong 

encouragement from the IEEE, ABET ultimately approved MIT’s “grandfathering” request, and 

it also extended this policy to cover a handful of similarly named programs. These developments 

clearly flew in the face of the ongoing efforts of reformers to promote the establishment of 

educational programs dedicated to “Computer Science and Engineering” or even “Computing.” 

The discussion and debate around this issue helped prompt discussions regarding a possible 

merger of the ABET and CSAB, a topic to which I return below. 

Conclusion 

In an important sense, CC1991 looked like an important metaphorical bridge over the so-

called tar pit of computer-oriented curricula. In addition to involving engineers and computer 

scientists and bearing the mark of the Computer Society and ACM, this report and its authors 

were working to bring together all phases of computer science and engineering education, 

especially by emphasizing an array of core common subjects, processes, and concepts. The 

unifying potential of CC1991 was therefore significantly premised on identifying and describing 

a shared body of knowledge and common set of educational approaches. Commentators 

recognized the significance of this strategy. As reviewer N. S. Coulter noted in late 1991, for 

example, “The success if Curricula 91 will depend greatly on the truth of the conjecture that the 

diverse field of computing has a common core” (Coulter, 1991). In support of this agenda, the 

CC1991 project also carried forward a discipline-building project that was based on the 

boundary-spanning moniker of computing. In fact, the discursive shift from “computer science 

and engineering” to “computing” was another key strategy, as it helped counter persistent 

suspicions that the CSE movement was much more focused on computer engineering rather than 

computer science.  

Yet the CC1991 report could not fully escape a larger organizational field that both 

powerfully inflected its development and set the stage for its subsequent diffusion and uptake. In 

fact, the inclusion of a series of sample implementations at the end of the document revealed the 

extent to which CC1991 remained situated in a larger disciplinary and professional context. And 

as my analysis reveals, fragmentation was a dominant feature of the computer field generally – 
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as well as in the area of computer-oriented education specifically – through the historical period 

covered by this chapter. Evidence for this theme includes the persistence of multiple 

accreditation bodies, the continued existence of diverse types of educational departments and 

programs, and the ongoing use of distinct types of sociotechnical identity markers by different 

types of professionals.  

I have also focused on the extent to which CC1991 and many prior documents were 

implicitly and explicitly linked to a number of foundational “axes of similarity/difference.” For 

instance, axes such as software-hardware, science-engineering, and theory-design have 

powerfully inflected and informed ongoing debates over the sociotechnical boundaries of the 

field. In the present chapter, I also placed particular emphasis on the discipline-profession axis as 

providing another way to understand the persistent instabilities of the computer field, especially 

in the educational arena. More specifically, my analysis has documented how the dominant 

image of computer science as an academic discipline stands in significant conflict with the image 

of computer engineering as a profession. These two different outlooks or perspectives lead 

various actors and groups to privilege very different types of educational programs, career 

pathways, institutional structures, and even identity markers. 

In light of this overview, the underlying assumptions on which CC1991 was built may 

appear deeply naïve. And indeed, my remarks in the epilogue that follows reveal something of a 

resurgence of fragmentation and factionalism in the computer field, especially in the late 1990s 

and early 2000s. Yet I also document a number of countervailing trends that suggest a continued 

blurring of the sociotechnical boundaries of computing, including in the educational context. 

Whether or not the tar pit described in this dissertation can – or even should – be bridged remains 

largely an open question. Further, the stakes that came with answering this question one way or 

another continue to loom large, not only for future generations of computer professionals, but 

also for future generations of computer technology. In even more general terms, these debates 

potently exemplify the ongoing emergence of technoscience as a dominant mode of practice in 

both the industrial and educational sectors, where demarcating science, technology, and 

engineering often looks like an increasingly futile exercise in boundary-work. By comparison, 

the dominant images of engineering-as-profession and science-as-discipline remain rather 

stubbornly entrenched. 
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Epilogue 

Computing Curricula and Codesign: 

Divergent Pathways? 

 

 

 
In the immediate wake of the Computing Curricula 1991 project, it appeared as though 

forces of integration were sweeping through computer field. In 1992, for example, a lengthy 

report titled Computing the Future: A Broader Agenda for Computer Science and Engineering 

(Hartmanis and Lin, 1992) was released by the National Research Council. As indicated by its 

title, this document embraced the idea that Computer Science and Engineering (CSE) was indeed 

a single “intellectual discipline” (pp. 19-24; pp. 213-214), and the term “computing” was also 

used extensively throughout the report. Pointing to key challenges in the field such as increasing 

demand for “more powerful and easier to use” computing technologies, as well as a continued 

blurring of the boundaries within and around CSE, the authors of the report made many 

recommendations for improving research and teaching in CSE. In fact, their plan included 

sustaining the field’s “traditional core activities,” while also broadening its “intellectual agenda” 

(p. 18). In summary, the authors of Computing the Future therefore framed CSE as a wide-

ranging yet contiguous disciplinary settlement. In fact, much of the report took the disciplinary 

status of the field as a given. Yet as subsequent developments helped reveal, the authors’ views 

of CSE were increasingly out of tune with the actual disciplinary milieu of the computer field.  

One important piece of evidence for this theme surfaced in late 2004, when a joint task 

force of the ACM and IEEE Computer Society released the final draft of a report titled Computer 

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer 

Engineering (Computing Curricula for Computer Engineering Joint Task Force, 2004). As even 

its title suggested, this document looked like a rather direct affront to many of the prior projects 

and reports that had called for the development of more integrated or even unified educational 

programs in “computer science and engineering” or even “computing.” Further, the dedication of 

major chapters of this report to topics such as “Computer Engineering as a Discipline” (Ch. 2) 
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and “Professionalism” (Ch. 6) suggested that new moves were afoot to assert that computer 

engineering was indeed both a distinct disciplinary and professional domain. But how do we 

account for this turn of events, and what is its larger significance? 

To begin answering these questions it is necessary step back to 1998, when the IEEE 

Computer Society and ACM established a new “Computing Curricula” (CC) joint task force. 

According to one report, this group was originally chartered “[t]o review the Joint ACM and 

IEEE/CS Computing Curricula 1991 and develop a revised and enhanced version that addresses 

developments in computing technologies in the past decade and will sustain through the next 

decade” (The Joint Task Force on Computing Curricula, 2001, p. 1). As suggested by such 

statements – as well as frequent references to the project as “Computing Curricula 2001” 

(CC2001) – it initially looked like this new task force was charged with developing an updated 

set of recommendations for what their predecessors had dubbed the “discipline of computing.” 

Yet as some of the participants admitted in a later report, “That task has proved much 

more daunting than we had originally realized” (p. 1). In addition to noting dramatic changes in 

the computing field since the release of CC1991, the authors explained that “the scope of what 

we call computing has broadened to the point that it is difficult to define it as a single discipline” 

(p. 1). Emphasizing the multi-disciplinary character of the field, the authors asserted: 

“[C]omputing in the 21st century encompasses many vital disciplines with their own integrity 

and pedagogical traditions” (p. 2). Such claims were surely debatable, but they provided the 

authors with an explanation and justification for a rather impressive fragmentation of CC2001 

project. 

In fact, entirely new committees were ultimately formed to develop five separate 

computing curricula reports for Computer Science (CCCS), Computer Engineering (CCCE), 

Information Systems (CCIS), Software Engineering (CCSE), and Information Technology 

(CCIT). Representatives of these groups were also tapped to develop a post-hoc overview report, 

with the major goal of somehow reviewing and linking five separate sets of recommendations, 

including by identifying associated commonalities and differences. It was also noted that the 

overview project might help reveal new or emergent curricular areas. As of late 2006, final 

curriculum reports had been released for all of the areas except for Information Technology. The 

overview project also remained in process, although interim drafts revealed that this group was 

making substantial headway. 
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The splintering of the CC2001 project is itself a noteworthy development, especially 

when viewed against the longer historical backdrop presented in this dissertation. In fact, 

CC2001 seemed to once again point the way toward an expanding gulf between computer 

designers and programmers – as well as between their tangible outputs, in the form of machine 

hardware and software code – thereby perpetuating a trend that had been the subject of periodic 

critique since at least the 1950s. On the other hand, many parts of this story are perhaps not 

entirely surprising, especially given my claims about the unique and somewhat unstable position 

of computer engineering betwixt the realms of discipline and profession. In order to highlight 

these themes, it is worth taking a closer look at the Computer Engineering 2004 report. 

To begin with, the authors of this document worked to both define computer engineering 

as a distinct academic discipline and position it with respect to other fields. This is a particularly 

significant development, as this was one of the most explicit and extensive efforts of this type to 

date. The authors’ executive summary provided a brief yet rather general definition for the field: 

Computer engineering is a discipline that embodies the science and technology of 

design, construction, implementation, and maintenance of software and hardware 

components of modern computing systems and computer-controlled equipment. 

Computer engineering has traditionally been viewed as a combination of both 

computer science (CS) and electrical engineering (EE) (p. iii). 

While rather wide-ranging, this statement provided an overview of the field’s disciplinary 

settlement. Subsequent chapters expanded this description, while also marking computer 

engineering as a distinct disciplinary and professional domain. 

In a chapter titled “Computer Engineering as a Discipline,” for instance, the authors 

explained that computer engineering had “evolved from” the disciplines of electrical engineering 

and computer science, albeit often within EE programs (p. 5). While such statements hinted at 

the authors’ lack of awareness for the deeper origins and longer trajectory of their own field, 

these remarks helped set up a historical review of ABET-accredited degree programs in 

computer engineering (p. 5). In addition to noting that 1971 marked the recognition of the first 

such program at Case Western Reserve University, they charted the accreditation of as many as 

170 computer engineering and closely related programs. More specifically, the report indicated 

that 10 new Computer Engineering programs were accredited prior to 1980, 32 during the 1980s, 

44 in the 1990s, and 54 from 2000 to 2004, all leading to a grand total of 140. The authors also 
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noted the accreditation during this same time period of a smattering of programs with related 

titles, such as Computer Systems Engineering (5 total), Electrical and Computer Engineering (11 

total), and Computer Science and Engineering (12 total). For the sake of comparison, they added 

that there were about 300 accredited electrical engineering programs in the United States.  

Such statistics supported the authors’ claims that computer engineering was an 

“independent discipline” and “a discipline in it [sic] own right” (p. 37). In fact, one finds notable 

parallels here with the development of other fields such as computer science, where the bottom-

up establishment of degree programs and departments provided crucial evidence for the claim 

that computer science was indeed a discipline. Further fleshing out the disciplinary settlement of 

computer engineering, in another chapter the authors presented a detailed map of the field’s 

“body of knowledge” (BOK) which included a total of 18 major “knowledge areas” (Ch. 4). In 

fact, the same conceptual framework of the BOK appeared in all of the computing curricula 

reports, suggesting that much of the larger Computing Curricula project was premised on the 

idea that disciplinary settlements are largely and ultimately based on knowledge claims, albeit 

with room for extensive overlaps and interpenetrations between disciplines. 

While this somewhat more nuanced image of disciplinarity seemed to provide a more 

realistic view of the “computing” field and its various disciplinary branches, the computer 

engineering report revealed the continued importance of other, non-epistemological factors, 

including both the expected abilities and preferred identities of the field’s students and 

practitioners. Admitting that the distinctions between computer engineers, electrical engineers, 

computer scientists, and other computer professionals and technologies were often somewhat 

“ambiguous,” the authors of the report explained that computer engineers possessed three key 

characteristics, namely: the ability to design computer systems, including software and hardware; 

the possession of a breadth of knowledge of mathematics and engineering sciences; and a 

preparation for “professional practice in engineering” (p. 5). These three characteristics nicely 

captured how the authors strategically framed computer engineering as not only a distinct 

academic discipline, but also an unambiguous part of the engineering profession. In fact, it was 

reasonably clear that engineering education was the only widely accepted pathway by which 

students could be introduced to the engineering sciences, schooled in the basics of engineering 

design, and finally ushered into the fold of the engineering profession.  
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If there remained any doubts about these underlying assumptions, the rest of the report 

largely erased them. The authors repeatedly claimed, for example, that the “ability to design” 

was a key aspect of computer engineering. They also noted that “[p]rofessionalism should be a 

constant theme that pervades the entire curriculum” (p. 8), and they even devoted a chapter of the 

report to this topic (Ch. 6). And finally, the report placed significant emphasis on the importance 

of accreditation processes and criteria in ongoing efforts to develop computer engineering 

curricula and programs. As the authors explained, “The computer engineering core [body of 

knowledge] acknowledges that engineering curricula are often subject to accreditation, licensure, 

or governmental constraints” (p. 10). For better or worse, such statements help perpetuate the 

image of computer engineering as an engineering discipline to its “core.” 

Software/Hardware Codesign: Blurring the Sociotechnical Boundaries 

Even as the authors of the Computer Engineering 2004 report promoted a vision of their 

field as both an academic discipline and unambiguous branch of the engineering profession, 

many of the developments cited in prior chapters call into question many of the underlying 

technical and espistemological justifications for these types of boundary-work. In fact, my 

application of the “disciplinary settlement” concept to the body of knowledge outlined in this 

same report reveals the extent to which interpenetrating and overlapping knowledge claims 

between computer engineering and adjacent fields is a taken-for-granted reality. Further, in 

recent decades it has become increasingly common to find practicing and prospective computer 

engineers and computer scientists working side-by-side, in contexts ranging from university 

classrooms and labs to private-sector offices and research facilities. This trend also seems to 

continue apace, despite the partially distinct disciplinary backgrounds and professional identities 

maintained by the major actors and groups in question. I claim that one important enabling factor 

that helps us account for this trend centers on the continued blurring of the boundaries between 

“hardware” and “software,” a topic that runs through large parts of this dissertation. In order to 

both bring this theme into relief and point the way toward some possible reform movements, I 

turn to a brief history of the “software/hardware codesign” movement.  

As noted in preceding chapters, comments about the ultimately nebulous character of the 

boundary between computer hardware and software – or “machine” and “code” – can be traced 

back to the 1940s and 1950s. In fact, by the 1970s this blurred view of the software-hardware 
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relations was almost axiomatic for many commentators, as reflected in period textbooks such as 

Structured Computer Organization by well-known computer scientist Andrew Tanenbaum 

(1976). In an introductory chapter, the author summarized the historical development of 

computer organization and architecture, leading him to cleverly note that “one man's hardware is 

another man's software” (p. 11). He also went on to describe the boundary between computer 

software and hardware boundary as “arbitrary and constantly changing” (p. 11).  

On the one hand, one detects in such remarks a strong resonance with the writings of a 

host of prior commentators, ranging from Mauchly and Hopper to Carr and Gorn. On the other 

hand, Tanenbaum’s comments tended to hide some of the thorny practical realities that came 

with the actual practice of computer software and hardware design. For instance, differently 

trained professionals were clearly involved in different aspects of computer system design, and 

they brought with them their own partially unique tools, techniques, and cultures of design. And 

indeed, these types of distinctions were even more evident when one moved from intermediate 

levels of computer design to the opposite ends of the spectrum, where the design of the 

electronic components of computer “hardware” seemed quite distinct from the development of 

operating systems and programming tools, much less end-user applications.  

Nevertheless, the mid-1970s were a time when a handful of forward-looking researchers 

were tentatively seeking out and developing the appropriate tools and techniques that would 

allow them to better grapple with design trade-offs that surfaced at the intersection of software 

and hardware. In a 1975 paper, for example, C. W. Rose and M. Albarran noted the long-

standing tendency for the design of hardware and software to proceed “quite differently and 

separately” (p. 421). Yet they noted two major trends that were upsetting the status quo. The first 

of these centered on new technological developments that were providing system designers with 

the ability to implement a wide variety of functions “in either hardware, software, or a 

combination of both” (p. 421). The second trend – which the authors described as more 

“philosophical” in nature – centered on new design methods that were systematic, hierarchical, 

and capable of dealing with multiple levels of abstraction using a common design language.  

As suggested by these remarks, changes in both technology and design culture were 

pointing to new possibilities in the area of computer system design. But these authors also noted 

a number of difficult limitations with existing software and hardware design tools, including a 

lack of suitable hardware description languages (HDLs) and an overall inflexibility with regard 
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to determining the boundaries between software and hardware. As an alternative approach, they 

called for the development of a “computer system description language” that could accommodate 

the hierarchical description of hardware and software. Their own LOGOS design environment 

was offered as a tentative step toward a system that could help automate the design of 

“hierarchical, integrated hardware/software systems” (p. 429). 

The LOGOS project looked like an important step toward a more integrated approach to 

computer systems design, its immediate impact appears to have been minimal. As suggested by 

other commentators, the dominance of “layered” and “hierarchical” models of computer systems 

architecture through the 1970s may have hampered these alternative approaches. In fact, the 

dominant culture of computer design at the time tended to either insulate hardware and software 

specialists from one another or position engineers as the vanguards of computer design decisions. 

It would take roughly a decade before some of these barriers started to fall, especially as 

evidenced through the emergence and development of the “codesign” movement. 

While the phrase “software/hardware codesign” can be traced back to at least 1985, the 

concept gained significant momentum through the 1990s. And by some measures, co-design has 

attracted a great deal of attention in a relatively short span of time. Many hundreds of papers on 

codesign have been published since the early 1990s, and a search of the ACM and IEEE archives 

reveals increasing interest in the topic. In addition, the First International Conference on 

Hardware-Software Codesign was held in 1992, and international workshops and conferences 

dedicated to this topic have been held annually since 1996. Published proceedings reveal upward 

trends in the size and scope of these events. 

