
www.manaraa.com

Between Discipline and Profession

A History of Persistent Instability in the Field of Computer Engineering,

circa 1951-2006

by Brent K. Jesiek

Dissertation submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in

Science and Technology Studies

Gary L. Downey (Chair)

Janet Abbate

Daniel Breslau

Timothy W. Luke

Michael S. Mahoney (Princeton University)

December 13, 2006

Blacksburg, VA

Keywords:

history, computer, computing, design, technology, engineers,

engineering, engineering studies, discipline, profession, instability

Copyright 2006, Brent K. Jesiek

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI DP19901

Copyright 2012 by ProQuest LLC.

UMI Number: DP19901

www.manaraa.com

Between Discipline and Profession

A History of Persistent Instability in the Field of Computer Engineering,

circa 1951-2006

by Brent K. Jesiek

Abstract

This dissertation uses a historical approach to study the origins and trajectory of

computer engineering as a domain of disciplinary and professional activity in the United States

context. Expanding on the general question of “what is computer engineering?,” this project

investigates what counts as computer engineering knowledge and practice, what it means to be a

computer engineer, and how these things have varied by time, location, actor, and group. This

account also pays close attention to the creation and maintenance of the “sociotechnical”

boundaries that have historically separated computer engineering from adjacent fields such as

electrical engineering and computer science. In addition to the academic sphere, I look at

industry and professional societies as key sites where this field originated and developed. The

evidence for my analysis is largely drawn from journal articles, conference proceedings, trade

magazines, and curriculum reports, supplemented by other primary and secondary sources.

The body of my account has two major parts. Chapters 2 through 4 examine the pre-

history and early history of computer engineering, especially from the 1940s to early 1960s.

These chapters document how the field gained a partially distinct professional identity, largely in

the context of industry and through professional society activities. Chapters 5 through 7 turn to a

historical period running from roughly the mid 1960s to early 1990s. Here I document the

establishment and negotiation of a distinct disciplinary identity and partially unique

“sociotechnical settlement” for computer engineering. Professional societies and the academic

context figure prominently in these chapters. This part of the dissertation also brings into relief a

key argument, namely that computer engineering has historically occupied a position of

www.manaraa.com

“persistent instability” between the engineering profession, on the one hand, and independent

disciplines such as computer science, on the other.

In an Epilogue I review some more recent developments in the educational arena to

highlight continued instabilities in the disciplinary landscape of computing, as well as renewed

calls for the establishment of a distinct disciplinary and professional identity for the field of

computer engineering. I also highlight important countervailing trends by briefly reviewing the

history of the software/hardware codesign movement.

www.manaraa.com

 iv

Acknowledgments

First and foremost, I thank my family for their encouragement and understanding as I

worked on this project, as well as my graduate degrees more generally. In fact, this dissertation

may have never been completed without the extensive support – and gentle prodding – provided

by my wife Julie and son Preston. Thanks also to my parents for their continued encouragement

in all of my endeavors, no matter how seemingly far-flung.

I owe another debt of gratitude to my many friends and colleagues at Virginia Tech – for

the most part, you know who you are. But I especially want to thank Jody Roberts for many

conversations that helped enrich this document. I also acknowledge Shelli Fowler, who not only

greatly encouraged and supported me as a graduate student, but who is also an all-around

exemplary colleague and mentor. Following her model, I fully intend to pay the favor forward.

Members of Virginia Tech’s Research in Engineering Studies (RES) group, on the other hand,

deserve mention for being willing and thoughtful commentators on an early draft of Chapter 2.

I am of course much indebted to each and every one of my committee members, who

from the start saw the value and potential of this project, and helped nurture it along the way.

Their willingness to thoughtfully engage with a large body of draft material and provide

countless valuable suggestions made this a much better document. I very much look forward to

continuing our conversation about this material in coming months and years.

Gary Downey, in particular, has been an outstanding committee member and chair

throughout this process, and I thank him for both keeping me on schedule and pushing me to

figure out where my analysis was headed. At countless points along the way, Gary helped me see

the proverbial forest for the trees when I found myself neck-deep in historical details.

There are still others worthy of mention, including the many library staffers who

retrieved or tracked down sources for me. Staff at the Charles Babbage Institute, National

Academies, and IEEE History Center also deserve mention for responding to many queries and

for finding and sending me relevant materials. Again, I thank you all.

www.manaraa.com

 v

Table of Contents

ABSTRACT.. II

ACKNOWLEDGMENTS ... IV

LIST OF FIGURES AND TABLES .. VIII

CHAPTER 1 – INTRODUCTION ..1
Research Questions and Objectives.. 4
Historical Literature Review... 5
Theoretical Literature Review .. 9
Methodology .. 14

Professional Publications ... 15
Trade Magazines... 16
Curriculum and Model Program Reports .. 16
Other Sources.. 17

Summary of Chapter Contents.. 17

CHAPTER 2 – FROM ENGINEERS AND COMPUTING TO COMPUTER ENGINEERING22
A Brief Early History of Electrical Engineering and Its Institutes ... 23
Intersections of Expertise in Early Computer Development Projects .. 27
Connecting the Islands: Early Steps toward a Field of Computing.. 34
Mauchly, the ENIAC, and the Machine-Instruction Boundary .. 37
The AIEE and Computing... 41
The IRE and Computing: From Technical Committee to Professional Group.. 46
The Joint Computer Conferences ... 50
Positioning Computers in Engineering... 52
Computer Engineering Identities .. 55
Employing Computer Designers and Engineers .. 58
The Relational Ontology of Computer Engineering.. 60
Conclusion.. 65

CHAPTER 3 – A SYSTEM OF PROFESSIONAL SOCIETIES: NEGOTIATING THE
SOCIOTECHNICAL SETTLEMENTS ...67

The Early History of the ACM: “What Computers Do” ... 68
IRE-PGEC: The Voice of the Computer Engineering Profession.. 79
The AIEE CDC: Committee-Bound and Power Industry-Oriented ... 85
Merger, Identity, and Scope: Forming the IEEE Computer Group.. 91
Stabilizing the System: The Joint Computer Conferences and Committees ... 97
“Is It Overhaul or Trade-In Time?”: The 1959 Rand Symposium... 103
From the NJCC to AFIPS: Preserving Stability in the System... 106
Conclusion.. 111

www.manaraa.com

 vi

CHAPTER 4 – DICHOTOMOUS DEVELOPMENTS IN THE EARLY COMPUTER FIELD:
PROFESSION, TECHNOLOGY, AND EDUCATION, C. 1955-1963 ..114

Part I – Mirrored Dichotomies: Hardware/Software and Engineer/Programmer.. 115
Computer Engineering Identities: From Interpretive Flexibility to Stable Jurisdictions .. 116
Divisions of Labor and Hierarchies of Design: Bounding and Segmenting Computer Engineering..................... 121
The Hardware/Software Ensemble: Constructing and Questioning the Dichotomy... 126
Artificial Barriers versus Integration: Carr and Gorn on the Boundaries .. 132

Part II – Education and Discipline: (Re)Negotiating the Boundaries of Computing .. 141
Computer Education: An Inchoate Early Assortment of Courses and Curricula .. 141
Toward a Scientific Discipline of Computing ... 150
Educating Computer-Using Engineers ... 157
Educating Computer Engineers and Designers ... 163
Conclusion.. 168

CHAPTER 5 – COMPETING IMAGES OF DISCIPLINARITY: COMPUTER SCIENCE, COSINE,
AND COMPUTER ENGINEERING ..171

Part I – (The) Computer/Computing/Information Science(s): A Formative First Decade 172
Defining Computer Science as a Discipline .. 173
Positioning and Settling Computer Science... 178
Instituting Computer Science – Departments and Programs .. 182
Instituting Computer Science – Courses and Curricula .. 187

Segue – On the Boundaries of Computer Science and Engineering... 192

Part II – Shifting Disciplinary Images: From Computer Science to Computer Engineering in Electrical
Engineering.. 198

Bringing Computer Science Into the Fold: Lotfi Zadeh at Berkeley and Beyond .. 198
Engineering Images of Computer Science: Discipline, Department, and/or Program? .. 204
An Introduction to the COSINE Committee: Historical Origins and Trajectory .. 209
COSINE, The Early Years: Promoting “Computer Sciences in Electrical Engineering”....................................... 214
Transitional COSINE: From Computer Science to Computer Engineering .. 218
COSINE and Computer Engineering: Expanding EE From the Inside Out .. 224
Evaluating the “Impact” of COSINE and the Growth of Computer Engineering Education 228
Conclusion.. 233

CHAPTER 6 – JANUS-FACED TECHNOLOGY, JANUS-FACED FIELD: (RE)NEGOTIATING THE
SOCIOTECHNICAL SETTLEMENTS ...239

From Computer Group in Crisis to a More Autonomous Computer Society .. 241
Expansion and Identity, Merger Talks and Mediation (Part I) ... 247
Sociotechnical Expansion and Mediation: New Committees for Emergent Fields... 252

Computer Architecture ... 254
Software Engineering ... 257
Microprogramming... 259

Expansion and Identity, Merger Talks and Mediation (Part II).. 262
Conclusion.. 269

www.manaraa.com

 vii

CHAPTER 7 – BRIDGING THE TAR PIT?: CONSTRUCTING CSE AND COMPUTING EDUCATION,
CIRCA 1974-1991 ..273

Claiming CSE: The Computer Society Makes Moves in Education.. 278
Bridging the Tar Pit?: Toward a Curriculum in Computer Science and Engineering... 282
A(n Engineer’s) Curriculum in Computer Science and Engineering ... 287
Supporting Curricular Reform in Electrical Engineering Education ... 290
Disciplining CSE: Taxonomies, COSERS, and Encyclopedias, oh my! ... 293
Managing Complexity: The Hybridization of Hardware and Software Engineering.. 299
Research Directions in Computer Engineering: (Re)Defining the Discipline... 303
From Curriculum to Program: The Engineers Revisit CSE Education.. 306
Engineering Accreditation and The Discursive Politics of Professional Certification ... 310
CSAB and CSAC: Independent Accreditation for an Independent Discipline.. 314
The Diversification of Computer Science Curricula ... 317
From Discipline in Crisis to Computing as a Discipline... 319
The Shifting Institutional Landscape of Computing ... 325
Conclusion.. 327

EPILOGUE – COMPUTING CURRICULA AND CODESIGN: DIVERGENT PATHWAYS?329
Software/Hardware Codesign: Blurring the Sociotechnical Boundaries ... 333
From Software/Hardware Codesign to Sociotechnical Codesign .. 338

APPENDIX A – ACRONYMS AND ABBREVIATIONS...340

BIBLIOGRAPHY...343

www.manaraa.com

 viii

List of Figures and Tables

Figure 4.1 – Functions and Responsibilities of Computer Design Groups (Phister, 1958, p. 3) 122

Figure 4.2 – “Mesa Men” (Mesa Scientific Corporation, 1964) .. 131

Table 5.1 – Containment Table for Computer Science (Zadeh, 1968b, p. 913).. 203

Table 5.2 – COSINE Committee Reports ... 213

Figure 6.1 – Hardware vs. Software: The Two Faces of Computers (Jensen, 1973, p. 14) 238

Figure 7.1 – Distribution of Computer Science Programs with Present and Projected Accreditation 316

www.manaraa.com

 1

Chapter 1

Introduction

In an important sense, this dissertation lives between the fourth and fifth floors of

Virginia Tech’s Newman Library. Organized according to the venerable Library of Congress

(LoC) classification scheme, the library’s fourth floor is dominated by the holdings for the call

letter Q, which represents a wide swath of the physical, natural, and biological sciences, as well

as mathematics. And it is within the QA subclass for Mathematics that we find further relevant

divisions, including QA71-90 for “Instruments and Machines,” and then QA75-76.95 for

“Calculating Machines,” QA75.5-76.95 for “Electronic Computers” and “Computer Science,”

and QA76.75-76.765 for “Computer Software” (“Q – Science,” n.d., p. 3). The library’s fifth

floor, on the other hand, is largely filled with holdings for the call letter T, which covers

Technology generally and an array of engineering subjects more specifically. Digging deeper

still, we find that within the TK subclass (which itself covers electrical engineering, electronics,

and nuclear engineering) a smaller sliver of materials in the TK7885-TK7895 range has been

earmarked for “Computer Engineering” (“T – Technology,” n.d., p. 11). On the surface, some

may find it puzzling that the LoC scheme segregates “Computer Engineering” from seemingly

related subjects such as “Electronic Computers,” “Computer Science,” and “Computer

Software.” However, this apparent quirk in classification begins to hint at a key goal of this

project, namely to develop a better understanding of the unique historical position of computer

engineering “between” electrical engineering, on the one hand, and mathematics and computer

science, on the other.1

Electrical engineering – which is often viewed as the main “parent” discipline of

computer engineering – is a broad area of activity that melds engineering method with electrical

1 This example also hints at some of the potential implications of these divisions. Perhaps most obviously,
the physical separation of these books and journals means that researchers from one field or another may
be less likely to stumble upon potentially relevant texts that happen to be shelved in another area or even
on a different floor.

www.manaraa.com

 2

and electromagnetic phenomena. Beginning in the early 1950s, computer engineering started to

gain an identity that was at least partially distinct from electrical engineering, and since then the

dominant image of the field has remained closely linked to computer “hardware.”2 More

specifically, the line between electrical and computer engineering is often negotiated at the

lowest levels of computer structure, where electrical engineers tend to concern themselves with

the physical properties of integrated circuits and other microelectronics, leaving computer

engineers to focus on the more abstract upper levels of computer technology, such as logic

design, system design, and low-level programming. The Institute for Electrical and Electronics

Engineers (IEEE) has been the professional society with the closest ties to computer engineering,

especially via the IEEE Computer Society (IEEE CS) subgroup and its historical predecessors.

Computer science, on the other hand, emerged in the 1950s and 1960s with significantly more

multidisciplinary origins, and with a stronger orientation toward mathematics, algorithms,

computer programming, and “software.” The Association for Computing Machinery (ACM) has

been – and largely remains – the major professional organization for computer scientists.