In most general terms, a central tenet of the co-design approach to developing specialized 

computing devices centers on the idea that the design of such systems must start with no a priori 

boundaries around the software and hardware components. A 1991 article on the topic provides 

one early and rather succinct description of the how and why of codesign. Authors Franke and 

Purvis start this piece with a brief review of historically dominant approaches to computer 

design. “Computer systems development has been ordinarily characterized,” they explained, “by 

the notion that hardware engineers supply general-purpose computing systems, which are then 

programmed by software engineers” (p. 344). The authors pointed to the relative independence 

of software and hardware development activities under this model, and they suggested that 
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“layered” or “hierarchical” models of computer architecture create an environment in which 

software specialists can avoid grappling with “low-level” hardware concerns.  

Franke and Purvis went on to discuss how a number of important technological 

developments were making it more feasible and desirable to call into question the boundaries 

around hardware and software engineering. And as suggested by the title of their paper, the 

authors proposed an alternative approach to computer design that “combine[s] the hardware and 

software perspectives from the earliest stages of the design process” (p. 344). In a more recent 

paper, computer scientists Micaela Serra and William Gardner offer a concise summary of four 

key characteristics of the co-design approach: “the cooperative design of hardware and software 

components; the unification of currently separate hardware and software paths; the movement of 

functionality between hardware and software; the meeting of system-level objectives by 

exploiting the synergism of hardware and software through their concurrent design” (1998, p. 1).  

These and other codesign proponents point to a number of advantages of this model, 

many with appeal to the profit-motivated private sector. In terms of the design process, for 

example, codesign promises to significantly streamline the coordination of large system design 

projects, leading to reductions in development time and cost. Many others argue that codesign 

can lead to the development of “better” technologies, at least in terms of technical metrics like 

performance, reliability, and/or flexibility. 

As this overview reveals, hardware/software codesign shares much in common with 

earlier historical movements. Hence, one might wonder why something like codesign failed to 

gain traction earlier. After all, this dissertation reveals that interchangeability of “hardware” and 

“programs” was recognized in as early as the 1950s, and the topic of hardware/software 

equivalence has resurfaced regularly for decades. But during the 1980s, a unique confluence of 

trends helped enable the emergence of a more recognizable movement of co-design proponents 

and practitioners. On rare occasion, these individuals even note that their work is part of a longer 

tradition. In an introduction to the proceedings of the Fifth International Conference on 

Hardware/Software Codesign (CODES/CASHE ’97), two workshop chairs explained that 

“[d]esigners have practiced co-design since the first microprocessors were used for 

implementing digital control” (Ernst and Borriello, 1997). 
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Yet many codesign commentators and proponents are quick to follow the typical outlook 

of technologists when they point to the numerous technical trends that helped set the stage for 

their work. Some relevant and oft-cited developments include: 

• the increasing diversity, complexity, and number of embedded systems in use 

or development;  

• the growth of hardware development languages, especially in tandem with 

Very Large Scale Integration (VLSI) technologies for integrated circuits; 

• the development of CAD systems that support the simultaneous design of both 

software and hardware; and 

• the emergence of new types of programmable chips, including application-

specific integrated circuits (ASICs).   

Yet we might be wary of overemphasizing technological factors as we account for the rise of co-

design. As many scholars have taught us, such expressions of technological determinism are both 

commonplace and easy to debunk. Indeed, the preceding overview of the pioneering work by 

Rose and Albarran suggests that, by at least the mid-1970s, some of the pivotal technological and 

“philosophical” developments were starting to lead toward new design approaches, and these had 

much in common with codesign.  

Further, one cannot help but notice other trends that were afoot around the time that the 

codesign movement really started to take off. The “computing as a discipline” movement 

described in the preceding chapter, for example, was gaining momentum around this same time.  

Hence, it is highly plausible that the CC1991 effort both reflected and reinforced a culture of 

“integration” in the computer field, thereby helping to enable the emergence and growth of the 

codesign movement.  This thesis is further supported by the observation that many codesign 

researchers maintained university affiliations or appointments. Perhaps one of Carr’s early 

assertions rings true – namely that universities do indeed play crucial roles in stimulating 

research and development activities at the cutting-edge of computing.  

As Serra and Gardner’s efforts reveal, introducing co-design to future generations of 

computer science and computer engineering students remains something of an experiment. As 

they admit, “different design cultures hamper integration,” and their own agenda is framed in 

terms of developing a more “appropriate curriculum” for computer science students. Yet the 

benefits of such reforms are increasingly clear. They explain, for instance, that the 
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interdisciplinary linking of computer science and engineering – as well as intradisciplinary 

explorations within computer science – were novel features and a “source of great strength” in 

their own codesign course (p. 8). Emphasizing the extent to which hardware/software co-design 

challenges insular computing curricula, they add that “hardware related topics were 

tremendously empowering to the mainly software students in Comp. Science, who found the 

demistification [sic] of the whole area of VLSI design and CAD software useful to their breadth” 

(p. 8). 

These initial results are certainly encouraging, but recent currents in the educational 

sphere reveal that proponents of codesign may continue to face formidable challenges, especially 

as they work to introduce these alternative design approaches into computer science, computer 

engineering, and related curricula. On the other hand, my analysis suggests that the codesign 

movement itself may point the way toward a more integrated “discipline of computing,” both in 

educational contexts and beyond. 

 From Software/Hardware Codesign to Sociotechnical Codesign 

Significant barriers must be overcome before codesign methods move to the forefront of 

the computing curricula specifically and the computer field generally. In fact, my analysis 

suggests that the most recent Computing Curricula project and the codesign movement 

increasingly look like two alternative pathways for the future of computing, with the former 

preserving sociotechnical fragmentation and factionalism and the latter tending toward greater 

integrating and unification. And while my analysis frames codesign as a promising development 

that may help in the realization of a reform movement with deep historical roots, I close with an 

even more ambitious vision for the future.  

As the preceding overview makes clear, software/hardware codesign remains 

significantly focused on technology, both in terms of its associated enabling factors and 

anticipated outcomes. However, I contend that the boundary-blurring characteristics of codesign 

can provide inspiration for other important types of reform. In their 1991 paper, codesign 

proponents Franke and Purvis cite a 1986 article in which well-known computer researcher 

Elliott Organick described the emergence of a new breed of “heterosystems” engineers. Skilled 

in working with large systems comprised of “diverse, interacting components,” Organick 

explained that these designers “are no longer just software engineers or just hardware engineers” 
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(quoted in Franke and Purvis, 1991, p. 347). Franke and Purvis tentatively worked in similar 

directions when they note that computer system professionals are increasingly involved in the 

design of “reactive” systems that involve hardware, software, and “users and objects from the 

real world” (p. 346). 

Some may notice parallels here with contemporary research in a variety of fields, 

including Science and Technology Studies (STS). As described by Donald MacKenzie, for 

example, successfully developing new technologies often requires heterogeneous engineering, or 

“the engineering of the social as well as the physical world” (1990, p. 28). Still others may 

recognize that terms such as “codesign” and “meta-design” have been used to describe new 

approaches to technological design that center on open and extensible systems and active efforts 

to blur the boundaries between the designers and users of various technologies.  Hence, by 

challenging the drawing of a priori boundaries around hardware and software, codesign methods 

can inspire us to call into question other boundaries, such as those that divide computer scientists 

from computer engineers, or those that separate computer technologies from users, applications, 

and even society.  

The history of the software-hardware boundary presented in this dissertation forcefully 

reveals the extent to which the social and technical are deeply intertwined. It is hoped that 

ongoing moves to put back together the Humpty and Dumpty of software and hardware may also 

point us toward a more thoroughly contextualized, reflexive, and socially responsible culture of 

computer design and use. Doing so, however, will require that computer experts from a variety 

of backgrounds acknowledge and critically engage other axes of similarity/different that have 

played a profoundly influential role in the computing field. In fact, preceding chapters reveal that 

challenging the boundaries around software and hardware can quickly raise thorny questions 

about the relation of science and engineering, as well as the respective dominant images of 

disciplines and professions.
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Appendix A 

Acronyms and Abbreviations 

 

 

 
ABET Accreditation Board for Engineering and Technology 
AC Alternating Current 
ACM Association for Computing Machinery 
AFIPS American Federation of Information Processing Societies 
AIEE American Institute of Electrical Engineers 
ASCC Automatic Sequence Controlled Calculator 
ASIC Application-Specific Integrated Circuit 
ASEE American Society for Engineering Education 
BOK Body of Knowledge 
C3S Curriculum Committee on Computer Science (of the ACM) 
CACM Communications of the ACM 
CAD Computer-Aided Design 
CC1991 Computing Curricula 1991 
CCP Certificate in Computer Programming 
CDC Computing Devices Committee (of the AIEE) 
CE Computer Engineering 
COPA Council on Postsecondary Accreditation 
COSERS Computer Science and Engineering Research Study 
COSINE Computer Science(s) in Electrical Engineering 
CS Computer Science 
CSAB Computing Sciences Accreditation Board 
CSAC Computing Sciences Accreditation Committee 
CSE Computer Science and Engineering 
CSEB Computer Science and Engineering Board (of the NAS) 
CUPM Committee on the Undergraduate Program in Mathematics (of the MAA) 
DC Direct Current 
DISE Digital Systems Education 
DPMA Data Processing Management Association 
EAB Educational Activities Board (of the IEEE) 
ECE Electrical and Computer Engineering 
ECPD Engineers’ Council for Professional Development 
EDSAC Electronic Delay Storage Automatic Calculator 
EDVAC Electronic Discrete Variable Automatic Calculator 
EE Electrical Engineering 
EECS Electrical Engineering and Computer Science 
EJCC Eastern Joint Computer Conference 
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FJCC Fall Joint Computer Conference 
ENIAC Electrical Numerical Integrator And Calculator 
HCI Human-Computer Interaction 
HDL Hardware Description Language 
IAS Institute for Advanced Study (at Princeton University) 
IBM International Business Machines 
ICCP Institute for the Certification of Computer Professionals 
IEEE Institute of Electrical and Electronics Engineers 
IEEE CS Institute of Electrical and Electronics Engineers – Computer Society 
IFIP International Federation for Information Processing 
IRE Institute of Radio Engineers 
IS Information Systems 
IT Information Technology 
ITG Institute Technical Group 
JCC Joint Computer Committee 
JCC Joint Computer Conference 
JEE Journal of Engineering Education 
LoC Library of Congress 
LSI Large-Scale Integration 
MAA Mathematical Association of America 
MANIAC Mathematical Analyzer Numerical Integrator and Computer 
MIT Massachusetts Institute of Technology 
MSI Medium-Scale Integration 
NAE National Academy of Engineering 
NAS National Academy of Sciences 
NATO North Atlantic Treaty Organisation 
NBS National Bureau of Standards 
NCR National Cash Register 
NJCC National Joint Computer Committee 
NJCC National Joint Computer Conference 
NMAA National Machine Accountants Association 
NSF National Science Foundation 
ONR Office of Naval Research 
PGEC Professional Group on Electronic Computers (of the IRE) 
PGIPS Professional Group on Information Processing Systems 
PTGEC Professional Technical Group on Electronic Computers (of the IRE) 
RCA Radio Corporation of America 
SDC System Development Corporation 
SIAM Society for Industrial and Applied Mathematics 
SIC Special Interest Committee 
SICARCH Special Interest Committee on Computer Architecture (of the ACM) 
SICSOFT Special Interest Committee on Software Engineering (of the ACM) 
SIG Special Interest Group 
SIGCSE Special Interest Group on Computer Science Education (of the ACM) 
SIGMICRO Special Interest Group on Microprogramming (of the ACM) 
SIGSOFT Special Interest Group on Software Engineering (of the ACM) 
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SJCC Spring Joint Computer Conference 
STS Science and Technology Studies 
TC Technical Committee 
TCCA Technical Committee on Computer Architecture (of the IEEE Computer Society) 
TCSE Technical Committee on Software Engineering (of the IEEE Computer Society) 
TIC Technical Interest Council 
UCLA University of California – Los Angeles 
UNESCO United Nations Educational, Scientific, and Cultural Organization 
UNIVAC Universal Automatic Computer 
VLSI Very Large-Scale Integration 
WJCC Western Joint Computer Conference 

 



www.manaraa.com

 343 

 

Bibliography 

 

 

 
“1946 National Electronics Conference.” (1946, September). Proceedings of the IRE, 34(9): 665-

667. 
 
“1947 IRE National Convention.” (1947, May). Proceedings of the IRE, 35(5): 499-503. 
 
“1948 IRE National Convention Program – Summaries of Technical Papers.” (1948, March). 

Proceedings of the IRE, 36(3): 365-380. 
 
“1949 IRE National Convention Program – Summaries of Technical Papers.” (1949, February). 

Proceedings of the IRE, 37(2): 160-178. 
 
“1949 Engineering Developments – Reviewed by AIEE Technical Committees.” (1950, 

January). Electrical Engineering, 69(1): 1-11, 24-25. 
 
“1993 OECE Recipients – Clarence L. Coates.” (1993, November). Retrieved on April 4, 2006 

from Purdue School of ECE web site: 
https://engineering.purdue.edu/ECE/People/Alumni/OECE/1993/coates.whtml 

 
“A Datamation Staff Survey: Computer Components ’61.” (1961, August). Datamation, 7(8): 

36-40. 
 
“A Matter of Degrees.” (1965, June). Datamation, 11(6): 23. 
 
Abbott, Andrew. (1988). The System of Professions: An Essay on the Division of Expert Labor. 

Chicago: University of Chicago Press. 
 
Abbott, Andrew. (2001). Chaos of Disciplines. Chicago and London: The University of Chicago 

Press. 
 
ABET (Accreditation Board for Engineering and Technology). (1980). Forty-eighth Annual 

Report (1979/1980). New York, NY: ABET. 
 
ABET (Accreditation Board for Engineering and Technology). (1982). Fiftieth Annual Report 

(1981/1982). New York, NY: ABET. 
 
ABET (Accreditation Board for Engineering and Technology). (1985). Fifty-third Annual Report 

(1984/1985). New York, NY: ABET. 



www.manaraa.com

 344 

 
ABET (Accreditation Board for Engineering and Technology). (1989). Fifty-seventh Annual 

Report (1988/1989). New York, NY: ABET. 
 
ABET (Accreditation Board for Engineering and Technology). (1990). Fifty-eighth Annual 

Report (1989/1990). New York, NY: ABET. 
 
Abrahams, Paul. (1987, November). “A Farewell to NCC.” Communications of the ACM, 

30(11): 899. 
 
ACM Accreditation Committee. (1977, November). “Accreditation Guidelines for Bachelor’s 

Degree Programs in Computer Science.” Communications of the ACM, 20(11): 891-892. 
 
ACM C3S (Curriculum Committee on Computer Science). (1965, September). “An 

Undergraduate Program in Computer Science – Preliminary Recommendations.” 
Communications of the ACM, 8(9): 543-552. 

 
ACM C3S (Curriculum Committee on Computer Science). (1968, March). “Curriculum 68: 

Recommendations for Academic Programs in Computer Science.” Communications of 
the ACM, 11(3): 151-197. 

 
“ACM: Association for Computing Machinery, the world's first educational and scientific 

computing society.” (n.d.) Retrieved April 13, 2006 from http://www.acm.org/ 
 
“ACM and IEEE-CS Launch Fall Joint Computer Conference.” (1987, January). Computer, 

20(1): 117. 
 
“ACM Special Interest Group for Mathematical Programming.” (1961, September). 

Communications of the ACM, 4(9): 368. “ACM Special Interest Group for Mathematical 
Programming.” (1961, September). Communications of the ACM, 4(9): 368. 

 
Acton, Forman S. (1957). “Supply and Demand in Computational Mathematics.” In Preston C. 

Hammer (Ed.), The Computing Laboratory in the University (121-125). Madison, WI: 
The University of Wisconsin Press. 

 
Ad Hoc Group, AIEE Computing Devices Committee. (1963, April). “Developments and Trends 

in Computing Devices During 1962.” Electrical Engineering, 82(4): 269-274. 
 
Ad Hoc Group, AIEE Computing Devices Committee. (1963, May). “A Summary of Recent 

Advances in the Computer Field.” Computers and Automation, 12(5): 32-40. 
 
Adams, Charles W. (1957). “The Contribution of the Computing Laboratory to the University 

Curriculum.” In Preston C. Hammer (Ed.), The Computing Laboratory in the University 
(139-143). Madison, WI: The University of Wisconsin Press. 

 



www.manaraa.com

 345 

“Affiliate Status.” (1960, June). IRE Transactions on Electronic Computers, EC-9(2): Back 
cover. 

 
“AFIPS Appoints Public Affairs Directors.” (1962, August). Communications of the ACM, 5(8): 

425. 
 
AFIPS Taxonomy Committee. (1980). Taxonomy of Computer Science and Engineering. 

Arlington, VA: American Federation of Information Processing Societies, Inc. 
 
“AIEE Forms Committee on Computing Devices.” (1948, March). Electrical Engineering, 67(3): 

271. 
 
“AIEE Power Industry Computer Application Conference.” (1958, September). Electrical 

Engineering, 77(9): 848-849. 
 
“AIEE Officers and Committees for 1946-47.” (1946, September). Transactions of the AIEE, 

65(9): 1217-1228. 
 
“AIEE Officers and Committees for 1948-49.” (1948, September). Transactions of the AIEE, 

67(9): 1784-1798. 
 
“AIEE Officers and Committees for 1949-50.” (1949, September). Transactions of the AIEE, 

68(9): 799-811. 
 
“AIEE Officers and Committees for 1954-55.” (1954, September). Electrical Engineering, 73(9): 

834-860. 
 
“AIEE Officers and Committees for 1955-56.” (1955, September). Electrical Engineering, 74(9): 

837-850. 
 
“AIEE Officers and Committees for 1956-57.” (1956, September). Electrical Engineering, 75(9): 

841-856. 
 
“AIEE Officers, Departments, and Committees for 1957-1958.” (1957, September). Electrical 

Engineering, 76(9): 832-850. 
 
“AIEE Officers, Departments, and Committees for 1958-1959.” (1958, September). Electrical 

Engineering, 77(9): 870-888. 
 
“AIEE Technical Subcommittees, 1950-1951.” (1950, September). Electrical Engineering, 

69(9): 937-944. 
 