As the preceding passage suggests, the dominant image of computer engineering and

computer science as respectively linked to hardware and software is deeply rooted in history. Yet

much of the research on which this project is based suggests that these generalizations hide a

much more complicated – and interesting – historical reality. From the earliest days of the field

there has been wide recognition among computer professionals that the divide between computer

software and hardware is anything but fixed or easily identifiable. Some of the earliest

discussions about the ambiguous and shifting nature of this boundary date back to the 1940s and

1950s, and similar commentaries have periodically cropped up time and again, despite ongoing

and major changes in computer technology. In his 1976 textbook, for example, computer

2 My use of the term “dominant images” in this dissertation is significantly informed by the prior work of
Gary Downey (1998, pp. 5-6). As nicely summarized by his colleague Juan Lucena, “Dominant images
create expectations about how individuals in that location are supposed to act or behave. In this new
concept of culture, the image remains the same over a period of time, while individual or group reactions
to the image’s challenges might differ. When challenged by the same image, individuals or groups resist,
accommodate, fully accept, or experience ambiguity in different ways” (Lucena, 2005, pp. 6-7). While
my own account places somewhat less explicit emphasis on “culture,” I use the concept of “dominant
images” to highlight how competing definitions and conceptions (or “images”) of “computer engineering”
and “computer engineers” have developed and circulated over time, in the process challenging many
actors and groups. My use of the term “field,” on the other hand, is used very generally throughout this
document in reference to a given domain of activity, and without any major theoretical or normative
assumptions. I use alternate concepts such as “discipline” and “profession” more judiciously, as outlined
in detail below.

www.manaraa.com

 3

scientist Andrew Tanenbaum noted in an introductory chapter on the historical development of

computer organization and architecture that “one man's hardware is another man's software,” and

he went on to describe the boundary between these two domains as “arbitrary and constantly

changing” (p. 11).

Yet Tanenbaum’s remarks about the software-hardware boundary – or the lack thereof –

seem to stand in marked tension with the mid-1970s relationship between computer engineering

and adjacent fields, such as computer science. In a December 1975 issue of the IEEE journal

Computer – which was dedicated to the topic of “computer education” – guest editors David

Irwin and C. V. Ramamoorthy summarized that “from the educator's point of view, perhaps no

problem is so apparent as that of overcoming the dichotomy between computer science and

computer engineering” (Irwin and Ramamoorthy, 1975, p. 27). And in another article in the same

journal issue, engineer Michael Mulder used the evocative image of the “tar pit” to describe the

difficult meshing of computer science and computer engineering curricula (Mulder, 1975, p. 28).

How might we explain this apparent tension between increasingly blurred technological

boundaries coexistent with deeply entrenched – and perhaps even conflicting – disciplinary and

curricular boundaries? One might postulate that these tensions were eventually worked out

through some combination of technological and disciplinary change, limiting their significance

to the historical moment and actors identified here. Yet ample evidence suggests that no clear

resolution was achieved, and that tensions like these can be traced throughout much of the

history of computing, even to the present.

To take a second – and more recent – example of these tensions, a task force representing

both the ACM and IEEE-CS was formed in the late-1980s to develop a new set of curricular

recommendations for what the committee came to call “the discipline of computing” (Tucker, et

al., 1991). This seemingly unprecedented move – toward a more integrated “meta-discipline” of

computing – looked like an important step toward overcoming some of major the social and

technological rifts that had long persisted in the various computing fields. Yet jumping ahead

roughly a decade, we find a very different set of recommendations coming out of the Computing

Curricula 2001 effort. Also a joint venture of the IEEE-CS and ACM, this new task force was

charged with reviewing and updating the 1991 report. However, the group quickly splintered out

to develop separate reports with separate recommendations for five different disciplinary

domains, namely computer science, computer engineering, information systems, software

www.manaraa.com

 4

engineering, and information technology. In justifying these divisions, the authors of the

computer engineering volume argued that while efforts to mesh or merge the computing

curricula “may have seemed reasonable in the past, there is no question that computing in the

twenty-first century encompasses many vital disciplines with their own identities and

pedagogical traditions” (Hughes, et al., 2004, p. 1). Those familiar with the professional and

disciplinary tensions that marked earlier eras of computing will likely read such passages with a

sense of déjà vu.

Research Questions and Objectives

In order to better understand the types of trends and tensions outlined above, this project

uses a historical approach to study the origins and trajectory of computer engineering as an area

of academic and professional activity, in the United States context, and from the pre-history of

the field in the 1940’s and 1950’s to the present. Expanding on the general question of “what is

computer engineering?,” the project investigates what counts as computer engineering

knowledge and practice, what it means to be a computer engineer, and how these things have

varied both across time and space and between various publication outlets, actors, and groups. In

addition, this dissertation pays close attention to the creation and maintenance of the social and

technological boundaries that have historically separated computer engineering from adjacent

fields, such as electrical engineering and computer science. In addition to the academic sphere, I

also pay close attention to industry and professional societies as other sites where this field

originated and developed. The evidence for my analysis is largely drawn from journal articles,

conference proceedings, trade magazines, and curriculum reports, supplemented by a range of

other primary and secondary sources.

In summary, the account that follows documents how each step in the historical

development of computer engineering has involved important social and technical negotiations,

some managed within the field, and some requiring engagement and even conflict with the

representatives of adjacent fields. Central to this project is the idea that carefully and closely

exploring the long sequence of dilemmas over what it means to be a computer engineer or

computer scientist – or alternatively, over where to draw the line between software and

hardware, theory and design, and/or science and engineering – can reveal key insights about the

past, the present, and even the imagined future of computing. My analysis also plays particularly

www.manaraa.com

 5

close attention to the ongoing failure of computer engineering to be clearly identified as either an

independent discipline or branch of the engineering field, thereby contributing to the field’s long

and persistent instability.

The larger significance of this project is three-fold. First, it makes documentary

contributions to engineering studies and the history of computing, two areas of scholarship that

have dealt neither directly nor extensively with computer engineering. Second, the project uses

leading edge theory and method – drawn from the literature on professions, disciplines, and

Science and Technology Studies (STS) – to argue that the existence of computer engineering has

involved the ongoing and active “co-production” of the social, material, and epistemological.

Further, the project hypothesizes that the history of computer engineering is a history of

persistent instability, with the field’s very existence requiring ongoing efforts to align diverse

elements, such as professional and disciplinary identities, organizations, computing technologies,

and bodies of knowledge. Third and finally, studying the foundations and trajectory of computer

engineering can suggest possibilities for transformation and reform, both in computing generally

and computer engineering specifically. More specifically, I claim that assessing both dominant

and alternative ways of organizing computing disciplines and technologies can reveal important

new pathways toward more thoroughly contextualized, reflective, and socially responsible

cultures of computer design and use.

Historical Literature Review

Given that this project contributes to a number of major bodies of scholarship, including

the history of engineering and engineering studies, I begin my literature review with a survey of

relevant work in these areas. In most general terms, some important historical work has been

done on the professional and disciplinary development of various engineering fields, but it

remains somewhat scant. Notable exceptions include Layton’s well-known The Revolt of the

Engineers (1971), which is largely premised on the claim that understanding the historical

development of the engineering profession demands that we analyze ongoing efforts to negotiate

the boundaries between engineering, science, and business. Reynolds (1986) follows similar

themes in his detailed history of chemical engineering, and he places particular emphasis on how

early definitions of this particular field were not so much about tensions between business and

science, but rather about how chemical engineers both worked their way into management and

www.manaraa.com

 6

came to identify with management interests. Vincenti’s (1990) case studies from the history of

aeronautical engineering, on the other hand, approach the history of engineering from a

somewhat different angle by shedding light on the important role that “design hierarchies” often

play in engineering work.

Moving closer to the subject of this dissertation, a handful of authors have developed

general histories of American electrical engineering. Texts by Ryder and Fink (1984) and

McMahon (1984), for example, were published with IEEE support around the time of the

Institute’s centennial anniversary. The former stands as a broad yet somewhat celebratory history

of electrical engineering in the United States, while McMahon’s volume provides a more

critically engaged history of electrical engineering as a profession, with particular emphasis on

the IEEE and its predecessor societies. As McMahon claims, looking at the history of the

relevant professional societies can provide a window into “the state of the profession” (p. xiii),

although his account also discusses the pivotal role of industry and the academy in the

development of electrical engineering (p. xiv). And while both Ryder and Fink and McMahon

comment on the evolving relation of engineers and computing, they fail to provide in-depth

discussions about the development of computer engineering as a field, and they do not seriously

engage with issues of disciplinary identity or tendencies toward disciplinary fragmentation.

The history of computing is another large and growing body of scholarship that is

relevant to my project, although relatively little work in this area has focused on the disciplinary

landscape of computing. For example, historian Paul Ceruzzi’s otherwise wide-ranging History

of Modern Computing (2003) devotes just a few pages to the origins and early history of

computer science, and entirely avoids discussing the development of computer engineering as a

distinct field (pp. 101-103; 201-203). By contrast, historical work on well-known inventors,

devices, companies, and sub-industries is somewhat more common, both in Ceruzzi’s work and

beyond.3 Surveying the history of computing literature, Mahoney nicely summarizes this trend

when he notes that “[b]iographies of men or machines – some heroic, some polemical, some both

– are a prominent genre, and one reads a lot about 'pioneers'” (1988, p. 114). Calling for a

“decentering of the machine,” Mahoney has identified a number of under-explored topics in the

3 The mainstream history of computing literature is well represented by texts such as those authored by
Campbell-Kelly and Asprey (1996) and edited by Akera and Nebeker (2002) and Rojas and Hashagen
(2000). Although beyond the scope of this review, I periodically turn to these texts in later chapters for
various historical details.

www.manaraa.com

 7

history of computing, including most notably for this project the software-hardware relationship

and the history of computing disciplines and institutions (1988, 2004a). Noting “the need for

histories of the main communities of computing,” he offers an important follow-up question:

“How has the balance of professional power shifted among these communities, and how has the

shift been reflected in the technology?” (1996).

Mahoney's own historical studies of the field of software engineering stand as important

attempts to grapple with these topics (1990; 2004b). Especially noteworthy here is the author's

interest in tracing out ongoing efforts to establish both a canonical history for software

engineering and a common “agenda” for its practitioners. As Mahoney argues, “Software

engineering began as a search for an engineering discipline on which to model the design and

production of software” (2004b, p. 17), and elsewhere he describes at length how the proponents

of the emergent field drew inspiration for their endeavor from domains as diverse as applied

science, mechanical engineering, and industrial engineering (pp. 9-16). And while Mahoney’s

historical account also hints at persistent tensions between the image of software engineering as

either a discipline or profession, he leaves many open questions about the extent to which such

tensions have inhibited the development of this particular field.

Other secondary sources have paid only modest attention to the historical emergence and

ongoing development of other relevant fields, such as computer science and computer

engineering. Wildes and Lindgren (1985) and Guttag (2005), for instance, help fill in some

important pieces of this puzzle via their institutional histories of electrical engineering and

computer science at MIT, although the wider relevance of their accounts is limited by their site

specificity. Following a parallel line of inquiry, Aspray’s (2000) in-depth analysis of the early

decades of computing at five major universities – namely MIT, Harvard, the University of

Pennsylvania, Columbia, and Princeton – provides other clues about how the various flavors of

computer research and education emerged and evolved in the American academic context. And

while Aspray’s analysis is primarily focused on discussing whether early entry into computing

provided these schools with a “competitive advantage,” he repeatedly touches on the disciplinary

tensions that were often in play, especially as mathematicians and electrical engineers, and later

computer scientists, staked out their claims.

Luiz Ernesto Merkle’s research on computing-related disciplines stands as another

important contribution in this area (Merkle, 2001; Merkle and Mercer, 2002). One important

www.manaraa.com

 8

facet of Merkle’s work centers on its historical exploration of the many fields that fall under the

broad “informatics” or “computing” umbrella, ranging from computer engineering and computer

science to human-computer interaction (HCI) and information systems (IS). Hence, Merkle's

work draws our attention to historical shifts in – and struggles over – the disciplinary and

professional boundaries of computing. In fact, he and co-author Robert E. Mercer explicitly

argue that computing specializations and subfields become “reified across educational

institutions and their enacted curricula, across industry and commerce and their organizations,

and across governments with policies and resources” (Merkle and Mercer, 2002, p. 92).

Following this line of reasoning, these authors go on to claim that the many fields and subfields

of informatics have historically tended toward over-specialization and disciplinary exclusivity,

thereby hampering the types of cross-disciplinary collaboration and pollination that Merkle and

Mercer clearly favor (Merkle and Mercer, 2002, p. 92).

The historical review and forward-looking vision presented by these authors resonates

with my own work. However, Merkle’s historical research is largely limited to a high-level

review of key professional organizations and curriculum reports, setting aside important

questions about how and why various computing fields have been linked to particular

disciplinary knowledge claims and computer technologies. In addition, his ambitious efforts to

both locate and re-theorize the “human” and “social” dimensions of computing lead him to

concentrate much of his analysis on domains such as HCI and semiotics, leaving fields such as

computer engineering under-analyzed. Hence, Merkle begins with many source materials and

questions that are relevant to this dissertation, but he follows them in very different directions.

Casting a wider net in the history of computing reveals other texts that are generally

relevant to this project. In one of his earlier articles, for instance, Ceruzzi looks at the “co-

evolution” of electronics technology and computer science in the 1940-1975 period (1989). In

doing so, he provides a lengthy description of the “continuous and reciprocal interaction between

electronics and computing” (p. 257), leading him to important insights regarding the role of

technological change in the development of computing disciplines. As Ceruzzi argues, electrical

engineering initially “took over” the work of those involved in computing, but the tables later

turned as “the science of computing ‘took over’ the discipline of Electrical Engineering, in the

sense that its theory of digital switches and separation of hardware and software offered EE a

guide to designing and building ever more complex circuits” (p. 257). While such claims are

www.manaraa.com

 9

provocative, the author can be critiqued for glossing over the tripartite relationship linking

electrical engineering, computer engineering, and computer science. Further, he assumes an

oversimplified distinction between software and hardware, thereby downplaying both the multi-

level complexity of this boundary and the extent to which it is has both shifted and been

contested over time.