“AIEE Winter General Meeting, New York, NY, February 2-7, 1958 (Tentative Technical 

Program).” (1958, January). Electrical Engineering, 77(1): pp. 71-80. 
 



www.manaraa.com

 346 

Aiken, Howard H., and Grace M. Hopper. (1946). “The Automatic Sequence Controlled 
Calculator.” Electrical Engineering, 65: 384-391, 449--454, 522-528. 

 
Aiken, Howard H. (1951). [Opening Address.] In Proceedings of a Second Symposium on Large-

Scale Digital Calculating Machinery, The Annals of the Computation Laboratory at 
Harvard University, Volume XXVI, Harvard University Computation Laboratory, 
September 13-16, 1949. Cambridge, MA: Harvard University Press. 

 
Akera, Atsushi. (1998). Calculating a Natural World: Scientists, Engineers, and Computers in 

the United States, 1937-1968. Unpublished Dissertation. The University of Pennsylvania. 
 
Akera, Atsushi. (2002). “The Early Computers.” In Atsushi Akera and Frederik Nebeker (Eds.), 

From 0 to 1: An Authoritative History of Modern Computing (63-75). Oxford, England 
and New York, NY: Oxford University Press. 

 
Akera, Atsushi. (2004a). “The Circulation of Knowledge and Disciplinary Formation: Modern 

Computing as an Ecology of Knowledge.” Conference paper presented at 3Societies 
Conference, Halifax, NS, August 2004. Retrieved October 9, 2006 from 
http://www.rpi.edu/%7eakeraa/3Soc-Paper.doc 

 
Akera, Atsushi. (2004b). “Peripatetic Careers, Institutional Ecologies, and the Multiple 

Foundations of New Technology: John W. Mauchly and the Origin for the Digital 
Electronic Computer.” Conference paper presented at SHOT 2004 Annual Meeting, 
Amsterdam, Netherlands, October 6-9, 2004. Retrieved October 9, 2006 from 
http://www.rpi.edu/%7eakeraa/SHOT-Paper.doc 

 
Akera, Atsushi. (2006). Calculating a Natural World: Scientists, Engineers, and Computers 

During the Rise of U.S. Cold War Research. Cambridge, MA and London, England: The 
MIT Press. 

 
Akera, Atsushi, and Frederik Nebeker. (2002). From 0 to 1: An Authoritative History of Modern 

Computing. New York: Oxford University Press. 
 
Alt, Franz L. (1952). “Forward.” Proceedings of the Association for Computing Machinery. 

Pittsburgh, PA, May 2-3, 1952. 
 
Alt, Franz L. (1958). Electronic Digital Computers: Their Use in Science and Engineering. New 

York, NY and London: Academic Press. 
 
Alt, Franz L. (1962, June). “Fifteen Years ACM.” Communications of the ACM, 5(6): 300-307. 
 
Alt, Franz L. (1965, January). “Some Unorthodox Predictions.” Computers and Automation, 

14(1): 11-12.  
 
“Alumni: Obituaries.” (2004, July-August). The Pennsylvania Gazette. Retrieved November 7, 

2006 from http://www.upenn.edu/gazette/0704/0704obits.html 



www.manaraa.com

 347 

 
Amdahl, Lowell. (1965, November). “Gothic Computer Architecture: A Guest Editorial.” 

Datamation, 11(11): 23. 
 
American Society for Engineering Education. (1958, October). “Report on the Engineering 

Sciences, 1956-1958.” Journal of Engineering Education, 49(1): 36. 
 
Anderson, Walter L. (1962, June). “The Chairman’s Letter.” IRE Transactions on Electronic 

Computers, EC-11(3): 441. 
 
Anderson, Walter L. (1963a, February). “The Chairman’s Letter.” IEEE Transactions on 

Electronic Computers, EC-12(1): 55. 
 
Anderson, Walter L. (1963b, April). “The Chairman’s Letter.” IEEE Transactions on Electronic 

Computers, EC-12(2): 176. 
 
Anderson, Walter L. (1963c, June). “The Chairman’s Letter.” IEEE Transactions on Electronic 

Computers, EC-12(3): 352. 
 
Anderson, Walter L. (1964a, February). “The Chairman’s Letter.” IEEE Transactions on 

Electronic Computers, EC-13(1): 81. 
 
Anderson, Walter L. (1964b, April). “Chairman’s Newsletter.” IEEE Transactions on Electronic 

Computers, EC-13(2): 180. 
 
Anderson, Walter L. (1976, December). “The Middle Years.” Computer, 9(12): 45-53. 
 
“Announcing a Major New Publication in the Field of Computer Science: IEEE Transactions on 

Software Engineering.” (1975, February). Computer, 8(2): 82. 
 
“Anthony Oettinger’s Home Page.” (1998, April 31). Retrieved October 23, 2006 from 

http://people.deas.harvard.edu/users/faculty/Anthony_Oettinger/Anthony_Oettinger.html 
 
Arden, Bruce W. (1976, December). “The Computer Science and Engineering Research Study 

(COSERS).” Communications of the ACM, 19(12): 670-673. 
 
Arden, Bruce W. (Ed.). (1980). What Can Be Automated: The Computer Science and 

Engineering Research Study (COSERS). Cambridge, MA and London, England: The 
MIT Press. 

 
Armer, Paul. (1959, January). [Letter to the Editor]. Communications of the ACM, 2(1): 2-4. 
 
Armer, Paul, Morton M. Astrahan, Isaac L. Auerbach, Walter M. Carlson, Arnold A. Cohen, 

Margaret R. Fox, Claude A.R. Kagan, Morris Rubinoff, Jack Sherman, and Willis H. 
Ware. (1986, July-September). “Reflections on a Quarter-Century: AFIPS Founders.” 
IEEE Annals of the History of Computing, 8(3): 225-256. 



www.manaraa.com

 348 

 
Aspray, William. (1985). “Introduction.” In Proceedings of a Symposium on Large-Scale Digital 

Calculating Machinery, Harvard University, January 7-10, 1947 (ix-xxiii). Cambridge, 
MA and London, England: MIT Press and Los Angeles, CA and San Francisco, CA: 
Tomash Publishers. 

 
Aspray, William. (1993, April). “Edwin L. Harder and the Anacom: Analog Computing at 

Westinghouse.” IEEE Annals of the History of Computing, 15(2): 35-52. 
 
Aspray, William. (2000, July-September). “Was Early Entry a Competitive Advantage: U.S. 

Universities That Entered Computing in the 1940s.” IEEE Annals of the History of 
Computing, 22(3): 42-87. 

 
Astrahan, Morton M. (1976, December). “In the Beginning there was the IRE Professional 

Group on Electronic Computers.” Computer, 9(12): 43-44. 
 
Atchison, William F. (1960, June). “Numerical Analysis and Computers in Engineering 

Education.” Journal of Engineering Education, 50(10): 856-859. 
 
Atchison, William F., and John W. Hamblen. (1964, April). “Status of Computer Sciences 

Curricula in Colleges and Universities.” Communications of the ACM, 7(4): 225-227. 
 
Atchison, William F. (1968). “The Position of Computing Science in the University Structure: A 

Report of the Workshop.” In Aaron Finerman (Ed.), University Education in Computing 
Science, Proceedings of a conference on graduate academic and related research 
programs in computing science, held at the State University of New York at Stony Brook, 
June 1967 (169-175). New York and London: Academic Press. 

 
Atchison, William F. (1971). “Computer Science as a New Discipline.” International Journal of 

Electrical Engineering Education, 9: 130-135. 
 
Atchison, William F. (1985). “The Development of Computer Science Education.” In M. C. 

Yovitz (Ed.), Advances in Computers (319-377). New York, NY: Academic Press. 
 
Auerbach, Isaac L. (1986a, April). “The Start of IFIP – Personal Recollections.” Annals of the 

History of Computing, 8(2): 180-192. 
 
Auerbach, Isaac L. (1986b, July/September). “Harry H. Goode, June 30, 1909-October 30, 

1960.” Annals of the History of Computing, 8(3): 257-260. 
 
Autonetics, a Division of North American Aviation, Inc. (1956, February). “Engineers and 

Scientists… Help us solve today’s most advanced problems.” Electrical Engineering, 
75(2): 91A. 

 
Bagley, Philip R. (1959, May). [Letter to the Editor]. Communications of the ACM, 2(5): 3-4. 
 



www.manaraa.com

 349 

Baker, W. R. G. (1957, June). “The IRE ‘Affiliate’ Plan – A New Venture in Engineering 
Society Structure and Service.” IRE Transactions on Electronic Computers, EC-6(2): 71. 

 
Baldwin, Carliss Y. and Kim B. Clark. (2000). Design Rules, Vol.1: The Power of Modularity. 

Cambridge, MA: The MIT Press. 
 
Barnard, G. A. (1960, May/June). “1960 WJCC: A Look Back.” Datamation, 6(3): 23; 52. 
 
Beckman, Frank S. (1968). “Graduate Computer Science Program at American Universities.” In 

Aaron Finerman (Ed.), University Education in Computing Science, Proceedings of a 
conference on graduate academic and related research programs in computing science, 
held at the State University of New York at Stony Brook, June 1967 (39-59). New York 
and London: Academic Press.  

 
Bendix Aviation Corporation. (1954, November). “Bendix – Senior Electrical Engineer.” 

Electrical Engineering, 73(11): 70A. 
 
Bendix Aviation Corporation. (1955a, August). “Analog Computer Engineers.” Computers and 

Automation, 4(8): 32. 
 
Bendix Aviation Corporation. (1955b, November). “Engineers – Permanant, Creative 

Opportunities for Electrical Engineers at Bendix.” Electrical Engineering, 74(11): p. 
78A. 

 
Bendix Aviation Corporation. (1956, January). “Engineers – Permanant, Creative Opportunities 

for Electrical Engineers at Bendix.” Electrical Engineering, 75(1): p. 70A. 
 
Bennett, Arnold A. (1955). “The Impact of Automatic Computing Machines Upon the 

Undergraduate Curriculum.” In Arvid W. Jacobson (Ed.), Proceedings of the First 
Conference on Training Personnel for the Computing Machine Field, Detroit, MI, June 
22-23, 1954 (40-46). Detroit, MI: Wayne University Press. 

  
Bergstein, Harold. (1962, July). “A Profile of No. 1” [Interview with IBM’s Warren C. Hume 

and A. L. Harmon]. Datamation, 8(7): 33-37. 
 
Bonn, Ted. (1982, October). “A Second Division Director for the IEEE Computer Society.” 

Computer, 15(10): 4-5. 
 
Booth, Taylor L. (1982, July). “Current Activities of the Educational Activities Board.” 

Computer, 15(7): 4-5. 
 
Booth, Taylor L. (1984, October). “Computer Education.” Computer, 17(10): 57-68. 
 
Booth, Taylor L. and Raymond E. Miller. (1987, May). “Computer Science Program 

Accreditation: The First-Year Activities of the Computing Sciences Accreditation 
Board.” Communications of the ACM, 30(5): 376-388. 



www.manaraa.com

 350 

 
Booth, Taylor L., C. Gordon Bell, Cecil H. Hoker, Robert M. Glorioso, Edward J. McCluskey, 

Frederic J. Mowle, David M. Robinson. (1973, January). “Minicomputers in the Digital 
Laboratory Program.” Computer, 6(1): 28-42. 

 
Booth, Taylor L., Tom Brubaker, Tom Cain, Ron Danielson, Ron Hoelzeman, Glen Langdon, 

Dave Soldan, and Muali Varanasi. (1986, June). “Design Education in Computer Science 
and Engineering.” Computer, 19(6): 20-27. 

 
Brainerd, John G. and T. K. Sharpless. (1948, February). “The ENIAC.” Electrical Engineering, 

67(2): 163-172. 
 
Brainerd, John G. (1955). “Keynote Address.” Proceedings of the Eastern Joint Computer 

Conference, Boston, MA, November 7-9, 1955 (pp. 6-7). New York, NY: Institute of 
Radio Engineers. 

 
Brainerd, John G. (1960, June). “Setting up a Computing Faculty in a School of Engineering.” 

Journal of Engineering Education, 50(10): 846-851. 
 
Brandin, David H. (1982a, November). “ACM President’s Letter: The State of the ACM – 

1982.” Communications of the ACM, 25(11): 769-770. 
 
Brandin, David H. (1982b, November). “By invitation – a message from the ACM President: the 

problems of technology transfer.” Computer, 15(11): 4. 
 
Brandin, David H. and Oscar N. Garcia. (1983, August). “Where do parallel lines meet? or The 

common goals of ACM and the IEEE-CS.” Computer, 16(8): 6-7. 
 
Breslau, Daniel. (2000, July). “Sociology after Humanism: A Lesson from Contemporary 

Science Studies.” Sociological Theory, 18(2): 289-307. 
 
Burks, Arthur W., Herman H. Goldstine, and John von Neumann. (1989). “Preliminary 

Discussion of the Logical Design of an Electronic Computing Instrument.” In Zenon W. 
Pylyshyn and Liam J. Bannon (Eds.), Perspectives on the Computer Revolution (39-48). 
Norwood, NJ: Ablex Publishing Corp. (Originally published in 1946.) 

 
Browne, James C. and John J. Howard, Jr. (1973, November). “The Interaction of Operating 

Systems and Computer Architecture: A Workshop Survey.” Computer, 6(11): 16-17. 

Buchholz, Werner. (1953, October). “The Computer Issue.” Proceedings of the IRE, 41(10): 
1220-1222. 

Burroughs Corporation. (1957, May). “That Certain Man.” Computers and Automation, 6(5): 43. 
 
Cain, James T. (1975, September). “Report of the Digital Systems Education Committee.” ACM 

SIGCSE Bulletin, 7(3): 13-16. 
 



www.manaraa.com

 351 

Cain, J. T., and R. G. Hoelzeman. (1977). “DISE Project.” In Proceedings of the Computer 
Science and Engineering Workshop, Williamsburg, Virginia, June 6-7, 1977 (145-146). 
Long Beach, CA: IEEE Computer Society. 

 
Cain, J. T., G. G. Langdon, Jr., and M. R. Varanasi. (1983). “Foreward.” In The 1983 IEEE 

Computer Society Model Program in Computer Science and Engineering (iii-vi). Silver 
Spring, MD: IEEE Computer Society Press. 

 
Cain, J. T., G. G. Langdon, Jr., and M. R. Varanasi. (1984, April). “The IEEE Computer Society 

Model Program in Computer Science and Engineering.” Computer, 17(4): 8-17. 
 
“Call for Papers: 17th IMACS World Congress, Budapest, August 25-29, 2003.” (n.d.). 

Retrieved November 7, 2006 from 
http://www.ifors.org/panorama/conferences/conf_02_03.html 

 
“Call for Participation: A Workshop on the Engineering of VLSI and of Software.” (1982, 

April). Computer, 15(4): 135. 
 
Callon, Michel. (1999). “Some Elements of a Sociology of Translation: Domestication of the 

Scallops and the Fishermen of St. Brieuc Bay.” In Mario Biagioli (Ed.), The Science 
Studies Reader (67-83). New York and London: Rutledge. (Original work published 
1986, abridged 1998) 

 
Campbell-Kelly, Martin, and Michael R. Williams (Eds.). (1985). The Moore School Lectures: 

Theory and Techniques for Design of Electronic Digital Computers. Cambridge, MA and 
London, England: The MIT Press/ 

 
Campbell-Kelly, Martin, and William Asprey. (1997). Computer: A History of the Information 

Machine. New York: Basic Books. 
 
Campbell-Kelly, Martin. (2000). “Past into Present: The EDSAC Simulator.” In Raúl Rojas and 

Ulf Hashagen (Eds.), The First Computers: History and Architectures (397-416). 
Cambridge, MA and London, England: The MIT Press. 

 
Carlson, Walter M. (1969, October). “‘There is a tide in the affairs of men…’ (Letter from the 

ACM Vice-President).” Communications of the ACM, 12(10): 537. 
 
Carlson, Walter M. (1970a, September). “Finding the Real Expert (ACM President’s Letter).” 

Communications of the ACM, 13(9): 525. 
 
Carlson, Walter M. (1970b, October). “Rx for Excellence: Better Education (ACM President’s 

Letter).” Communications of the ACM, 13(10): 587. 
 
Carlson, Walter M. and Dick B. Simmons. (1984, March). “Intersociety Cooperation.” 

Computer, 17(3): 88-89. 
 



www.manaraa.com

 352 

Carr, John W., III. (1953, November). “Who Will Man the New Digital Computers?” Computers 
and Automation, 2(8): 1-3. 

 
Carr, John W., III. (1956). “Conference Summary.” Proceedings of the Eastern Joint Computer 

Conference, New York, NY, December 10-12, 1956 (147-150). New York, NY: 
American Institute of Electrical Engineers. 

 
Carr, John W., III. (1952, February). “Discussion.” In Review of Electronic Digital Computers – 

Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12, 1951 (113-
114). New York, NY: American Institute of Electrical Engineers. 

 
Carr, John W., III. (1957, January). “Inaugural Presidential Address.” Journal of the ACM, 4(1): 

5-7. 
 
Carr, John W., III. (1962a, March). “Better Computers.” International Science and Technology, 

No. 3: 35-39. 
 
Carr, John W., III. (1962b. March). “Better Computers.” Elektronische Rechenanlagen, 4(4): 

157-160. 
 
Carr, John W., III. (1965, January). “The Future of Programming and Programmers.” Computers 

and Automation, 14(1), 15-17; 54. 
 
Ceruzzi, Paul. (1989, October). “Electronics Technology and Computer Science, 1940-1975: A 

Coevolution.” Annals of the History of Computing, 10(4): 257-275. 
 
Ceruzzi, Paul E. (2003). A History of Modern Computing (Second Edition). Cambridge, MA: 

MIT Press. 
 