Tracy Kidder's Pulitzer Prize winning The Soul of a New Machine (1981), on the other

hand, documents the design and building of the new “Eagle” minicomputer system at a major

American computer manufacturer in the late 1970s. In this journalistic-styled account, Kidder

provides us with a rare glimpse of computer engineers and computer scientists working in their

native corporate habitat. For starters, Kidder excels at explaining arcane computer concepts to

general audiences – a valuable lesson given my own desire to produce a readable and accessible

historical narrative. But even more importantly for the project outlined here, Kidder's text closely

follows the trials and travails of “the Hardy Boys” and “Microkids,” the two main groups of

computer engineers who were responsible for designing the hardware and low-level microcode

of the Eagle, respectively. In following these groups, the author reveals the deep interplay of

social, organizational, and technical divisions of labor in the building of a new computer. In

addition to highlighting how new technologies and unconventional management and design

techniques seemed to be inaugurating a new phase of development for America’s high-

technology industries, Kidder’s account provides an important historical snapshot of the

interplay of the various fields and subfields of computing within a corporate context.4 By

accounting for the emergence and persistence of the major sociotechnical boundaries that have

long separated computer engineers from both one another and other computer professionals, this

dissertation fills in a key part of the historical backdrop against which Kidder’s story unfolds.

Theoretical Literature Review

The chapters that follow also draw on and inform a number of bodies of theoretical

literature. In this section I introduce theoretical work on the social and historical studies of

professions and disciplines, the concept of “co-production,” and discourse. It is first worth noting

that a handful of writers have already done work on issues of professionalism in the context of

4 I draw here from a recent book review by Moon (2004) that nicely summarizes Kidder’s analysis and
major claims. She also makes a strong case for the continued significance of this book, both for historians
of technology generally and for historians of computers and computing specifically.

www.manaraa.com

 10

computing. Historian and social scientist Nathan Ensmenger, for example, nicely documents and

analyzes how various segments of the computer field dealt with the “question of

professionalism” in the 1950s and 1960s (2001). Yet Ensmenger largely avoids critically

retheorizing professionalism or connecting it with discipline building, focusing instead on how

computer scientists and programmers understood professionalism and used it to their strategic

advantage. Computer scientist Stuart Shapiro, on the other hand, has comprehensively reviewed

the many different models of professionalism that have been applied to the various fields and

subfields on information technology, with a focus on both accounting for the historical lack of a

dominant model and suggesting alternate ways of understanding what it means to engage in

professional computing practice (1994). While Shapiro’s analysis is especially useful in pointing

us toward issues such as the persistent gap between science- and engineering-based

conceptualizations of the various computing fields, the present analysis requires a somewhat

more substantial body of theory than Shapiro provides.

For additional theoretical support I turn to Andrew Abbott, whose work on the

professions has largely been focused on traditional subjects such as medicine and law, albeit with

some forays into the so-called “information professions” and some examples drawn from

engineering and computing. In The System of Professions (1988), Abbott resists framing

professions in monolithic terms or as “silos,” instead claiming that they are both located within

larger systems and defined relationally. Central to understanding this systems-oriented view of

professionalization and professional development is the author’s concept of “jurisdiction,” or

“the link between a profession and its work” (p. 20). For Abbott, jurisdictions are by definition

“strong” and “exclusive,” and jurisdictional control can be negotiated in various contexts. The

public and legal realms play roles in this process, but Abbott emphasizes worksites as pivotal for

maintaining professional jurisdictions, especially through ongoing efforts to control work tasks.

The academic context is also framed as a context where some degree of professional

legitimation, research, and instruction can occur (p. 56-57). More specifically, Abbott notes that

the academy is often where the most abstract forms of professional knowledge are cultivated and

transmitted, although Abbott clarifies that “professional education takes place in institutions

controlled by the professions” (p. 205).

Chaos of Disciplines (2001), on the other hand, reflects Abbott’s engagement with issues

of discipline formation and disciplinarity, with a primary focus on the social sciences. The author

www.manaraa.com

 11

frames academia as the main locus of disciplinary development, with departments and graduate

degree programs standing as pivotal hallmarks of disciplinarity in the American context, albeit

with national disciplinary societies playing a strong supporting role (pp. 125-126). In further

contrast to his work on professions, Abbott uses the metaphor of “settlement” to describe the

“interactional field of academic disciplines” (p. 136), where claims to academic work and

disciplinary bodies of knowledge are often complex and shifting, in no small part due to “an

extraordinary interpenetration of settlements” (p. 142). Building on his earlier “ecological model

for professional knowledge” (p. 136, fn. 21), the author further fleshes out his settlement

framework by suggestively describing disciplines as “amoebas putting out pseudopods as they

move in a multidimensional intellectual space” (p. 138).

Casting a wider net reveals a variety of science studies scholars whose views are largely

synergistic with the work of Abbott. Contextualist and constructivist accounts of disciplinary

history are particularly relevant here (Messer-Dabidow et al., 1993; Lenoir, 1997). In fact, one

central insight to take away from this body of texts centers on the claim that scientific disciplines

are ever changing and adaptive. In his study of the field of geophysics, for example, historian

Gregory Good nicely summarizes that “scientific activities may achieve degrees of identity

development,” and that disciplines “pass through no regular stages on their way from immature

to mature status” (2000, p. 259). These arguments stand as a further corrective to the more

traditional and idealized view of disciplines as uniform and monolithic.

Concerns by these and other authors regarding the negotiation of professional and/or

disciplinary boundaries also lead us to concepts such as “boundary objects” and “boundary

work.” Regarding the former, Star and Griesemer have convincingly described how actors and

groups with different interests often use common points of reference (or “boundary objects”) to

communicate with one another, even if their understanding or interpretation of these entities

differs considerably (1989). Their adaptation of Hughes’ “institutional ecology” framework to

describe the larger institutional backdrop against which these interactions occur can also be

usefully adapted to grapple with disciplines and professions. In fact, the preceding overview

hints at the extent to which the ecological approach employed by Star and Griesemer resonates

with Abbott’s work. Akera (2004a; 2004b; 2006), on the other hand, has usefully looked at how

ecologies of both knowledge and institutions inflected some early developments of computing

field, albeit largely in relation to the career and work of computer pioneer John W. Mauchly.

www.manaraa.com

 12

Gieryn's theorizing on the concept of “boundary work” is similarly helpful here,

especially given his insightful discussions about how various demarcation processes are used to

bound off domains of disciplinary knowledge (1983; 1995; 1999). More specifically, Gieryn

describes four central categories of boundary-work, namely monopolization, expansion,

expulsion, and protection (1995, pp. 424-439). Another important theme evident in Gieryn's

writings – and also brought to the fore in the work of Golinski (1998, Ch. 2) – centers on the idea

that the formation, legitimation, and ongoing development of fields and disciplines often

involves the active and power-laden “disciplining” of knowledge, people and even the physical

world.

It is further worth noting that much of the literature on the topic of disciplines has tended

to focus on the sciences, yet my own work supports the argument that engineering and other

technology-oriented fields are equally significant sites for applying the aforementioned concepts.

In making this move, it is important to wrestle with questions about the role of knowledge claims

in the formation and development of disciplines and professions. In Abbott’s analysis of the

social sciences, for example, we find that the author’s settlement framework is primarily used to

uncover and examine competing knowledge claims. While this approach may work well for his

particular case, elsewhere Abbott discusses how various non-epistemological factors – such as

technological developments and organizational changes – can shift professional jurisdictions. As

more specific examples, he notes that the “increasingly technical quality of machinery and

physical structures” helped stimulate the establishment and growth of the engineering profession

(1988, p. 92), while the later development of “higher-level” programming languages such as

FORTRAN and COBOL helped create new areas of expertise that were claimed by computer

programmers (1988, p. 93).