“Chairmen Named, Activities Planned for Three New TCs.” (1982, December). Computer, 

15(12): 134. 
 
Chase, W. H. (1961, December). “Merger Discussions Open Opportunities and Challenges.” 

Electrical Engineering, 80(12): 908-912. 
 
Chu, Yaohan. (1974, December). “Why Do We Need Computer Hardware Description 

Languages.” Computer, 7(12): 18-22. 
 
Coates, Clarence L. (1968). “University Education in Computer Engineering.” In Proceedings of 

the Meeting on Computer Science in Electrical Engineering of the Commission on 
Engineering Education, Stanford University, October 24-25, 1968 (5-11). Washington, 
DC: National Academy of Engineering. 

 
Coates, Clarence L., Jr., Bruce Arden, Thomas C. Bartee, C. Gordon Bell, Franklin F. Kuo, 

Edward J. McCluskey, Jr., and William H. Surber, Jr. (1971, June). “An Undergraduate 



www.manaraa.com

 353 

Computer Engineering Option for Electrical Engineering.” Proceedings of the IEEE, 
59(6): 854-860. 

 
Cohen, Arnold A. (1961, December). “The Chairman’s Letter.” IRE Transactions on Electronic 

Computers, EC-10(4): 845. 
 
Cohen, Arnold A. (1962a, February). “The Chairman’s Letter.” IRE Transactions on Electronic 

Computers, EC-11(1): 119. 
 
Cohen, Arnold A. (1962b, April). “The Chairman’s Letter.” IRE Transactions on Electronic 

Computers, EC-11(2): 319. 
 
Cohen, Arnold A. (1964, June). “Minutes of the Joint Meeting.” IEEE Transactions on 

Electronic Computers, EC-13(3): 341. 
 
Committee on Computer Sciences in Electrical Engineering of the Committee on Engineering 

Education. (1968). A Program to Stimulate the Development of Electrical Engineering 
Courses and Curricula To Include the Computer Sciences (Continued Support) 
[Proposal]. 

 
Committee on the Undergraduate Program in Mathematics (CUPM) of the Mathematical 

Association of America. (1964, May). Recommendations on the Undergraduate 
Mathematics Program for Work in Computing. Berkeley, CA: Committee on the 
Undergraduate Program in Mathematics. 

 
“COMPCON.” (1972, July/August). Computer, 5(4): 30. 
 
Computing Curricula for Computer Engineering Joint Task Force. (2004, December 12). 

Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree 
Programs in Computer Engineering. IEEE Computer Society. Retrieved November 28, 
2006 from http://www.eng.auburn.edu/ece/CCCE/CCCE-FinalReport-2004Dec12.pdf 

 
“Computing Devices Conference Attracts Interested Audience.” (1949, April). Electrical 

Engineering, 68(4): 358. 
 
“COMPSAC 77.” (1977, February). Computer, 10(2): 4-5. 
 
“Computer Science and Engineering Board Established at Academy of Sciences; Oettinger 

Named Chairman.” (1968, July). Communications of the ACM, 11(7): 530. 
 
“Computer Science Curriculum.” (1964, April). Communications of the ACM, 7(4): 205. 
 
“Computer Society Members Surveyed by AFIPS.” (1972, May/June). Computer, 5(3): 12. 
 
“Computer Society Starts Education Activity.” (1971, July/August). Computer, 4(4): 35. 
 



www.manaraa.com

 354 

“Computer Society Votes to End National Computer Conference.” (1987, August). Computer, 
20(8): 110. 

 
Concordia, Charles. (1976, December). “In the Beginning there was the AIEE Committee on 

Computing Devices.” Computer, 9(12): 42, 44. 
 
Concordia, Charles. (1994). [Oral history interview conducted by Frederick Nebeker]. New 

Brunswick, NJ: IEEE History Center, Rutgers University. Retrieved October 26, 2006 
from 
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/oral_histor
y/pdfs/Concordia189.pdf 

 
Condon, Edward U. (1947, April). “Electronics and the Future.” Electrical Engineering, 66(4): 

355-361.  
 
“Conference Report: 2nd International Conference on Software Engineering.” (1976, December). 

Computer, 9(12): 68-71. 
 
“Constitution for the IRE Professional Group on Electronic Computers.” (1955, September). IRE 

Transactions on Electronic Computers, EC-4(3): 88-92. 
 
Conte, Sam D. (1964). “The Computer Sciences Program at Purdue University.” In Proceedings 

of the 1964 19th ACM National Conference (L1.2-1). New York, NY: ACM Press. 
 
Conway, Melvin E. (1968, April). “How Do Committees Invent?” Datamation, 14(4): 28-31. 
 
“Conway’s Law.” (2003, December 29). The Jargon File 4.4.7.  Retrieved July 11, 2006 from 

http://www.catb.org/jargon/html/C/Conways-Law.html 
 
Cook, Charles C. (1963). A Survey of Digital Computer Instruction in Most Major U.S. 

Engineering Colleges. Morgantown, WV: The Department of Industrial Engineering, 
College of Engineering, West Virginia University. 

 
Correll, Quention. (1958, July). [Letter to the Editor]. Communications of the ACM, 1(7): 2. 
 
Cortada, James W. (1993). The Computer in the United States: From Laboratory to Market, 

1930 to 1960. Armonk, NY and London, England: M. E. Sharpe, Inc. 
 
COSINE Committee of the Commission on Engineering Education. (1967a). Summary of Talks 

and Discussion Group Recommendations, Conference on Computer Sciences in 
Electrical Engineering Education, Princeton University, March 28-29, 1967 (6-8). 
Washington, DC: National Academy of Engineering. 

  
COSINE Committee of the Commission on Engineering Education. (1967b, September). 

Computer Sciences in Electrical Engineering. Washington, DC: National Academy of 
Engineering. 



www.manaraa.com

 355 

 
COSINE Committee of the Commission on Engineering Education. (1968a, March). “Computer 

Science in Electrical Engineering.” IEEE Spectrum, 5(3): 96-103. 
 
COSINE Committee of the Commission on Engineering Education. (1968b, September). Some 

Specifications for a Computer-Oriented First Course in Electrical Engineering. 
Washington, DC: National Academy of Engineering. 

 
COSINE Committee of the Commission on Engineering Education. (1968c, October). An 

Undergraduate Course On Computer Organization. Washington, DC: National Academy 
of Engineering. 

 
COSINE Committee of the Commission on Engineering Education. (1968d). Proceedings of the 

Meeting on Computer Science in Electrical Engineering of the Commission on 
Engineering Education, Stanford University, October 24-25, 1968. Washington, DC: 
National Academy of Engineering. 

 
COSINE Committee of the Commission on Engineering Education. (1968e, November). Some 

Specifications for an Undergraduate Course in Digital Subsystems. Washington, DC: 
National Academy of Engineering. 

 
COSINE Committee of the Commission on Engineering Education. (1969a, September). Impact 

of Computers on Electrical Engineering Education – A View From Industry. Washington, 
DC: National Academy of Engineering. 

 
COSINE Committee of the Commission on Engineering Education. (1969b, December). 

Computer-Oriented Electrical Engineering Experiments, 1969-1970. Washington, DC: 
National Academy of Engineering. 

 
COSINE Committee of the Commission on Education. (1970, January). An Undergraduate 

Computer Engineering Option for Electrical Engineering. Washington, DC: National 
Academy of Engineering. 

 
COSINE Committee of the Commission on Education. (1971a, March). Digital Systems 

Laboratory Courses and Laboratory Developments. Washington, DC: National Academy 
of Engineering. 

 
COSINE Committee of the Commission on Education. (1971b, June). An Undergraduate Course 

on Operating Systems Principles. Washington, DC: National Academy of Engineering. 
 
COSINE Committee of the Commission on Education. (1972, April). Minicomputers in the 

Digital Laboratory Program. Washington, DC: National Academy of Engineering. 
 
Coulter, N. S. (1991, December 1). “Computer Curricula 1991 (Review).” Computing Reviews. 

Retrieved September 15, 2006 from 
http://www.reviews.com/review/review_reviewprint.cfm?review_id=115546 



www.manaraa.com

 356 

 
Cruz, J. B., Jr. (Ed.). (1963, June). “What is System Theory and Where is it Going? – A Panel 

Discussion.” IEEE Transactions on Circuits and Systems, 10(2): 154-160. 
 
Dataman Associates. (1962a, November). “Careers in Computing.” Datamation, 8(11): 121. 
 
Dataman Associates. (1962b, November). “Careers in Computing.” Datamation, 8(11): 123. 
 
Davis, Malcom R. (1969, September). “IEEE Computer Group Personnel Survey.” Computer 

Group News, 2(11): 4-41. 
 
Denning, Peter J. and Jack B. Dennis, Butler Lampson, A. Nico Haberman, Richard R. Muntz, 

and Dennis Tsichritzis. (1972, January/February). “An Undergraduate Course on 
Operating Systems Principles.” Computer, 5(1): 40-59. 

 
Denning, Peter J. (Ed.), Edward Feigenbaum, Paul Gilmore, Anthony Hearn, Robert W. Ritchie, 

and Joseph Traub. (1981, June). “A Discipline in Crisis (The Snowbird Report).” 
Communications of the ACM, 24(6): 370-374. 

 
Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe 

Turner, and Paul R. Young. (1988). Report of the ACM Task Force on the Core of 
Computer Science. New York, NY: ACM Press. 

 
Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe 

Turner, and Paul R. Young. (1989a, January). “Computing as a Discipline.” 
Communications of the ACM, 32(1): 9-23. 

 
Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe 

Turner, and Paul R. Young. (1989b, February). “Computing as a Discipline.” Computer, 
22(2): 63-70. 

 
Dertouzos, Michael L., Theodore R. Bashkow, Herbert J. Carlin, Ernest S. Kuh, Joseph E. Roew, 

Louis D. Smullin, and M. E. Van Valkenburg. (1971, November). “Insight Versus 
Algorithms: A Leader’s View.” IEEE Transactions on Education, E-14(4): 164-169. 

 
Dickmann, Robert A. (1971, October). “Summary report on the 1971 AFIPS Information 

Processing Personnel Survey.” Montvale, NJ: AFIPS Press. 
 
DiMaggio, Paul J. and Walter W. Powell. (1983, April). “The Iron Cage Revisited: Institutional 

Isomorphism and Collective Rationality in Organizational Fields.” American 
Sociological Review, 48(2): 147-160. 

 
Douglas Aircraft Company. (1957, October). “Douglas Will Train You to Program Big 

Computers.” Electrical Engineering, 76(10): 98A. 
 



www.manaraa.com

 357 

Downey, Gary L. (1998). The Machine in Me: An Anthropologist Sits Among Computer 
Engineers. New York and London: Routledge. 

 
“Editorial.” (1953, March). IRE Transactions on Electronic Computers, EC-2(1): 1. 
 
“Editorial Prospectus.” (1962). Computer Design, 1(1): 2-3. 
 
Editors of DATA-LINK (Los Angeles ACM Chapter Newsletter). (1958, April). “What’s in a 

Name?” [Letter to the Editor]. Communications of the ACM, 1(4): 6. 
 
“Education Committee Added to Computer Society.” (1971, November/December). Computer, 

4(6): 11. 
 
Education Committee of the IEEE Computer Society. (1977, January). A Curriculum in 

Computer Science and Engineering – Committee Report. Long Beach, CA: IEEE 
Computer Society. 

 
Edwards, Paul N. (1996). The Closed World: Computers and the Politics of Discourse in Cold 

War America. Cambridge, MA: MIT Press. 
 
“EECS History.” (n.d.) Retrieved October 24, 2006 from UC Berkeley EECS web site: 

http://www.eecs.berkeley.edu/department/history.shtml 
 
“Electronic Digital Computers Considered in Five Papers.” (1949, March). Electrical 

Engineering, 68(3): 266. 
 
Engel, Gerald L. (1977, December). “A Comparison of the ACM/C3S and the IEEE/CSE Model 

Curriculum Subcommittee Recommendations.” Computer, 10(12): 121-123. 
 
Engineering Research Associates, Inc. (1952a, July). “Digital Computer Engineers.” 

Proceedings of the Institute of Radio Engineers, 40(7): 118A. 
 
Engineering Research Associates, Inc. (1952b, November). “Digital Computer Engineers.” 

Proceedings of the Institute of Radio Engineers, 40(11): 129A. 
 
Engineering Research Associates, Inc. (1952c, December). “Digital Computer Engineers.” 

Proceedings of the Institute of Radio Engineers, 40(12): 132A. 
 
Engineering Research Associates, Division of Remington Rand, Inc. (1954, May). “Unlimited 

Opportunities for … Electrical Engineers, and Physicists to do Digital Computer 
Engineering.” Electrical Engineering, 73(5): 68A. 

 
Engineering Societies Personnel Service, Inc. (1952, October). “Positions Available.” Electrical 

Engineering, 71(10): 86A-87A. 
 



www.manaraa.com

 358 

Engstrom, H. T. (1956). “Keynote Address.” In Proceedings of the Eastern Joint Computer 
Conference, New York, NY, December 10-12, 1956 (3-4). New York, NY: American 
Institute of Electrical Engineers. 

 
Ensmenger, Nathan. (2001, October-December). “The 'Question of Professionalism' in the 

Computer Fields.” IEEE Annals of the History of Computing, 23(4): 56-74. 
 
Ernst, Rolf and Gaetano Borriello. (1997). “Message from the Workshop Chairs.” In 

Proceedings of the Fifth International Workshop on Hardware/Software Codesign 
(CODES/CASHE '97), March 24-26, 1997 (viii). Washington, DC: IEEE Computer 
Society. 

 
“Executive Committee – March 2, 1948.” (1948, May). Proceedings of the IRE, 36(5): 633. 
 
“Extensive Plans Set for 1947 IRE National Convention.” (1947, February). Proceedings of the 

IRE, 35(2): 172-184. 
 
Fein, Louis. (1959). “The Role of the University in Computers, Data Processing, and Related 

Fields.” Communications of the ACM, 2(9): 7-14. 
 
Fein, Louis. (1961a, June). “The Computer-Related Sciences (Synnoetics) at a University in the 

Year 1975.” American Scientist, 49(2): 149-168. 
 
Fein, Louis. (1961b, September). “The Computer-Related Sciences (Synnoetics) at a University 

in 1975.” Datamation, 7(9): 34-41. 
 
Fein, Louis. (1963, April). “Renaming the PGEC” [Letter to the Editor]. IEEE Transactions on 

Electronic Computers, EC-12(2): 136. 
 
Fein, Louis. (1979). [Oral history interview conducted by Pamela McCorduck, May 9, 1979, 

Palo Alto, California]. Minneapolis, MN: Charles Babbage Institute, University of 
Minnesota. Retrieved May 3, 2006 from http://www.cbi.umn.edu/oh/pdf.phtml?id=117 

 
Felker, J. H. (1952a, February). “The Transistor as a Digital Computer Component.” In Review 

of Electronic Digital Computers – Joint AIEE-IRE Computer Conference, Philadelphia, 
PA, December 10-12, 1951 (105-109). New York, NY: American Institute of Electrical 
Engineers (AIEE). 

 
Felker, J. H. (1952b, November). “Regenerative Amplifier for Digital Computer Applications.” 

Proceedings of the IRE, 40(11): 1584-1596. 
 
Feng, Tse-yun. (1980, December). “From the President.” Computer, 13(12): 3. 
 
Fife, Dennis W. (1968, January). “Session V: Panel Discussion – The Role of Electrical 

Engineers in Computer Science” (Session Report). Computer Group News, 2(1): 20-21. 
 



www.manaraa.com

 359 

Fife, Dennis W. (1983, July). “Trends in Membership Development.” Computer, 16(7): 6-7. 
 
Finerman, Aaron. (1968). “University Education in Computer Science (Summary).” In Aaron 

Finerman (Ed.), University Education in Computing Science, Proceedings of a 
conference on graduate academic and related research programs in computing science 
held at the State University of New York at Stony Brook, June 1967 (193-214). New York 
and London: Academic Press. 

 
“First Annual IEEE Computer Conference.” (1967, September). Computer Group News, 1(8): 1-

7. 
 
“Five Sessions Held at Conference on Electron Tubes for Computers.” (1951, February). 

Electrical Engineering, 70(2): 163. 
 
Flamm, Kenneth. (1988). Creating the Computer: Government, Industry, and High Technology. 

Washington, DC: The Brookings Institution. 
 
Flynn, Michael J. (1972, September/October). “How Can Computing Interests Best Be Served” 

[Letter to the Editor]. Computer, 5(5): 64. 
 
“Foreward.” (1952a, February). In Review of Electronic Digital Computers – Joint AIEE-IRE 

Computer Conference, Philadelphia, PA, December 10-12, 1951 (3). New York, NY: 
American Institute of Electrical Engineers (AIEE).  

 
“Foreward.” (1952b, December). Transactions of the I.R.E. Professional Group on Electronic 

Computers, 1(1), 1. 
 
Forrester, Jay W. (1952, February). “Digital Computers – Present and Future Trends.” In Review 

of Electronic Digital Computers – Joint AIEE-IRE Computer Conference, Philadelphia, 
PA, December 10-12, 1951 (109-113). New York, NY: American Institute of Electrical 
Engineers. 

 
Foster, Caxton. (1970a). Computer Architecture. New York, NY: Van Nostrand Reinhold 
 
Foster, Caxton. (1970b, September). "Are You Interested in Computer Architecture?" 

Communications of the ACM, 13(9): 526. 
 
Foster, Caxton. (1972, March/April). “Computer Architecture.” Computer, 5(2): 19. 
 
Forrester, Jay W. (1957). “Equipmental Aids to Computing.” In Preston C. Hammer (Ed.), The 

Computing Laboratory in the University (15-24). Madison, WI: The University of 
Wisconsin Press. 