In order bring into further relief the full range of factors that impinge on the development

of disciplines and professions, I turn to the concept of “co-production,” as explored at length in a

recent edited volume (Jasanoff, 2004). Central to the co-production framework is the idea that

neither social nor natural order can be assumed to have explanatory or causal priority in studies

of science and technology, and that we must instead view the social and the natural as actively

“co-produced.” As editor Sheila Jasanoff describes, scientific knowledge, as well as technology

and technological knowledge, “both embeds and is embedded in social practices, identities,

norms, conventions, discourses, and institutions – in short, in all the building blocks of what we

www.manaraa.com

 13

term the social” (p. 3). Jasanoff adds that the co-production framework emphasizes the constant

intertwining of the cognitive, material, social, and normative, leading us to ask questions such as:

“what sorts of scientific entities or technological arrangements can usefully be regarded as being

co-produced with which elements of social order; ... what are the principal pathways by which

such co-production occurs[?]” (p. 6; p. 18).

My analysis of disciplinary and professional development also looks beyond

sociotechnical factors to engage with discourses. My work here is significantly inspired by Paul

Edwards’ The Closed World (1996), which works at the intersection of computing machinery

and metaphors of computing in the Cold War era. More specifically, central to Edwards’ analysis

is the idea that discourse “is a self-elaborating ‘heterogeneous ensemble’ that combines

techniques and technologies, metaphors, language, practices, and fragments of other discourses

around a support or supports” (p. 40). Other important points to take away from Edwards include

his emphasis on the social processes that are at the heart of discourses, as well as his claim that

computer technology acted as a crucial “support” for Cold War, closed-world discourses. The

value of discourse as a theoretical framework is also evident in recent work by other scholars.

Ronald Kline, for example, carefully traces the long historical development of the phrase

“information technology,” with particular emphasis on how various discourse communities

promoted their own particular interpretations of what this “keyword” signified (2006).

Building on the work of these authors, my own historical study of the field of computer

engineering frames disciplines and professions as “heterogeneous ensembles” that are composed

of diverse sociotechnical elements, ranging from discourses, identity markers, and institutional

structures to technologies and bodies of knowledge.5 Hence, I depart from Edwards by seeing

discourse as one among many important facets of disciplinary and professional development,

rather than the fundamental plane on which the field of computer engineering has historically

been constructed. Further building on the preceding theoretical moorings, I claim that

establishing and legitimating a discipline or profession requires that its proponents bring many

heterogeneous elements into alignment in order to achieve some level of stability. Yet this

stability is necessarily both partial and temporary, in no small part because these fields and

5 As authors such as David Hess noted, Foucault is generally credited with initially developing the
concept of a “heterogeneous ensemble” (1997, p. 107). It has been widely applied in the field of science
and technology studies, in no small part due to the ease with which it can be applied to a wide variety of
sociotechnical subjects.

www.manaraa.com

 14

subfields always exist against the backdrop of pre-existing systems of professions and/or

ecologies of disciplines. Drawing on the coproduction framework, on the other hand, helps

remind us that the realization of computer engineering as a distinct field of activity involves not

only discursive achievements, but also successful alignments of social and technical order, often

in the midst of rapid sociotechnical change.

I also explicitly and intentionally deal with issues of discipline formation and

professional development in my account, thereby helping to bridge some of the analytic and

topical divides reflected in the preceding literature review. More specifically, I document the role

of professional societies and educational institutions as key interfaces or mediators between the

professional and disciplinary realms. In fact, professional societies are particularly important in

this regard, given that they often serve as a key common point of contact for members of

industry and the academy. Further, professional society publications and activities frequently

provide unique high-level perspectives on the state of a given field. Finally, and as suggested by

its title, one of the key themes of this dissertation centers on the somewhat ambiguous position of

computer engineering between profession and discipline, which I claim has been a major yet oft-

overlooked source of instability in the more than five-decade-long history of the field.

Methodology

As a guiding principle, the research on which this project is based is largely focused on

those persons and texts most closely associated with the field of computer engineering. Hence,

my goal is to develop a history of the field that emphasizes the perspectives of computer

engineers themselves. While this approach keeps the project somewhat more focused and

manageable, I avoid a monolithic account by grappling with the multiplicity of viewpoints and

agendas that have existed within the field. The project is also concerned with individuals,

technologies, and texts from adjacent fields, but with an emphasis on how engineers have reacted

to, commented on, and/or interacted with these “outsiders.”

It is also important to emphasize that this account is almost exclusively concerned with

developments in the United States. In terms of benefits, this approach makes the scope of this

project far more manageable, especially with respect to placing reasonable bounds on both the

research required and the length of the resulting analysis. On the other hand, I am acutely aware

that many of the themes developed in this dissertation are partially or even wholly peculiar to the

www.manaraa.com

 15

American context. In some nations and regions, for example, the field of computer engineering

does not exist per se, while other disciplinary designators such as informatics or software

engineering may take on different meanings and/or have much greater prominence, especially as

compared to the United States. In the future, I intend to look more closely at the unique

development of computer engineering and related fields in a variety of national and cultural

contexts, with the present case standing as one example among many.

The data presented in the following chapters has been culled from a wide variety of

primary sources, including professional journals, trade magazines, conference proceedings,

committee reports, and textbooks. I also draw on secondary historical accounts, as well as a

handful of oral histories. My approach is largely qualitative in nature as I examine historical

patterns, explore the positions and interests of different actors and groups, and seek out the

deeper values, ideologies, and meanings of an array of discourses and texts. Some quantitative

data is presented to account for broad-based trends, including the historical development of

academic departments and degree programs in computer science, computer engineering, and

related fields. Below I discuss in more depth the significance of the major types of source

material on which this project is based.

Professional Publications

 The various publications of professional societies – such as transactions, conference

proceedings, journals, and magazines – are a main source of data for this project. In narrowing

down the scope of this material, I concentrate on the publications of the most relevant

professional groups, including the AIEE, IRE, IEEE, and ACM. At times my analysis also

narrows to relevant sub-groups, such as the IRE-PGEC and the IEEE’s Computer Society. In

addition to allowing us to glean the larger orientations, agendas, and institutional histories of

these groups, many professional publications act as sounding boards for high-profile actors in the

field. They also sometimes serve as outlets for debate over contentious issues, especially via

letters to the editor, published speeches, and/or special messages from the leaders of

organizations. I also use a number of personnel ads published in AIEE and IRE journals to

document some early employment trends in the field. To varying extents, these publications have

historically served mixed audiences of professionals with ties to both the academy and industry.

As this overview suggests, professional society publications are valuable not only because they

www.manaraa.com

 16

tell us much about the parent organizations, but also because they frequently provide valuable

windows into contexts that are otherwise difficult to access or assess, such as the private sector.

Trade Magazines

 The early chapters of my analysis present significant evidence drawn from two of the

largest computer-oriented trade magazines from the 1950s and 1960s, namely Computers and

Automation and Datamation. And while these outlets tended to lack the prestige and technical

rigor of other types of publications, they often featured articles and commentary that were more

candid, daring, and accessible. Datamation, for example, became well-known for carrying the

witty yet biting editorial remarks of Herb Grosch, the so-called “enfant terrible of the computing

world” (Shapiro, 1994, para. 14). These magazines also maintained closer ties to the computing

industry, frequently discussed larger trends in the field, and periodically published critical

evaluations of the major professional societies and computer conferences. Looking at the articles

and advertisements published in these magazines provides valuable opportunities for comparison

and contrast, especially through juxtapositions with professional society publications.

Curriculum and Model Program Reports

The latter chapters of this dissertation place significant emphasis on a long series of

curricular recommendations and model program reports. Many of these were authored and

published by subcommittees of the ACM and IEEE, while others were developed by quasi-

independent groups like the COSINE Committee. In order to further enrich my analysis, I seek

out and analyze related documents such as interim reports, summary articles, reviews, and

follow-up commentaries. These types of sources are important in that they often explicitly

describe what counts – or what an author or group thinks should count – as computer engineering

and/or computer science. These often involve idealized depictions of a given field’s history and

agenda, supported by in-depth evaluations and surveys of the structure and content of academic

departments, programs, and courses. In addition, the authors frequently articulate an imagined

future for various computer-oriented disciplines by presenting recommended reforms and

detailed curricular recommendations and model programs. At the same time, these documents

often reveal some of the ways in which the field's academic and professional spheres are linked.

Perhaps not surprisingly, many of these reports have triggered extended discussion and heated

www.manaraa.com

 17

debate over the identity, agenda, and scope of computer engineering, computer science, and

related fields.

Other Sources

I use a large number of sources that do not fall neatly within the categories describe

above. Material in this category includes primary sources such as textbooks, reference volumes,

and other types of committee reports. I also make extensive use of secondary sources, including

other historical accounts, retrospective histories by primary actors, and oral history interviews

conducted by both others and myself. I often draw on these sources to compare and contrast how

various actors, groups, and sectors have dealt with common themes and issues. As such, these

materials help me to both “triangulate’ my analysis and develop more compelling arguments.

Summary of Chapter Contents

The historical account that follows features six body chapters and a concluding epilogue.

The body chapters can be further divided in two major parts, with Chapters 2 through 4 focused

on the pre-history and early history of “computer engineering.” In these chapters I place

particular emphasis on documenting how the field of computer engineering gained a partially

distinct professional identity, largely in the context of industry and through the activities of

professional societies.

Turning to individual chapters, the major goal of Chapter 2 is to account for the historical

emergence of “computer engineer,” “computer engineering,” and closely related terms. Doing

so, however, demands a summary review of the history of electrical engineering, with a focus on

both the early decades of the twentieth century and the development of the American Institute of

Electrical Engineers (AIEE) and the Institute of Radio Engineers (IRE). I then turn to the 1940s,

when a handful of influential electronic computer projects got off the ground, and when a

nascent computing community first started to emerge. My account looks closely at engineers,

both by examining the roles they played in designing and building the first high-speed, digital

computers, and by documenting the early movement of groups such as the AIEE and IRE into

various areas of computing.

In the latter parts of this chapter I turn to some of the distinct identities, activities, and

bodies of knowledge that were growing up at the intersection of engineering and computing,

www.manaraa.com

 18

especially in the early and mid-1950s. And by focusing on some of the earliest uses of terms

such as “computer engineer” and “computer designer” in the context of industry and by

professional societies, I analyze how the boundaries around this emergent branch of the

engineering profession were defined and negotiated in relation to both the development of

computer technology and some of the other major subfields of computing. My account also gives

voice to a handful of commentators who were beginning to critique these boundaries, especially

in light of the apparent, ongoing expansion of the divide between computer designers and

computer programmers.

In Chapter 3 I turn to the internal development and relational interaction of three major

groups that maintained interests in the computer field through the 1950s and into the 1960s,

namely the IRE’s Professional Group on Electronic Computers (IRE-PGEC), the AIEE’s

Computing Devices Committee (AIEE CDC), and the Association for Computing Machinery

(ACM). My account frames these organizations as constituting a dynamic “system of

professional societies” that was united not by a shared association with a single profession or

discipline, but rather by their overlapping and interpenetrating settlements in various bodies of

knowledge and domains of technology. Further, I argue that the overall stability of this system

can be accounted for by looking at a long series of negotiations and compromises that were

worked out within and between these groups.

I place particular emphasis in this chapter on the long-running Joint Computer

Conference (JCC) series and associated National Joint Computer Committee (NJCC). In fact, I

claim that the JCC and NJCC played key roles in 1950s as common points of contact where

these groups could negotiate their respective sociotechnical settlements. The success of this

process is all the more striking given the presence of various destabilizing forces, including rapid

technological developments, changes in the size and scope of each group, and incursions from

outsiders. My account also speaks to how the stability of this system was maintained through a

series of major institutional changes in the early and mid-1960s, including the merger of the

AIEE and IRE to form the Institute of Electrical and Electronic Engineers (IEEE) and the

founding of the American Federation of Information Processing Societies (AFIPS). And finally,

throughout this chapter I document the close association of the IRE-PGEC and its successor

organization (the IEEE Computer Group) with “computer engineering” and “hardware.”

www.manaraa.com

 19

 While my third and fourth chapters look at roughly the same historical period, the latter is

focused on three additional sites where the dominant images of computer engineering developed,

namely in industry, hardware-software discourses, and the academy. To begin with, I examine

how the term “computer engineer” and its variants went through a period of interpretive

flexibility in the mid-1950s, finally stabilizing in the 1960s to refer to design-oriented work in

computer circuits, logic, and systems. In so doing, I show how computer engineers and designers

were associated with the domain of computer “hardware,” linked to engineering education and

the engineering profession, and positioned in relation to other types of computer professionals.

These themes provide an appropriate segue to a more general discussion of the computer field’s

evolving sociotechnical boundaries. More specifically, I juxtapose the fragmentary tendencies of

the software-hardware dichotomy with a variety of calls for “integrating” the computer field’s

major divisions of labor, technologies, and bodies of knowledge.

The second major part of this chapter reviews some early trends in the formal education

of computer professionals, especially through the 1950s and into the early 1960s. More

specifically, I document the slow development of computer-oriented courses and degree

programs in electrical engineering departments, as well as some of the earliest efforts to promote

the “computer sciences” as a formative academic discipline. My account also raises questions

about the extent to which the academic context was positioned to serve as a site for either

challenging or reinforcing the computer field’s major sociotechnical boundaries.

Chapters 5 through 7 cover a historical period running from roughly the mid 1960s to late

1980s and early 1990s. Topically, these chapters are primarily focused on both the establishment

of a distinct disciplinary identity and negotiation of a partially unique “sociotechnical

settlement” for the field of computer engineering, especially through developments in the

academic context. This part of the dissertation also engages with two other major themes. First, I

discuss the evolving character and role of the relevant professional societies. Second, I document

how computer engineering came to occupy an unstable position between the engineering

profession, on the one hand, and independent disciplines such as computer science, on the other.