 
Forsythe, George E. (1961, December). “Engineering Students Must Learn Both Computing and 

Mathematics.” Journal of Engineering Education, 52(3): 177-188. 
 



www.manaraa.com

 360 

Forsythe, George E. (1963). “Educational Implications of the Computer Revolution.” In W. F. 
Freiberger and William Prager (Eds.), Applications of Digital Computers (166-178). 
Boston, MA: Ginn and Co. 

 
Forsythe, George E. (1964a, April). “An Undergraduate Curriculum in Numerical Analysis.” 

Communications of the ACM, 7(4): 214-215. 
 
Forsythe, Goerge E. (1964b, October). “Chairmen of ACM Committees.” Communications of the 

ACM, 7(10): 635. 
 
Forsythe, George E. (1967, January). “A University’s Educational Program in Computer 

Science.” Communications of the ACM, 10(1): 3-11. 
 
Forsythe, George E. (1968, May). “What to Do Till the Computer Scientist Comes.” The 

American Mathematical Monthly, 75(5): 454-462. 
 
Foster, Caxton C. (1972, March/April). “Computer Architecture.” Computer, 5(2): 19. 
 
The Foxboro Company. (1967, July). “Progress-Minded Programmers…” Datamation, 13(7): 

130. 
 
Franke, David W. and Martin K. Purvis. (1991). “Hardware/Software CoDesign: A Perspective.” 

In Proceedings of the 13th International Conference on Software Engineering, Austin, 
TX. Los Alamitos, CA: IEEE Computer Society Press. 

 
Frater, W. H. (1955). “Opening Remarks by the Chairman.” In Arvid W. Jacobson (Ed.), 

Proceedings of the First Conference on Training Personnel for the Computing Machine 
Field, Detroit, MI, June 22-23, 1954 (21-22). Detroit, MI: Wayne University Press. 

 
Freeman, Herbert. (1982). Research Directions in Computer Engineering, Report of a Workshop, 

Washington, DC, November 15-16, 1982. Washington, DC: National Science 
Foundation. 

 
Freeeman, Herbert. (1983, May). “Research Directions in Computer Engineering.” Computer, 

16(5): 80-82. 
 
Fritz, W. Barkley. (1963, April). “Selected Definitions.” Communications of the ACM, 6(4): 152-

158. 
 
Galison, Peter. (1997). Image and Logic: A Material Culture of Microphysics. Chicago and 

London: The University of Chicago Press. 
 
Galler, Bernard. (1962, January). “Definition of Software” [Letter to the Editor]. 

Communications of the ACM, 5(1): 6. 
 



www.manaraa.com

 361 

Galler, Bernard. (1991). [Oral history interview by Enid H. Galler, August 1991, Sutton's Bay, 
Michigan]. Minneapolis, MN: Charles Babbage Institute, University of Minnesota. 
Retrieved May 3, 2006 from http://www.cbi.umn.edu/oh/pdf.phtml?id=126 

 
Galey, J. Michael. (1975, August). “Microprogramming: The Bridge Between Hardware and 

Software.” Computer, 8(8): 23. 
 
Gannett, E. K. (1953a, October). “Acknowledgment.” Proceedings of the IRE, 41(10): 1219. 
 
Gannett, E. K. (1953b, October). [Introduction to guest editorial by Werner Buchholz.] 

Proceedings of the IRE, 41(10): 1220. 
 
Garcia, Oscar N. (1982, January). “From the President.” Computer, 15(1): 4-5. 
 
Garcia, Oscar N. (1983, January). “From the President.” Computer, 16(1): 4-5. 
 
Garner, Harvey L. (1964, April). “Critique.” Communications of the ACM, 7(4): 224-225. 
 
General Motors Research Laboratories. (1960, November/December). “…at the outer edge of 

computer science.” Datamation, 6(6): 75. 
 
General Motors Research Laboratories. (1961a, March). “Opportunities at the outer edge of 

computer science…” Datamation, 7(3): 59. 
 
General Motors Research Laboratories. (1961b, August). “Applied Mathematicians, 

Programmers: Opportunities at the outer edge of computer science…” Datamation, 7(8): 
83. 

 
Ghosh, S. P., C. Harlaw, M. Tsuchiya, A. B. Salisbury, D. Pessel, D. C. Rine, and E. J. Smith. 

(1975). “IEEE Computer Education: The Regional HELP Subcommittee.” In COMPCON 
'75 Digest of Papers: Proceedings of the Spring ’75 COMPCON Conference, February 
25-27, 1975, San Francisco, CA (37-39). Long Beach, CA and New York, NY: IEEE 
Computer Society. 

 
Gibbs, Norman E. and Allen B. Tucker. (1986, March). “A Model Curriculum for a Liberal Arts 

Degree in Computer Science.” Communications of the ACM, 29(3): 202-210. 
 
Gieryn, Thomas F. (1983). “Boundary Work and the Demarcation of Science from Non-Science: 

Strains and Interests in Professional Ideologies of Scientists.” American Sociological 
Review, 48: 781-795. 

 
Gieryn, Thomas F. (1995). “Boundaries of Science.” In Sheila Jasanoff, Gerald E. Markle, James 

C. Petersen, and Trevor Pinch (Eds.), Handbook of Science and Technology Studies, 
Revised Edition (393-443). Thousand Oaks, London, and New Delhi: Sage Publications. 

 



www.manaraa.com

 362 

Gieryn, Thomas F. (1999). Cultural Boundaries of Science: Credibility on the Line. Chicago: 
University of Chicago Press. 

 
Gilchrist, Bruce. (1959, January). “University Computing Courses.” Journal of Engineering 

Education, 49(4): 342-346. 
 
Gilchrist, Bruce. (1961a, March). “Changes in Bylaws.” Communications of the ACM, 4(3): 136. 
 
Gilchrist, Bruce. (1961b, June). “ACM Membership Survey – January 1, 1961.” 

Communications of the ACM, 4(6): 254. 
 
Gilchrist, Bruce. (1962, June). “ACM Membership Survey – January 1, 1962.” Communications 

of the ACM, 5(6): 297. 
 
Gilfillan. (1952a, May). “Experienced Radar and Computer Engineers.” Proceedings of the 

Institute of Radio Engineers, 40(5): 106A. 
 
Gilfillan. (1952b, June). “Experienced Radar and Computer Engineers.” Proceedings of the 

Institute of Radio Engineers, 40(5): 104A. 
 
Gill, Stanley. (1968). “Planning a Profession.” In Aaron Finerman (Ed.), University Education in 

Computing Science, Proceedings of a conference on graduate academic and related 
research programs in computing science, held at the State University of New York at 
Stony Brook, June 1967 (117-121). New York and London: Academic Press. 

 
Golinski, Jan. (1998). Making Natural Knowledge: Constructivism and the History of Science. 

Cambridge: Cambridge University Press. 
 
Good, Gregory A. (2000). “The Assembly of Geophysics: Scientific Disciplines as Frameworks 

of Consensus.” Studies in History and Philosophy of Modern Physics, 31(3): 259-292. 
 
Goode, Harry H. (1955, June). “PGEC Student Activities and Education in Computers.” IRE 

Transactions on Computers, 4(2): 49-51. 
 
Gorn, Saul. (1958, January.) “Letters to the Editor.” Communications of the ACM, 1(1), 2-4. 
 
Gorn, Saul. (1959, September). “On the Logicial Design of Formal Mixed Languages.” Preprints 

of Papers Presented at the 14th National Meeting of the Association for Computing 
Machinery (25-1). New York, NY: ACM Press. 

 
Gorn, Saul. (1963, April). “The Computer and Information Sciences: A New Basic Discipline.” 

SIAM Review, 5(2): 150-155. 
 
“The Great Conference Debate (Editor’s Readout).” (1963, March). Datamation, 9(3): 25-26. 
 



www.manaraa.com

 363 

Green, Judy, Jeanne LaDuke, Saunders Mac Lane, and Uta C. Merzbach. (1998, August). “Mina 
Spiegel Rees (1902-1997).” Notices of the AMS, 45(7): 866-873. Retrieved December 20, 
2006 from http://www.ams.org/notices/199807/memorial-rees.pdf 

 
Grems, Mandalay, and Datamation Staff. (1960, January/February). “EJCC Impressons.” 

Datamation, 6(1): 23-25. 
 
Gries, David and Dorothy Marsh. (1992, January). “The 1989-90 Taulbee Survey.” 

Communications of the ACM, 35(1): 133-143. 
 
Grosch, Herbert R. J. (1957). “The Computer Laboratory in Industry.” In Preston C. Hammer 

(Ed.), The Computing Laboratory in the University (87-90). Madison, WI: The 
University of Wisconsin Press. 

 
Grosch, Herbert R. J. (1961, July). “Software in Sickness and Health.” Datamation, 7(7): 32-33. 
 
Grosch, Herbert R. J. (1971). [Oral history interview conducted by Richard R. Mertz.] Retrieved 

October 26, 2006 from 
http://invention.smithsonian.org/downloads/fa_cohc_tr_gros710330.pdf  

 
Guttag, John (Ed.). (2005). The Electron and the Bit, Electrical Engineering and Computer 

Science at MIT, 1902-2002. Cambridge, MA: MIT, Electrical Engineering and Computer 
Science Department. 

 
Hamblen, John W. (1967, August). Computers in Higher Education: Expenditures, Sources of 

Funds, and Utilization for Research and Instruction 1964-1965, with Projections for 
1968-1969 (Report on a Survey Conducted with the National Science Foundation). 
Atlanta, GA: Southern Regional Education Board. 

 
Hamming, Richard W. (1969, January). “One Man’s View of Computer Science (1968 ACM 

Turing Lecture).” Communications of the ACM, 16(1): 3-12. 
 
Harder, Edwin L. (1957a). “The Computing Revolution.” Electrical Engineering, 76(6): 476-

481. 
 
Harder, Edwin L. (1957b). “The Computing Revolution.” Electrical Engineering, 76(7): 586-

590. 
 
Hartman, Frank R. (1959, November). “The Demand for College Training in Digital 

Computing.” Computers and Automation, 8(11): 14. 
 
Hartmanis, Juris, and Herbert Lin. (Eds.). (1992). Computing the Future: A Broader Agenda for 

Computer Science and Engineering. Washington, DC: National Academy Press. 
 
Harder, Edwin L. (1991). [Oral history interview conducted by William Aspray]. New 

Brunswick, NJ: IEEE History Center, Rutgers University. Retrieved October 23, 2006 



www.manaraa.com

 364 

from 
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/oral_histor
y/pdfs/Harder118.pdf 

 
“Hardware.” (1989). Oxford English Dictionary Online (Second Edition). Retrieved January 19, 

2006 from http://dictionary.oed.com/ 
 
Hartman, Frank R. (1959, November). “The Demand for College Training in Digital 

Computing.” Computers and Automation, 8(11): 11-14. 
 
Hartree, Douglas R. (1947). Calculating Machines. Cambridge, UK: Cambridge University 

Press. 
 
Harvard Computation Laboratory. (1946). Manual of Operation for the Automatic Sequence 

Controlled Calculator, The Annals of the Computation Laboratory of Harvard 
University, Volume 1. Cambride, MA: Harvard University Press. 

 
Harvard Computation Laboratory. (1948). Proceedings of a Symposium on Large-Scale Digital 

Calculating Machinery, Harvard University, January 7-10, 1947. The Annals of the 
Computation Laboratory of Harvard University, Volume 16. Cambridge, MA: Harvard 
University Press. 

 
Heising, William P. (1961, February). “EJCC Program Highlights.” Datamation, 7(2): 36-38. 
 
Hess, David. (1997). Science Studies: An Advanced Introduction. New York, NY: New York 

University. 
 
Hettinger, Norman G. (1972, July/August). “On Merging with the ACM” [Letter to the Editor]. 

Computer, 5(4): 4. 
 
Hoagland, Albert S. (1972a, January/February). “Some Thoughts on the JCCs, Professionalism 

and Society Goals.” Computer, 5(1): 6. 
 
Hoagland, Albert S. (1972b, May/June). “Should we merge with the ACM and leave the IEEE? 

An interview with Dr. Albert S. Hoagland, President of the IEEE Computer Society.” 
Computer, 5(3): 1. 

 
Hoagland, Albert S. (1973, February). “The IEEE Computer Society and the ACM.” 

Communications of the ACM, 16(2): 67-68. 
 
Hobbs, L. Charles. (1968a, January). “Chairman’s Letter.” Computer Group News, 2(1): 3A. 
 
Hobbs, L. Charles. (1968b, November). “The Computer Group During 1968.” Computer Group 

News, 2(6): 33. 
 



www.manaraa.com

 365 

Honeywell Electronic Data Processing. (1962b, January). “A Few Quick Facts on Software.” 
Datamation, 8(1): 46-47. 

 
Honeywell Electronic Data Processing. (1962b, March). “More Facts About Honeywell 

Software.” Datamation, 8(3): 2-3. 
 
Honeywell Electronic Data Processing. (1962c, April). “Engineers – Programmers.” Datamation, 

8(4): 10-11. 
 
Honeywell Electronic Data Processing. (1963, October). “The Dimensions of Logic Design at 

Honeywell.” Computer Design, 2(9): 23. 
 
Honeywell Electronic Data Processing. (1965, April). “Job titles are clues, but they can be 

misleading.” Computer Design, 4(4): 61. 
 
Honeywell Electronic Data Processing. (1966, February). “Circuit Design – Computers are 

realized in the mind of the Circuit Design Engineer.” Datamation, 12(2): 124. 
 
Honeywell Electronic Data Processing. (1966, March). “System Design – Computers are 

conceived in the mind of the System Design Engineer.” Datamation, 12(3): 113. 
 
Hopper, Grace M. (1953). “Compiling Routines.” Computers and Automation, 2(4): 1-5. 
 
Hopper, Grace M. and John W. Mauchly. (1953, October). “Influence of Programming 

Techniques on the Design of Computers.” Proceedings of the IRE, 41(10), 1250-1254. 
 
Householder, Alston S. (1954, January). “The End of an Epoch: The Joint Computer Conference, 

Washington, DC, December, 1953.” Computers and Automation, 3(1): 6-7. 
 
Householder, Alston S. (1956a, January). “Presidential Address to the ACM, Philadelphia, 

September 14, 1955.” Journal of the Association for Computing Machinery, 3(1): 1-2. 
 
Householder, Alston S. (1956b, May). “The Position of the University in the Field of High Speed 

Computation and Data Handling.” Computers and Automation, 5(5): 6-10. 
 
Householder, Alston S. (1957, January). “Retiring Presidential Address.” Journal of the 

Association for Computing Machinery, 4(1): 1-4. 
 
Huggins, William. (1969). “History and Activities of the COSINE Committee.” In William 

Viavant (Ed.), Proceedings of the Park City Conference, Computers in Undergraduate 
Education, Volume I, Park City, Utah, September 8-13, 1968 (51-67). Salt Lake City, UT: 
University of Utah. 

 
Hughes Aircraft Company. (1958a, July). “The sky is no longer the limit.” Electrical 

Engineering, 77(7): 66A-67A. 
 



www.manaraa.com

 366 

Hughes Aircraft Company. (1958b, December). “The strange shape of defense.” Electrical 
Engineering, 77(12): 80A-81A. 

 
Hughes Aircraft Company. (1960, May/June). “Digital Computer Engineers.” Datamation, 6(3): 

71. 
 
Hughes Research and Development Laboratories. (1954, May). “Digital Computer Techniques.” 

Computers and Automation, 3(5): 5. 
 
Hughes, Joseph L. A., John Impagliazzo, Andrew McGettrick, Victor P. Nelson, David Soldan, 

Pradip K. Srimani, and Mitchell D. Theys. (2004, December). Computer Curricula: 
Computer Engineering (Final Report of the IEEE-CS/ACM Joint Task Force on 
Computing Curricula 2004). Retrieved from the World Wide Web on Feb. 10, 2005: 
http://www.eng.auburn.edu/ece/CCCE/CCCE-FinalReport-2004Dec12.pdf 

 
Hunter, G. T. (1955). “Manpower Requirements by Computer Manufacturers.” In Arvid W. 

Jacobson (Ed.), Proceedings of the First Conference on Training Personnel for the 
Computing Machine Field, Detroit, MI, June 22-23, 1954 (14-18). Detroit, MI: Wayne 
University Press. 

 
Huskey, Harry D. (1955). “Status of University Educational Programs Relative to High Speed 

Computation.” In Arvid W. Jacobson (Ed.), Proceedings of the First Conference on 
Training Personnel for the Computing Machine Field, Detroit, MI, June 22-23, 1954 (22-
25). Detroit, MI: Wayne University Press. 

 
Huskey, Harry D. (1960a, September). “Letter from the President of ACM.” Communications of 

the ACM, 3(9): 481. 
 
Huskey, Harry D. (1960b, December). “Letter from the President of ACM.” Communications of 

the ACM, 3(12): 631. 
 
Huskey, Harry D. (1961a, August). “A Perspective.” Datamation, 7(8): 18. 
 
Huskey, Harry D. (1961b, December). “Letter from the President of ACM.” Communications of 

the ACM, 4(12): 530. 
 
Huskey, Harry D. (1962ac, March). “Letter from the President of ACM.” Communications of the 

ACM, 5(3): 131. 
 
Huskey, Harry D. (1962b, April). “Letter from the President of ACM.” Communications of the 

ACM, 5(4): 186. 
 
Huskey, Harry D. (1991, July/September). “Harry D. Huskey: The Early Days (Memior).” 

Annals of the History of Computing, 13(3): 290-306. 
 



www.manaraa.com

 367 

Husson, Samir S. (1970). Microprogramming: Principles and Practices. Englewood Cliffs, NJ: 
Prentice-Hall, Inc. 

 
IBM. (1954, November). “IBM has positions open in Development and Manufacturing for 

Electronic and Electro-mechanical Engineers.” Electrical Engineering, 73(11): 72A. 
 
IBM. (1955a, January). “IBM Has positions open for Engineers.” Electrical Engineering, 74(1): 

68A. 
 
IBM. (1955b, May). “The Challenge of Creative Engineering.” Electrical Engineering, 74(5): 

77A. 
 
IBM. (1955c, December). “The legacy of the scientist.” Electrical Engineering, 74(12): 75A. 
 
IBM. (1957, February). “Where do you belong in IBM Military Products?” Electrical 

Engineering, 76(2): 78A-79A. 
 
IBM. (1961. October). “Immediate Opportunities with the IBM Advanced Systems Development 

Division.” Datamation, 7(10): 94. 
 
IBM. (1962, May). “At IBM, Programmers shape the future of a new technology.” Computers 

and Automation, 11(5): 39. 
 
IEEE Center for the History of Electrical Engineering. (1984). “The Origins of the IEEE.” 

Retrieved April 20, 2006 from 
http://www.ieee.org/organizations/history_center/historical_articles/history_of_ieee.html 

 
“IEEE Computer Group.” (1965, February). IEEE Transactions on Electronic Computers, EC-

14(1): Inside front cover. 
 
“IEEE Computer Group Constitution and Bylaws.” (1965, February). IEEE Transactions on 

Electronic Computers, EC-14(1): 1-6. 
 
“IEEE Computer Society Constitution.” (1977, July). Computer, 10(7): 108-109. 
 
“IEEE Computer Society Technical Committees.” (1976, May). Computer, 9(5): 26-27. 
 
“IEEE-CS Membership Grows at Record Rate, Exceeds 62,000.” (1982, March). Computer, 

15(3): 105. 
 
IEEE Educational Activities Board. (1978, February). “ECPD Accreditation Guidelines: 

Preliminary Computer Science and Engineering Programs.” Computer, 11(2): 67-69. 
 
“Information for Authors.” (1961a, September). IRE Transactions on Electronic Computers, EC-

10(3): Inside back cover. 
 



www.manaraa.com

 368 

“Information for Authors.” (1961b, December). IRE Transactions on Electronic Computers, EC-
10(4): Inside back cover. 

 
“Institute Committees – 1954.” (1954, October). Proceedings of the IRE, 42(10): 1580-1585. 
 
“The Institute on the March – A New Professional Group System.” (1948, May). Proceedings of 

the IRE, 36(5): 570. 
 
“Integrated circuit.” (2006, October 19). In Wikipedia, The Free Encyclopedia. Retrieved 

October 19, 2006 from http://en.wikipedia.org/wiki/Integrated_circuit 
 
“Inventor Profile – George Stibitz.” (2002). In National Inventors Hall of Fame. Retrieved 

November 7, 2006 from http://www.invent.org/hall_of_fame/140.html 
 
“The IRE Professional Group System – A Status Report.” (1948, December). Proceedings of the 

IRE, 36(12): 1507. 
 
Irwin, David J. and C. V. Ramamoorthy. (1975, December). “Guest Editor's Introduction.” 

Computer, 8(12): 26-27. 
 
“Is it Overhaul or Trade-in Time?” (1959a, July/August). [Edited transcript]. Datamation, 5(4): 

24-33.  
 
“Is it Overhaul or Trade-in Time?” (1959b, September/October). [Edited transcript]. Datamation, 

5(5): 17-26; 44-45. 
 
“Is the Computer Field Staying Together or Separating?” (1958, June). Computers and 

Automation, 7(6): 6; 96. 
 
Jacobson, Arvid W. (Ed.). (1955a). Proceedings of the First Conference on Training Personnel 

for the Computing Machine Field, Detroit, MI, June 22-23, 1954. Detroit, MI: Wayne 
University Press. 

 
Jacobson, Arvid W. (1955b). “Preface.” In Arvid W. Jacobson (Ed.), Proceedings of the First 

Conference on Training Personnel for the Computing Machine Field, Detroit, MI, June 
22-23, 1954 (n.p.). Detroit, MI: Wayne University Press. 

 
Jacobson, Arvid W. (1955c). “Opening Remarks by the Chairman.” In Arvid W. Jacobson (Ed.), 

Proceedings of the First Conference on Training Personnel for the Computing Machine 
Field, Detroit, MI, June 22-23, 1954 (3-4). Detroit, MI: Wayne University Press. 

 
Jasanoff, Sheila (Ed.). (2004). States of Knowledge: The Co-Production of Science and Social 

Order. London and New York: Routledge. 
 
Jensen, E. Douglas. (1973, November). “Hardware vs. Software: The Two Faces of Computers.” 

Computer, 6(11): 14-15. 



www.manaraa.com

 369 

 
Jet Propulsion Laboratory, California Institute of Technology. (1954, June). “Caltech Laboratory 

Jet Propulsion.” Proceedings of the IRE, 42(6): 121A. 
 
“Joint AIEE-IRE Computer Conference in Philadelphia Attracts Over 900.” (1952, February). 

Electrical Engineering, 71(2): 189. 
 
“Joint AIEE-IRE Conference Committee.” (1952, February). In Review of Electronic Digital 

Computers – Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12, 
1951 (3). New York, NY: American Institute of Electrical Engineers. 

 
Joint Committee of the Association for Computing Machinery and the IEEE Computer Society. 

(1978). A Library List on Undergraduate Computer Science, Computer Engineering, and 
Information Systems. Long Beach, CA and New York, NY: IEEE Computer Society and 
ACM. 

 
“Joint IRE/AIEE Computer Conference Slated.” (1951, October). Proceedings of the IRE, 

39(10): 1343. 
 
The Joint Task Force on Computing Curricula. (2001, December 15). Computing Curricula 

2001: Computer Science. IEEE Computer Society and Association for Computing 
Machinery. Retrieved November 28, 2006 from 
www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/cc2001.pdf 

 
 
Jones, Edwin C., Jr. and Michael C. Mulder. (1984, April). “Accreditation in the Computer 

Profession.” Computer, 17(4): 24-27. 
 
Jones, Peter D. (1966, September). “Thirteen Programming Paradoxes.” Datamation, 12(9): 157. 
 
Joseph, Earl C. (1969, March). “Evolving Digital Computer System Architectures.” Computer 

Group News, 2(8): 2-8. 
 
Kagan, Claude A. R. (1961, March). “Computer Papers at the American Institute of Electrical 

Engineers Meeting in New York, Jan. 29-Feb. 3, 1961.” Computers and Automation, 
10(3B): 6B. 

 
Kapla, Gadi. (1999, June). “Charles Concordia: A Renowned Power Systems Guru Will Receive 

the 1999 IEEE Medal of Honor.” IEEE Spectrum, 36(6): 29-33. 
 
Karp, Richard. (2004). “A Personal View of Computer Science at Berkeley.” In U.C. Berkeley 

Computer Science 30th Anniversary Celebration, Berkeley, CA, February 28, 2004. 
Retrieved February 16, 2006 from 
http://www.eecs.berkeley.edu/BEARS/CS_Anniversary/karp-talk.html 

 



www.manaraa.com

 370 

Katz, Adolph. (1960, June). “Do Computers Belong in the Engineering Curricula.” Journal of 
Engineering Education, 50(10): 835-838. 

 
Katz, Donald, and Elliott I. Organick. (1960, December). “Use of Computers in Engineering 

Undergraduate Teaching.” Journal of Engineering Education, 51(3): 183-205. 
 
Katz, Donald, and Elliott I. Organick, Silvio O. Navarro, and Brice Carnahan (1963). The Use of 

Computers in Engineering Education: Final Report of Project. Ann Arbor, MI: College 
of Engineering, The University of Michigan. 

 
Kearfott Division, General Precision, Inc. (1960, November/December). “Digital Computer 

Engineers.” Datamation, 6(6): 80. 
 
Keenan, Thomas A. (1964, April). “Computers and Education.” Communications of the ACM, 

7(4): 205-209. 
 
Kidder, Tracy. (1981). The Soul of a New Machine. Boston and Toronto: Little, Brown and 

Company. 
 
King, Willis K. and Oscar N. Garcia. (1975, July). “Second Annual Symposium on Computer 

Architecture (Conference Report).” Computer, 8(7): 79-80. 
 
Knuth, Donald E. (1968). The Art of Computer Programming, Volume 1: Fundamental 

Algorithms (First Edition). Reading, MA: Addison-Wesley. 
 
Knuth, Donald E. (1972, August). “George Forsythe and the Development of Computer 

Science.” Communications of the ACM, 15(8): 721-726. 
 
Kline, Ronald R. (2006, July). “The Emergence of ‘Information Technology’ as a Keyword, 

1948–1985.” Technology and Culture, Vol. 47, No. 3: pp. 513-535. 
 
Koffman, Elliot B., Philip L. Miller, and Caroline E. Wardle. (1984, October). “Recommended 

Curriculum for CS1, 1984.” Communications of the ACM, 27(10): 998-1001. 
 
Koffman, Elliot B., David Stemple, and Caroline E. Wardle. (1985, August). “Recommended 

Curriculum for CS2, 1984: A Report of the ACM Curriculum Task Force for CS2.” 
Communications of the ACM, 28(8): 815-818. 

 
Korfhage, Robert R. (1964, April). “Logic for the Computer Sciences.” Communications of the 

ACM, 7(4): 216-218. 
 
Latour, Bruno. (1987). Science in Action: How to Follow Scientists and Engineers Through 

Society. Cambridge, MA: Harvard University Press. 
 
“Large-Scale Computer Developments Discussed.” (1947, March). Electrical Engineering, 

66(3): 289-290. 



www.manaraa.com

 371 

 
“The Last FJCC.” (1987, December). Computer, 20(12): 100. 
 
Layton, Edwin T. (1971). The Revolt of the Engineers: Social Responsibility and the American 

Engineering Profession. Cleveland, OH: Press of Case Western Reserve University. 
 
Lee, J.A.N. (1995). Computer Pioneers. Los Alamitos, California: IEEE Computer Society 

Press. 
 
Lee, J.A.N. (2001, January/March). “John Weber Carr III” (Obituaries). IEEE Annals of the 

History of Computing, 23(1): 67. 
 
Lehmer, Derrick. (1952). [Summary] In Proceedings of the Electronic Computer Symposium, 

Los Angeles, CA, April 30-May 2, 1952 (Session XX:1-3). Los Angeles, CA: Los 
Angeles Chapter of the IRE Professional Group on Electronic Computers. 

 
Lenoir, Timothy. (1997). Instituting Science: The Cultural Production of Scientific Disciplines. 

Stanford: Stanford University Press. 
 
Lesser, Murray L. (1952). “An Approach to the Use of the IBM Card-Programmed Electronic 

Calculator in the Solution of Engineering Problems.” In Proceedings of the Electronic 
Computer Symposium, Los Angeles, CA, April 30-May 2, 1952 (Session IX). Los 
Angeles, CA: Los Angeles Chapter of the IRE Professional Group on Electronic 
Computers. 

 
Levine, Samuel. (1966, July). “Chairman’s Letter (1966-1967).” Computer Group News, 1(1): 

n.p. 
 
Levine, Samuel. (1967a, January). “Chairman’s Letter.” Computer Group News, 1(4): n.p. 
 
Levine, Samuel. (1967b, March). “Chairman’s Letter.” Computer Group News, 1(5): 2. 
 
Levine, Samuel. (1968, September). “The Computer Group Contemplates Its Next Move.” 

Computer Group News, 2(5): 16-18. 
 
Librascope. (1957, June). “I just have to tell you…” Electrical Engineering, 76(6): 88A. 
 
Lindsay, Tom. (1969, March). “On the Track of New Members.” Computer Group News, 2(8): 

32. 
 
Lindvall, F. C. (1955). “Computers Challenge Engineering Education.” Proceedings of the 

Western Joint Computer Conference, Los Angeles, CA, March 1-3, 1955. New York, 
NY: Institute of Radio Engineers. 

 



www.manaraa.com

 372 

“Looking Back, Looking Ahead: A SIAM History.” (2002). Philadelphia, PA: Society for 
Industrial and Applied Mathematics. Retrieved April 22, 2006 from 
http://www.siam.org/about/pdf/siam50.pdf 

 
Lucena, Juan C. (2005). Defending the Nation: U.S. Policymaking to Create Scientists and 

Engineers from Sputnik to the ‘War against Terrorism.’ Lanham, MD: University Press 
of America, Inc. 

 
Luebbert, William F. (1960, November). “Computers in Engineering Education” [Letter]. 

Journal of Engineering Education, 51(2): 134-137. 
 
Mauchly, John W. (1948). “Preparation of Problems for EDVAC-Type Machines.” In 

Proceedings of a Symposium on Large-Scale Digital Calculating Machinery, Harvard 
University, January 7-10, 1947 (203-207). Cambridge, MA: Harvard University Press. 

 
Mauchly, Kahtleen R. (1984, April-June). “John Mauchly’s Early Years.” Annals of the History 

of Computing, 6(2): 116. 
 
MacKenzie, Donald. (1990). Inventing Accuracy: A Historical Sociology of Nuclear Missile 

Guidance. Cambridge, MA: The MIT Press. 
 
Macnaughton, Peter C. (1972, July/August). “On Merging with the ACM” [Letter to the 

Editor].” Computer, 5(4): 4-5. 
 
MacWilliams, W. H., Jr. (1952). “Keynote Address.” In Review of Electronic Digital Computers 

– Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12, 1951 (5-6). 
New York, NY: American Institute of Electrical Engineers. 

 
Madden, J. Don. (1963, April). “Improving the Current Format.” Datamation, 9(4): 45-46. 
 
Magel, Kenneth I., Richard H. Austing, Alfs Berztiss, Gerald L. Engel, John W. Hamblen, A. 

A.J. Hoffman, and Robert Mathis. (1981, March). “Recommendations for Master's Level 
Programs in Computer Science: A Report of the ACM Curriculum Committee on 
Computer Science.” Communications of the ACM, 24(3): 115-123. 

 
Mahoney, Michael S. (1988, April). “The History of Computing in the History of Technology.” 

IEEE Annals of the History of Computing, 10(2): 113-125. 
 
Mahoney, Michael S. (1990). “The Roots of Software Engineering.” CWI Quarterly, 3(4): 325-

34. 
 
Mahoney, Michael S. (1996). "Issues in the History of Computing." In Thomas J. Bergin and 

Rick G. Gibson (Eds.), History of Programming Languages II (772-781). New York: 
ACM Press. 

 



www.manaraa.com

 373 

Mahoney, Michael S. (2000). “Software as Science – Science as Software.” Retrieved September 
14, 2006 from http://www.princeton.edu/~mike/softsci.htm 

 
Mahoney, Michael S. (2004a, May). “The Histories of Computing(s).” Lecture delivered in the 

“Digital Scholarship, Digital Culture” Series, Centre for Computing in the Humanities, 
King's College, London, UK. Retrieved from the World Wide Web on May 10, 2004: 
http://www.princeton.edu/~mike/articles/histories/kingscch.htm 

 
Mahoney, Michael S. (2004b, March). “Finding a History for Software Engineering.” Annals of 

the History of Computing, 26(1): 8-19. 
 
“Manpower Needs and Educational Programs: Panel Discussion, A. C. Hall, Chairman.” (1955). 

In Arvid W. Jacobson (Ed.), Proceedings of the First Conference on Training Personnel 
for the Computing Machine Field, Detroit, MI, June 22-23, 1954 (32-34). Detroit, MI: 
Wayne University Press 

 
Martin, William L. (1955). “Foreward.” Proceedings of the Western Joint Computer Conference, 

Los Angeles, CA, March 1-3, 1955 (p. 1). New York, NY: Institute of Radio Engineers. 
 
Martin, William L. and S. R. Olson. (1957, March). “PGEC Membership Survey.” IRE 

Transactions on Electronic Computers, EC-6(1): 49-55. 
 
Matula, David W. (1969, December). “Minutes of SIGCSE Meeting at FJCC (Las Vegas, Nov. 

18, 1969).” ACM SIGCSE Bulletin, 1(4): 6.  
 
McCluskey, Edward J. (1967). “The ACM-C3S Curriculum.” In Summary of Talks and 

Discussion Group Recommendations, Conference on Computer Sciences in Electrical 
Engineering Education, Princeton University, March 28-29, 1967 (6-8). Washington, 
DC: National Academy of Engineering. 

 
McCluskey, Edward. (1970, January/February). “Message from the Chairman: The Year of the 

Opening.” Computer Group News, 3(1): 2-3. 
 
McCluskey, Edward. (1970, September, October). “On the Group’s Petition for a Change to 

Society Status.” Computer, 3(5): 1. 
 
McCluskey, Edward J. (1976). “Logic Design.” In Anthony Ralston and Chester L. Meek (Eds.), 

Encyclopedia of Computer Science, First Edition (809-813). New York, NY: Van 
Nostrand Reinhold Company. 

 
McCluskey, Edward. (2005). [Personal correspondence between Brent K. Jesiek and Edward J. 

McCluskey via telephone on September 27, 2005 and October 7, 2005.] 
 
McCracken, Dan. (1979, March). “The Institute for Certification of Computer Professionals: A 

Call for ACM Action.” Communications of the ACM, 22(3); 145-146. 
 



www.manaraa.com

 374 

McCracken, Dan. (1980, February). “ACM President’s Letter: ACM Governance.” 
Communications of the ACM, 23(2): 65-66. 

 
McMahon, A. Michal. (1984). The Making of a Profession: A Century of Electrical Engineering 

in America. New York, NY: IEEE Press. 
 
McMahon, E. Lawrence, and Brice Carnahan, Donald L. Katz, and Warren D. Seider (1966). 

Computers in Engineering Design Education: Volume IV – Electrical Engineering. Ann 
Arbor, MI: College of Engineering, The University of Michigan. 

 
McNeill, Daniel, and Paul Freiberger. (1993). Fuzzy Logic. New York, NY: Simon and Schuster. 
 
Merkle, Luiz Ernesto. (2001). Disciplinary and Semiotic Relations across Human-Computer 

Interaction. Unpublished Dissertation. The University of Western Ontario. 
 
Merkle, Luiz Ernesto, and Robert E. Mercer. (2002). “Variations in Computing Science's 

Disciplinary Diversity: The Case of Curricula Recommendations.” In Lillian N. Cassel 
and Ricardo Augusto da Luz Reis (Eds.), Informatics Curricula and Teaching Methods 
(87-96). IFIP TC3/WG3.2 Conference on Informatics Curricula, Teaching Methods, and 
Best Practice (ICTEM 2002), July 10-12, 2002, Florianópolis, SC, Brazil. 

 
Mesa Scientific Corporation. (1964, November). “Mesa Men Now Come in Two Convenient 

Types: Software… and Hardware!” Datamation, 10(11): 64. 
 
Messer-Davidow, David R. Shumway, and David J. Sylvan (Eds.). (1993). Knowledges: 

Historical and Critical Studies in Disciplinarity. Charlottesville and London: University 
Press of Virginia. 

 
Miller, C. L. and W. W. Seifert. (1960, June). “The Faculty and the Computer – Some Problems 

and Goals.” Journal of Engineering Education, 50(10): 839-845. 
 
MITRE Corporation. (1961, May). “Computer Engineers and Scientists.” Computers and 

Automation, 10(5): 23. 
 
Model Program Committee of the IEEE Educational Activities Board. (1983). The 1983 IEEE 

Computer Society Model Program in Computer Science and Engineering. Silver Spring, 
MD: IEEE Computer Society Press. 

 
Moon, Suzanne. (2004, July). “Tracy Kidder, The Soul of a New Machine” (Classics Revisited 

Book Review). Technology and Culture, 45(3): 597-602. 
 
Moone, Tom. (2002, October). “Mac Van Valkenburg: ‘One of the very best engineering 

teachers in the world.’” Ingenuity (UIUC ECE Newsletter), 7(3). Retrieved October 24, 
2006 from http://www.ece.uiuc.edu/ingenuity/1002/mac.html 

 



www.manaraa.com

 375 

Morse, Philip M. (Ed.). (1960, October). “Report on a Conference of University Computing 
Center Directors, June 2-4, 1960.” Communications of the ACM, 3(10): 519-521. 

 
Mulder, Michael, George Davida, Oscar N. Garcia, Sakti P. Ghosh, and David Pessel. (1975). 

“Model Curricula for Computer Science and Engineering Programs.” In COMPCON '75 
Digest of Papers: Proceedings of the Spring ’75 COMPCON Conference, February 25-
27, 1975, San Francisco, CA (33-35). Long Beach, CA and New York, NY: IEEE 
Computer Society. 

 
Mulder, Michael. (1975, December). “Model Curricula for Four-Year Computer Science and 

Engineering Programs: Bridging the Tar Pit.” Computer, 8(12): 28-33. 
 
Mulder, Michael. (1977, December). “Computer Science and Engineering Education: 

Introduction and Overview.” Computer, 10(12): 70-71. 
 
Mulder, Michael, and John Dalphin. (1984, April). “Computer Science Program Requirements 

and Accreditation.” Computer, 17(4): 30-35. 
 
Muller, David E. (1964, April). “The Place of Logical Design and Switching Theory In the 

Computer Curriculum.” Communications of the ACM, 7(4): 222-224. 
 
National Cash Register Company. (1956a, January). “Engineers for immediate placement.” 

Electrical Engineering, 75(1): 59A. 
 
National Cash Register Company. (1956b, April). “Digital Computer Engineers.” Computers and 

Automation, 5(4): 41.  
 
National Cash Register Company. (1960, December). “Digital Computer Engineers.” Computers 

and Automation, 9(12): 5. 
 
Neumann, Peter G. (1976, May). “Letter from the Editor.” ACM SICSOFT Software Engineering 

Notes, 1(1): 2-3. 
 
“New Attendance Record Set at AIEE Fall General Meeting.” (1956, December). Electrical 

Engineering, 75(12): 1108-1112. 
 
“New Programming Committee Chairman.” (1967, September). Computer Group News, 1(8): 

31. 
 
Newell, Allen, Alan J. Perlis, and Herbert A. Simon. (1967, September 22). “Computer Science” 

[Letter to the Editor]. Science, 157: 1373-1374. 
 
“News: Association for Computing Machinery.” (1948, April). Mathematical Tables and Other 

Aides to Computation, 3(22): 132-134. 
 



www.manaraa.com

 376 

“News: Association for Computing Machinery.” (1949, January). Mathematical Tables and 
Other Aides to Computation, 3(25): 380. 

 
“News.” (1954, September). IRE Transactions on Electronic Computers, EC-3(3): 39. 
 
Norberg, Arthur L. (2005). Computers and Commerce: A Study of Technology and Management 

at Eckert-Mauchly Computer Company, Engineering Research Associates, and 
Remington Rand, 1946-1957. Cambridge, MA and London England: The MIT Press. 

 
Northrop Aircraft, Inc. (1956, January). “Computers.” Computers and Automation, 5(1): 53. 
 
North American Aviation, Inc. (1956, October). “New Developments in flutter, vibration, 

electronics, many other specialized fields: Exceptional Opportunities Now.” Electrical 
Engineering, 75(10): 103A. 

 
Oettinger, Anthony G. (1966a, April). “On ACM’s Responsibility.” Communications of the 

ACM, 9(4): 246. 
 
Oettinger, Anthony G. (1966b, December). “President’s Letter to the ACM Membership.” 

Communications of the ACM, 9(12): 838-839. 
 
Oettinger, Anthony G. (1967, October). “The Hardware-Software Complimentarity.” 

Communications of the ACM, 10(10): 604-606. 
 
Oettinger, Anthony G. (1968a). “Computers and Education.” In Aaron Finerman (Ed.), 

University Education in Computing Science, Proceedings of a conference on graduate 
academic and related research programs in computing science, held at the State 
University of New York at Stony Brook, June 1967 (27-38). New York and London: 
Academic Press. 

 
Oettinger, Anthony G. (1968b, May). “President’s Letter to the ACM.” Communications of the 

ACM, 11(5): 293-294. 
 
Opler, Ascher. (1967, January). “Fourth-Generation Software.” Datamation, 13(1): 22-24. 
 
“Organization of the National Joint Computer Committee.” (1956). Proceedings of the Eastern 

Joint Computer Conference, New York, NY, December 10-12, 1956 (1-2). New York, 
NY: American Institute of Electrical Engineers. 

 
“Panels Feature of First IEEE Computer Conference.” (1967, October). Datamation, 13(10): 

109-110. 
 
Patrick, Robert L. (1961, May). “An Editorial Commentary on The Gap in Programming 

Support.” Datamation, 7(5): 37. 
 
Patrick, Robert L. (1966, June). “Not-So-Random Discs.” Datamation, 12(6): 77-78. 



www.manaraa.com

 377 

 
“Pentium FDIV Bug.” (2006, November 28). In Wikipedia, The Free Encyclopedia. Retrieved 

November 28, 2006 from http://en.wikipedia.org/wiki/Pentium_FDIV_bug 
 
Perlis, Alan J. (1964, August). “Report of the Commission of Thoughtful Persons to the ACM 

Council, 24 April 1964.” Communications of the ACM, 7(8): 507-508. 
 
Perlis, Alan J. (1968). “Computer Science is Neither Mathematics nor Electrical Engineering.” In 

Aaron Finerman (Ed.), University Education in Computing Science, Proceedings of a 
conference on graduate academic and related research programs in computing science, 
held at the State University of New York at Stony Brook, June 1967 (69-81). New York 
and London: Academic Press. 

 
Peterson, Harold A., and Charles Concordia. (1945, September). General Electric Review, 48: 

29-37. 
 
Philco Computer Division. (1960, April). “Computer Engineers.” Computers and Automation, 

9(4): 35. 
 
Philco Computer Division. (1960b, November/December). “Computer Growth Opportunities.” 

Datamation, 6(6): 81. 
 
Phister, Montgomery. (1958, tenth printing 1967). Logical Design of Digital Computers. New 

York, NY: John Wiley and Sons. 
 
Phister, Montgomery. (2005). [Personal correspondence between Brent K. Jesiek and 

Montgomery Phister via telephone on October 14, 2005.] 
 
“Post Conference Feedback.” (1958, May/June). Datamation, 4(3): 20-21. 
 
“Program, AIEE Summer General Meeting.” (1947, June). Electrical Engineering, 66(6): 592-

594. 
 
“Progress of Institute Technical Groups Program.” (1961, May). Electrical Engineering, 80(5): 

372-373. 
 
“Professional Group Notes.” (1951, November). Proceedings of the IRE, 39(11): 1466. 
 
“Provisional IEEE Computer Society Constitution and Bylaws.” (1970, September/October). 

Computer, 3(5): 33-37. 
 
“Q – Science.” (Library of Congress Classification Outline). (n.d.). Library of Congress. 

Retrieved October 9, 2006 from http://www.loc.gov/catdir/cpso/lcco/lcco_q.pdf 
 
“Radio Progress During 1951.” (1952, April). Proceedings of the IRE, 40(4): 388-439. 
 



www.manaraa.com

 378 

Ralston, Anthony. (1973a, January). “The Computer Society and ACM.” Computer, 6(1): 1-2. 
 
Ralston, Anthony. (1973b, December). “Computer Science Resarch – Storm Clouds in 

Washington (ACM President’s Letter).” Communications of the ACM, 16(12): 725-726. 
 
Ralston, Anthony, and Chester L. Meek (Eds.). (1976). Encyclopedia of Computer Science (First 

Edition). New York, NY: Van Nostrand Reinhold Company. 
 
Ralston, Anthony. (1980). “Preface.” In Anthony Ralston (Ed.), Taxonomy of Computer Science 

and Engineering (v). Arlington, VA: The American Federation of Information Processing 
Societies, Inc. 

 
Ralston, Anthony, and Edwin D. Reilly, Jr. (1983). Encyclopedia of Computer Science and 

Engineering (Second Edition). New York, NY: Van Nostrand Reinhold Company. 
 
Ralston, Anthony. (2004, January-March). “Four Editions and Eight Publishers: A History of the 

Encyclopedia of Computer Science.” IEEE Annals of the History of Computing, 26(1): 
42-52. 

 
Ramamoorthy, C. V. (1976, December). “Computer Science and Engineering Education.” IEEE 

Transactions on Computers, C-25(12): 1200-1206. 
 
Ramo, Simon. (1960, January). “Intellectronics.” Computers and Automation, 9(1): 6, 23. 
 
Randell, Brian. (1982). The Origins of Digital Computers: Selected Papers (3rd ed.). Berlin and 

New York: Springer-Verlag. 
 
Randell, Brian. (2002). “The New Electronic Technology.” In Atsushi Akera and Frederik 

Nebeker (Eds.), From 0 to 1: An Authoritative History of Modern Computing (41-50). 
Oxford, England and New York, NY: Oxford University Press. 

 
“Record Attendance at Computer Conference.” (1953, February). Proceedings of the IRE, 41(2): 

299. 
 
“Record Growth: IEEE Tops 200,000; Computer Society over 44,000.” (1980, March). 

Computer, 13(3): 96. 
 
Rector, Robert W. (1986, July). “Personal Recollections on the First Quarter-Century of AFIPS.” 

Annals of the History of Computing, 8(3): 261-269. 
 
Redmond, Kent C., and Thomas M. Smith (1980). Project Whirlwind: The History of a Pioneer 

Computer. Bedford, MA: Digital Press. 
 
“Reflections on a Quarter-Century: AFIPS Founders.” (1986, July). Annals of the History of 

Computing, 8(3): 225-256. 
 



www.manaraa.com

 379 

“Report on the Chicago Gathering.” (1967, November). Computer Group News, 1(9): 24. 
 
“Report of the Board of Directors.” (1954, August). Electrical Engineering, 73(8): 755-782. 
 
“Report of the Board of Directors.” (1955, August). Electrical Engineering, 74(8): 709-740. 
 
“Report of the Board of Directors.” (1956, August). Electrical Engineering, 75(8): 729-761. 
 
“Report of the Board of Directors.” (1957, August). Electrical Engineering, 76(8): 711-748. 
 
Republic Aviation. (1955, March). “Creative Engineering Opportunities with Republic.” 

Computers and Automation, 4(3): 31. 
 
“Retirements: Samuel Byron Williams.” (1946, June). Bell Laboratories Record, 24(6): 252-253. 
 
Reynolds, Terry S. (1986, October). “Defining Professional Boundaries: Chemical Engineering 

in the Early 20th Century.” Technology and Culture, 27(4): 694-716. 
 
Rhodes, Ida. (1952). “The Human Computer’s Dreams of the Future.” In Proceedings of the 

Electronic Computer Symposium, Los Angeles, CA, April 30-May 2, 1952 (Session 
XII:1-5). Los Angeles, CA: Los Angeles Chapter of the IRE Professional Group on 
Electronic Computers. 

 
Rice, Rex. (1973, September). “COMPCON: Establishing a Conference Identity.” Computer, 

6(9): 15-16. 
 
Rideout, Vincent C. (1957). “Curriculum Needs in the Computing Field.” In Preston C. Hammer 

(Ed.), The Computing Laboratory in the University (153-159). Madison, WI: The 
University of Wisconsin Press. 

 
Rine, David C., S. P. Ghosh, C. A. Harlow, and M. Tsuchiya. (1976). “Regional HELP for 

Computer Education.” In COMPCON '76 Digest of Papers: Proceedings of the Spring 
’76 COMPCON Conference, February 24-26, 1976, San Francisco, CA (208-211). Long 
Beach, CA and New York, NY: IEEE Computer Society. 

 
Rine, David C. and Ralph E. Lee. (1978). “Introductory Remarks.” In Proceedings of College 

Curriculum in Computer Science, Engineering, and Data Processing, February 2-3, 
1978, Orlando, FL (front matter). Long Beach CA: IEEE Computer Society. 

 
Rine, David C. (1979, September). “Special Message – From the Education Committee 

Chairman.” Computer, 12(9): 3-5. 
 
Rojas, Raúl, and Ulf Hashagen (Eds.). (2000). The First Computers: History and Architecture. 

Cambridge, MA and London: The MIT Press. 
 



www.manaraa.com

 380 

Rose, C. W. and M. Albarran. (1975). “Modeling and Design Description of Hierarchical 
Hardware/Software Systems.” In Proceedings of the 12th Conference on Design 
Automation (421-430). Piscataway, NJ: IEEE Press. 

 
Rossmann, George E., C. Gordon Bell, Michael J. Flynn, Frederick P. Brooks, Jr., Samuel H. 

Fuller, and Herbert Hellerman. (1975, December). “A Course of Study in Computer 
Hardware Architecture.” Computer, 8(12): 44-57. 

 
Rubinoff, Morris. (1971). [Oral history interview conducted by Richard R. Mertz on May 17, 

1971.] Retrieved November 7, 2006 from 
http://invention.smithsonian.org/downloads/fa_cohc_tr_rubi710517.pdf 

 
Russo, Roy L. (1983, November). “From the Vice-President for Technical Activities.” 

Computer, x(11): 6. 
 
Ryder, John D., and Donald G. Fink. (1984). Engineers and Electronics: A Century of Electrical 

Progress. New York, NY: IEEE Press. 
 
Sacks, S. Henry. (1963, June). “Joint Computer Conferences (Editorial Notes).” Computer 

Design, 2(6): 1. 
 
Salisbury, A. B., J. N. Snyder, and E. J. Smith. (1975). “A Report of the Subcommittee on 

Coordination, IEEE Computer Society, Education Committee.” In COMPCON '75 Digest 
of Papers: Proceedings of the Spring ’75 COMPCON Conference, February 25-27, 1975, 
San Francisco, CA (41). Long Beach, CA and New York, NY: IEEE Computer Society. 

 
Sammet, Jean E. (1976, May). “What Has Been Accomplished?” Communications of the ACM, 

19(5): 227-228. 
 
Samuel, Arthur L. (1953, October). “Computer Bit by Bit or Digital Computers Made Easy.” 

Proceedings of the IRE, 41(10): 1223-1230. 
 
Saunders, Robert M. (1965, June-September). “Electrical Engineering Education in 1975.” IEEE 

Transactions on Education, E-8(2-3): 33-37. 
 
Schweppe, Earl J. (1964). “A Proposed Academic Program in the Computer Sciences.” In 

Proceedings of the 1964 19th ACM National Conference (L1.1-1-L1.1-2). New York, 
NY: ACM Press. 

  
Scott, Norman R. (1961, September). “Editorial.” IRE Transactions on Electronic Computers, 

EC-10(3): front matter. 
 
Seely, Bruce E. (1999, July). “The Other Re-engineering of Engineering Education, 1900-1965.” 

Journal of Engineering Education, 88(3): 285-294. 



www.manaraa.com

 381 

Seising, Rudolf. (2005). “1965 – ‘Fuzzy Sets’ appear – A Contribution to the 40th Anniversary.” 
In Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV, 
May 22-25, 2005 (5-10). IEEE. 

 
Serra, Micaela., and William B. Gardner. (1998). “A First Course in Hardware/Software 

Codesign.” In Proceedings of the Third Western Canadian Conference on Computing 
Education (WCCCE '98), Vancouver, BC, May, 1998 (57-66). Retrieved on May 6, 2004 
from: http://www.uoguelph.ca/~gardnerw/pubs/WCCCE98.pdf 

 
Shapiro, Fred R. (2000, April/June). “Origin of the term software: Evidence from the JSTOR 

electronic journal archive.” IEEE Annals of the History of Computing, 22(2): 69-70. 
 
Shapiro, Stuart. (1994). “Boundaries and Quandaries: Establishing a Professional Context for 

IT.” Information Technology and People, 7(1): 47-68. 
 
Shaw, Christopher J. (1962, September). “Programming Schisms.” Datamation, 8(9): 32. 
 
Shaw, Mary (Ed.). (1985). The Carnegie-Mellon Curriculum for Undergraduate Computer 

Science. New York, NY: Springer-Verlag. 
 
Simmons, Dick B. (1980, November). “From the Division V Director…” Computer, 13(11): 7. 
 
Simmons, Dick B. (1982, September). “Membership Growth and Information Activities.” 

Computer, 15(9): 6-7. 
 
Simon, Herbert A. (1969). The Sciences of the Artificial. Cambridge, MA: The MIT Press. 
 
“SJCC Society Gleanings.” (1964, May). Datamation, 10(5): 19. 
 
Slamecka, Vladimir. (1968). “The Science and Engineering of Information.” In Aaron Finerman 

(Ed.), University Education in Computing Science, Proceedings of a conference on 
graduate academic and related research programs in computing science, held at the 
State University of New York at Stony Brook, June 1967 (81-92). New York and London: 
Academic Press. 

 
Sloan, Martha. (1973). The Impact of the COSINE Committee on the Undergraduate Electrical 

Engineering Curriculum. Unpublished Dissertation. Stanford University. 
 
Sloan, Martha. (1974, November). “The Impact of the COSINE Committee on the 

Undergraduate Electrical Engineering Curriculum.” IEEE Transactions on Education, E-
17(4): 179-189. 

 
Sloan, Martha. (1975, December). “Survey of Electrical Engineering and Computer Science 

Departments in the U.S.” Computer, 8(12): 35-42. 
 
Sloan, Martha. (1985, December). “Two Years of Transition.” Computer, 18(12): 6-7. 



www.manaraa.com

 382 

 
Sloan, Martha. (2005). [Personal correspondence between Brent K. Jesiek and Martha Sloan via 

telephone on June 29, 2005 and July 27, 2005]. 
 
Sloan, Martha E., Clarence L. Coates, and Edward J. McCluskey. (1973, June). “COSINE 

Survey of Electrical Engineering Departments, Fall 1973.” Computer, 6(6): 30-39. 
 
Smith, Merlin G. (1977a, January). “From the President.” Computer, 10(1): 2. 
 
Smith, Merlin G. (1977b, December). “Special Message – From the President.” Computer, 

10(12): 3. 
 
Smith, Merlin G. (1978, October). “New Transactions Launched; Computer Society Growth 

Continues.” Computer, 11(10): 4. 
 
Smith, Merlin G. (1991, September). “IEEE Computer Society: Four Decades of Service, 1951-

1991.” Computer, 24(9): 6-12. 
 
Smotherman, Mark. (1999, March). “A Brief History of Microprogramming.” Retrieved June 8, 

2006 from http://www.cs.clemson.edu/~mark/uprog.html 
 
“Software Engineering Prospectus Proposed.” (1975, November). Computer, 8(11): 2. 
 
Spaanenburg, Ben. (1982, January). “Mermelade or jam?” Computer, 15(1): 146. 
 
“Standards on Electronic Computers: Definitions of Terms, 1950.” (1951, March). Proceedings 

of the IRE, 39(3): 271-277. 
 
Star, Susan L., and James R. Griesemer. (1989). “Institutional Ecology, `Translations' and 

Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate 
Zoology, 1907-39.” Social Studies of Science, 19(3): 387-420. 

 
Stephan, Karl D. (2002, Fall). “All This and Engineering Too: A History of Accreditation 

Requirements.” IEEE Technology and Society Magazine, 21(3): 8-15. 
 
Stern, Nancy. (1980, April-June). “John William Mauchly: 1907-1980.” Annals of the History of 

Computing, 2(2): 100-103. 
 
“Symposia on Modern Calculating Machinery and Numerical Methods.” (1949, January). 

Mathematical Tables and Other Aids to Computation, 3(25): 381-388. 
 
“Symposium on the Impact of Computers on Science and Society.” (1956, September). IRE 

Transactions on Electronic Computers, EC-5(3): 142-158. 
 
System Development Corporation. (1959, November). “Computer Programmers: Seen any new 

horizons lately?” Computers and Automation, 8(11): 5. 



www.manaraa.com

 383 

 
“T – Technology (Library of Congress Classification Outline).” (n.d.). Library of Congress. 

Retrieved October 9, 2006 from http://www.loc.gov/catdir/cpso/lcco/lcco_t.pdf 
 
Tanenbaum, Andrew S. (1976). Structured Computer Organization. Englewood Cliffs, NJ: 

Prentice-Hall, Inc. 
 
Tartar, John (Ed.), Bruce Arden, Taylor Booth, Peter Denning, Ray Miller, and Andries van 

Dam. (1985, May). “1984 Snowbird Report: Future Issues in Computer Science.” 
Computer, 18(5): 101-104. 

 
“Technical Committee Notes.” (1949, January). Proceedings of the IRE, 37(1): 62-63. 
 
“Technical Committees – May 1, 1948-May 1, 1949.” (1948, June). Proceedings of the IRE, 

36(6): 761-762. 
 
“Technical Committees, May 1, 1949-May 1, 1950.” (1949, June). Proceedings of the IRE, 

37(6): 668-669. 
 
“Technical Committees, May 1, 1951-April 30, 1952.” (1951, June). Proceedings of the IRE, 

39(6): 721-722. 
 
“Technical Committee Notes.” (1949, December). Proceedings of the IRE, 37(12): 1448. 
 
“Technical Interest Councils and Technical Committees.” (1979, September). Computer, 12(9): 

113. 
 
Temco Aircraft Corporation. (1957, June). “In Engineering, the Best Opportunities are in 

Aviation. In Aviation, the Best Opportunities are at Temco.” Electrical Engineering, 
76(6): 75-79. 

 
“Tentative Program, AIEE Winter Meeting.” (1947, January). Electrical Engineering, 66(1):  
 
“Tentative Program, Conference on Electron Tubes.” (1948, March). Electrical Engineering, 

67(3): 267. 
 
Titus, James P. (1968, August). “The New NAS Board as a Government Advisor.” 

Communications of the ACM, 11(8): 580-581. 
 
Tompkins, Howard E. (1963). “Computer Education.” In Franz L. Alt and Morris Rubinoff 

(Eds.), Advances in Computers, Volume 4 (135-168). New York and London: Academic 
Press. 

 
Tucker, Allen B. (Ed.), Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J. 

Thomas Cain, Susan E. Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke, 
Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford, and A. Joe Turner. (1991). 



www.manaraa.com

 384 

Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force. 
New York, NY and Los Alamitos, CA: ACM Press and IEEE Computer Society Press. 

 
Tucker, Allen B. (Ed.). (1991, June). “Computing Curricula 1991.” Communications of the 

ACM, 34(6): 69-84. 
 
Tucker, Allen B. and Bruce H. Barnes. (1991, November). “Flexible Design: A Summary of 

Computing Curricula 1991.” Computer, 24(11): 56-66. 
 
Tumbleson, Robert C. (1948, January). “Calculating Machines.” Electrical Engineering, 67(1): 

6-12. 
 
Uncapher, Keith W. (1959, March). “1958 PGEC Membership Survey Report.” IRE 

Transactions on Electronic Computers, EC-8(1): 61-67. 
 
Uncapher, Keith W. (1961, March). “1960 PGEC Membership Report.” IRE Transactions on 

Electronic Computers, EC-10(1): 81-91. 
 
Uncapher, Keith W. (1964a, June). “Message from the New Chairman.” IEEE Transactions on 

Electronic Computers, EC-13(3): 184. 
 
Uncapher, Keith W. (1964b, December). “Chairman’s Newsletter.” IEEE Transactions on 

Electronic Computers, EC-13(6): 792. 
 
Uncapher, Kieth W., Malcolm Davis, James Babcock, and Shirley Marks. (1959, 

January/February). “Computer Conferences: Some Observations, Some Suggestions.” 
Datamation, 5(1): 47. 

 
Van Atta, L. C. (1950, October). “The Role of Professional Groups in the IRE.” Proceedings of 

the IRE, 38(10): 1124-1126. 
 
Van der Spiegel, Jan, and James F. Tau, Titiimaea F. Ala’ilima, and Lin Ping Ang. (2000). “The 

ENIAC: History, Operation, and Reconstruction in VLSI.” In Raúl Rojas and Ulf 
Hashagen (Eds.), The First Computers: History and Architectures (121-178). Cambridge, 
MA and London, England: The MIT Press. 

 
Van Valkenburg, Mac E. (1967). “Objectives of the COSINE Committee.” In Summary of Talks 

and Discussion Group Recommendations, Conference on Computer Sciences in 
Electrical Engineering Education, Princeton University, March 28-29, 1967 (3). 
Washington, DC: National Academy of Engineering.  

 
Van Valkenburg, Mac E. (1971). “Foreward.” Proceedings of the IEEE, 59(6): 854. 
 
Van Valkenburg, Mac E. (1972, November). “Electrical Engineering Education in the U.S.” 

IEEE Transactions on Education, E-15(4): 240-246. 
 



www.manaraa.com

 385 

Varga, Richard S. (1964). “Computer Technology at Case.” In Proceedings of the 1964 19th 
ACM National Conference (L1.3-1-L1.3-2). New York, NY: ACM Press. 

 
Vemuri, V. Rao. (1993, February). “Computer Science and Engineering Curricula.” IEEE 

Transactions on Education, 36(1): 108-110. 
 
Viavant, William (Ed.). (1968). Proceedings of the Park City Conference, Computers in 

Undergraduate Education, Volume I, Park City, Utah, September 8-13, 1968. Salt Lake 
City, UT: University of Utah. 

 
Viehman, M. J. (1973, January). (Letter to the Editor). Computer, 6(1): 8. 

 
Vincenti, Walter G. (1990). What Engineers Know and How they Know It: Analytical Studies 

from Aeronautical History. Baltimore and London: The Johns Hopkins University Press. 
 
Ware, Willis H. (1959, June). “The Chairman’s Column.” IRE Transactions on Electronic 

Computers, EC-8(2): 90-91. 
 
Ware, Willis H. (1963, April). “Perspective on AFIPS.” Datamation, 9(4): 42-43. 
 
Ware, Willis H. (1986, July). “AFIPS in Retrospect.” Annals of the History of Computing, 8(3): 

303-310. 
 
Ware, Willis H. (2005). [Personal correspondence between Brent K. Jesiek and Willis H. Ware 

via telephone on November 3, 2005]. 
 
Wasserman, Anthony I. (1977a, January). “Letter from the Chairman.” ACM SICSOFT Software 

Engineering Notes, 2(1): 1. 
 
Wasserman, Anthony I. (1977b, July). “Chairman’s Message.” ACM SIGSOFT Software 

Engineering Notes, 2(4): 2. 
 
Weiss, Eric A. (1968). “Industry’s View of Computing Science.” In Aaron Finerman (Ed.), 

University Education in Computing Science, Proceedings of a conference on graduate 
academic and related research programs in computing science, held at the State 
University of New York at Stony Brook, June 1967 (105-116). New York and London: 
Academic Press. 

 
Weiss, Eric A. (1988, January-March). “John Grist Brainerd: Obituary.” Annals of the History of 

Computing, 10(1): 78-79. 
 
Weiss, Eric A. (1992). “Saul Gorn (Obituary).” IEEE Annals of the History of Computing, 14(3): 

76-77.  
 
Westinghouse-Baltimore, Westinghouse Electric Corporation. (1957, February). “Are You 

Looking For A Job… Or A Career?” Electrical Engineering, 76(2): 89A. 



www.manaraa.com

 386 

 
“Where Should I Send My Manuscript?” (1955, September). IRE Transactions on Electronic 

Computers, 4(3): 87. 
 
“Which Institute Technical Groups Do Members of AIEE Want to Join?” (1961, September). 

Electrical Engineering, 80(9): 704-705. 
 
Whitby, Oliver. (1956). “Foreward.” Proceedings of the Western Joint Computer Conference, 

San Francisco, CA, February 7-9, 1956. New York, NY: American Institute of Electrical 
Engineers. 

 
Wiener, Norbert. (1948). Cybernetics; or, Control and Communication in the Animal and the 

Machine. New York, NY: John Wiley and Sons, Inc. 
 
Wiesner, Jerome B. (1958, October). “Communication Sciences in a University Environment.” 

IBM Journal of Research and Development, 2(4): 268-275. 
 
Wildes, Karl L., and Nilo A. Lindgren. (1985). A Century of Electrical Engineering and 

Computer Science at MIT, 1882-1982. Cambridge, MA and London, England: The MIT 
Press. 

 
Wilkes, Maurice V. (1989). “The Best Way to Design an Automatic Calculating Machine.” In 

M. R. Williams and Martin Campbell-Kelly (Eds.), The Early British Computer 
Conferences (182-184). Cambridge, MA and London England: The MIT Press and Los 
Angeles/San Francisco: Tomash Publishers. (Original work published 1951) 

 
Wilkes, Maurice V. (1969, September). “The Growth of Interest in Microprogramming: A 

Literature Survey.” Computing Surveys, 1(3): 139-145. 
 
Wilkes, Maurice V. (1992). “EDSAC 2.” IEEE Annals of the History of Computing, 14(4): 49-

56. 
 
Wilkes, Maurice V. (2004). “The Origins and Growth of Electronic Engineering – A Personal 

View.” Paper presented at the 2004 IEEE Conference on the History of Electronics, 
Bletchley Park, UK, June 28-30, 2004. Retrieved October 19, 2006 from 
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/conference
s/che2004/Wilkes.pdf 

 
Williams, Kathleen Broome. (1999, Summer). “Scientists in Uniform: The Harvard Computation 

Laboratory in World War II.” Naval War College Review, LII(3). Retrieved October 19, 
2006 from http://www.nwc.navy.mil/PRESS/Review/1999/summer/art4-su9.htm 

 
Williams, Michael. (2002). “Computing before the Computer.” In Atsushi Akera and Frederik 

Nebeker (Eds.), From 0 to 1: An Authoritative History of Modern Computing (11-24). 
Oxford, England and New York, NY: Oxford University Press. 

 



www.manaraa.com

 387 

Williams, Samuel B. (1953, January). “What Computers Do.” The Computing Machinery Field, 
2(1): 21. 

 
Williams, Samual B. (1954, January). “The Association for Computing Machinery.” Journal of 

the Association for Computing Machinery, 1(1): 1-3. 
 
Winegrad, Dilys. (1996, Spring). “Celebrating the Birth of Modern Computing: The Fiftieth 

Anniversary of a Discovery at the Moore School of Engineering of the University of 
Pennsylvania.” IEEE Annals of the History of Computing, 18(1): 5-9. 

 
Yau, Stephen S. (1974a, June). “From the President.” Computer, 7(6): 2. 
 
Yau, Stephen S. (1974b, October). “From the President.” Computer, 7(10): 2-3. 
 
Yau, Stephen S. (1975, January). “From the President.” Computer, 8(1): 2-3. 
 
Yau, Stephen S. (1976, January). “Finished and Unfinished Business: A Message from the 

Outgoing President.” Computer, 9(1): 3-4. 
 
Yau, Stephen S. (1981, January). “Proposed Bylaws Changes.” Computer, 14(1): 108. 
 
Yau, Stephen S. (Ed.), Robert W. Ritchie, Warren Semon, Joseph F. Traub, Andries van Dam, 

and Stanley Winkler. (1983, December). “Meeting the Crisis in Computer Science.” 
Computer, 16(12): 83-87. 

 
Yeargan, Jerry R. (2002, May). “The Integration of ABET and CSAB.” IEEE Transactions on 

Education, 45(2): 111-117. 
 
Zadeh, Lotfi A. (1950, January). “Thinking Machines: A New Field in Electrical Engineering.” 

Columbia Engineering Quarterly, 3: 12-13, 30-31. 
 
Zadeh, Lotfi A. (1965a). “Fuzzy Sets.” Information and Control, 8: 338-353. 
 
Zadeh, Lotfi A. (1965b). “Electrical Engineering at the Crossroads.” 1965 IEEE International 

Convention Record, 12(13): 47-50. 
 
Zadeh, Lotfi A. (1965c, June-September). “Electrical Engineering at the Crossroads.” IEEE 

Transactions on Education, E-8(2-3): 30-33. 
 
Zadeh, Lotfi A. (1967). “Curricula for Computer Science.” In Summary of Talks and Discussion 

Group Recommendations, Conference on Computer Sciences in Electrical Engineering 
Education, Princeton University, March 28-29, 1967 (9-10). Washington, DC: COSINE 
Committee of the Commission on Engineering Education. 

 
Zadeh, Lotfi A. (1968a). “The Dilemma of Computer Sciences.” In Aaron Finerman (Ed.), 

University Education in Computing Science, Proceedings of a conference on graduate 



www.manaraa.com

 388 

academic and related research programs in computing science, held at the State 
University of New York at Stony Brook, June 1967 (61-68). New York and London: 
Academic Press. 

 
Zadeh, Lotfi A. (1968b). “Computer Science as a Discipline.” Journal of Engineering Education, 

58(8): 913-916. 
 
Zadeh, Lotfi A. (1971, November). “Impact of Computers on the Orientation of Electrical 

Engineering Curricula.” IEEE Transactions on Education, E-14(4): 153-157. 
 
Zadeh, Lotfi A. (1998). [Tribute to Mac Van Valkenburg.] In Tamer Basar (Ed.), Mac Van 

Valkenburg Memorial Volume: Proceedings and Related Documents of the Mac Van 
Valkenburg Memorial Symposium, November 15, 1997 (134). UIUC ECE Publications 
Office.  

 
Zadeh, Lotfi A. (2001). [Interview with Christian Freksa, Rudolf Kruse, Ramon López de 

Mántaras.] Retrieved October 24, 2006 from KI Zeitschrift [AI Magazine]: 
http://www.kuenstliche-intelligenz.de/index.php?id=%3ANO-
1687&tx_ki_pi1[showUid]=254&cHash=1f5e15ef23 

 
Zaphyr, P. A. (1959, January). [Letter to the Editor]. Communications of the ACM, 2(1): 4. 