Chapter 5, in particular, carries my analysis of the educational sphere through the

remainder of the 1960s and into the early 1970s. The first major part of this chapter documents

ongoing efforts to define, position, and institutionalize the discipline of computer science. In

addition to emphasizing the role of the ACM and its constituency in this process, my account

www.manaraa.com

 20

also points to the importance of “bottom-up” processes of disciplinary development, where the

establishment of computer science courses, programs, and even departments greatly bolstered the

legitimacy and independence of this young field. In the middle part of this chapter I turn to a

handful of “insiders” who raised concerns in the mid- and late-1960s about computer science

education, including its continued movement away from engineering and technology.

This line of analysis helps sets up the second major part of this chapter, which details

how a new cadre of electrical engineers lobbied for a thorough reorientation of electrical

engineering education toward computers and computing. By focusing on the activities of the

COSINE Committee and its members, I document how the initial efforts of these reformers to

bring computer science “into the fold” of electrical engineering were largely replaced by calls for

the establishment of computer engineering degree options and programs within existing

engineering programs. While these developments laid important foundations for the ongoing

development of computer engineering education, they also suggested that the major

sociotechnical schisms of the computer field were being reproduced in the academic sector. On a

related note, my analysis also reveals growing tensions between the dominant images of

computer science as an independent discipline and computer engineering as a branch of the

engineering profession.

 My sixth chapter is largely focused on the history of the IEEE Computer Group – later

renamed the Computer Society – from approximately the mid-1960s to late-1980s. To begin

with, I demonstrate how this group’s position between the IEEE as its parent organization and

the ACM as its independent sibling society was maintained during this period. More specifically,

I show how various structures and processes of “sociotechnical mediation” helped create a

modicum of stability in this system of societies, especially against the backdrop of rapid

technological and institutional change, and irrespective of extensive overlap and penetration

between the sociotechnical settlements of each group. In fact, I argue in this chapter that the

relationship of the IEEE Computer Society and the ACM through the 1970s and into the 1980s

bore a striking resemblance to the evolving relation of hardware and software. By more closely

examining the interests and activities of these two groups in a handful of “boundary” domains –

such as computer architecture, microprogramming, and software engineering – I argue that these

similarities were no coincidence, but rather a potent reflection of the ongoing coproduction of the

www.manaraa.com

 21

computer field’s social and technical order. This chapter also reveals a gradual fading of the

Computer Society’s image as primarily an organization of and for computer engineers.

Chapter 7 starts by examining the Computer Society’s expanding activities in the

educational arena, beginning in the 1970s. My analysis reveals two countervailing trends. On the

one hand, I show how various actors and groups worked to develop curricular and program

recommendations that were designed to better integrate or unify computer science and computer

engineering education, beginning with the Computer Society’s “Computer Science and

Engineering” movement from the mid-1970s to mid-1980s. This trend culminated in the late-

1980s and early 1990s with the “Computing as a Discipline” and “Computing Curricula 1991”

projects, which involved unprecedented levels of cooperation between the Computer Society and

the ACM and seemed to point the way toward major curricular reforms.

On the other hand, this chapter reveals the perennial fragmentation of computer science

and computer engineering education, as reflected by the publication of alternative and competing

curricular recommendations, the prevailing structure of degree programs and departments, and

the establishment of multiple accreditation systems and processes. In addition to emphasizing the

destabilizing character of these forces, my analysis speaks to how these trends are linked to other

persistent schisms in the field, including those based on the poles of software and hardware,

science and engineering, and profession and discipline.

Finally, I use a concluding Epilogue to accomplish two major goals. First, I review some

recent developments in the educational arena to highlight continued instabilities in the

disciplinary landscape of computing, as well as new calls for the establishment of a distinct

disciplinary and professional identity for the field of “computer engineering.” Second, I bring

into relief important countervailing trends through a brief historical introduction to the

software/hardware codesign movement. My analysis also points to some of the larger

implications of these trends, especially as related to the future training of computer professionals

and the future shape of computer technology. As my account makes clear, debates about the

sociotechnical boundaries of computer science and computer engineering are not only deeply

rooted in history, they are also alive and well today, and their outcome will likely have far-

reaching implications.

www.manaraa.com

 22

Chapter 2

From Engineers and Computing to Computer Engineering

Among the many important developments that often appear on timelines and

chronologies of computer history, the first Joint Computer Conference (JCC) is an oft-cited

event. And indeed, the conference is worthy of recognition. Held in Philadelphia in 1951, the

meeting attracted almost 900 attendees, making it one of the largest – if not the largest –

computer conferences to date. Yet most historical accounts fail to discuss the distinct scope and

tenor of the event. Unlike other early events of this type – which tended to attract a wide variety

of attendees and cover a broad swath of topics – the inaugural JCC was primarily focused on the

“engineering aspects” of computer design and construction. It was also largely organized under

the auspices of two professional societies, namely the American Institute of Electrical Engineers

(AIEE) and the Institute of Radio Engineers (IRE), and electrical engineers dominated both the

conference planning committee and the roster of conference speakers.

In light of this overview, how might we account for the fact that this conference was both

largely focused on the physical technology of computing and primarily organized by and for

electrical engineers? Further, does the unique character of this event have some larger historical

significance? As I argue in this chapter, the orientation of the first JCC was not an anomaly, but

rather an important element in a more general movement. By the late 1940s and early 1950s, a

growing band of electrical engineers had recognized the rapid expansion and increasing

importance of high-speed, electronic computers, and they started to actively stake out their

territory in this nascent yet burgeoning domain of activity. And as this movement gained

momentum through the early and middle part of the 1950s, terms such as “computer engineer”

and “computer designer” emerged to provide a distinct social and professional identity for

engineers who were working in the computer field. Further, these new identities emerged in

tandem with – and became linked to – the general sphere of computer technology designated by

the term “hardware.”

www.manaraa.com

 23

Yet before I develop a more detailed account of these trends, it is necessary to provide the

relevant background, especially with regard to both the history of electrical engineering and early

development of high-speed computing. The first section of this chapter reviews the history of

electrical engineers and electrical engineering knowledge, with an emphasis on the founding and

development of the AIEE and IRE. I then turn to the 1940s as a key decade for high-speed

electronic computing, when a handful of major computer development projects were getting

underway, and when tentative efforts to cultivate a more cohesive computing field gained

momentum. In order to further appraise the role of electrical engineers and electrical engineering

in this historical account, this chapter also provides an extended discussion of AIEE and IRE

efforts to enter various areas of computing, from roughly the mid-1940s to mid-1950s.

The latter sections of the chapter turn more specifically to the distinct identities,

activities, and bodies of knowledge that were emerging at the intersection of engineering and

computing. Using the first joint conference as a window into this theme, I review a number of

early comments about both the historical and prospective links between electrical engineering

and computing. In doing so, I uncover some of the earliest uses of labels such as “computer

designer” and “computer engineer.” As I demonstrate, exploring the history of these terms brings

into further relief early efforts to establish a distinct professional identity for the many electrical

engineers who were designing, building, or otherwise working with the first generation of high-

speed electronic computing machines. Further, tracing out the history of the term “computer

engineering” reveals some of the ways in which the boundaries around this area of activity were

being defined and negotiated in relation to both the ongoing development of computer

technologies and the other major subfields of computing. Yet as suggested in the account that

follows, the long-term relationship between engineers, on the one hand, and computers and

computing, on the other, was neither obvious nor fixed.6

A Brief Early History of Electrical Engineering and Its Institutes

For many decades, the AIEE and IRE were the two major professional societies for

American electrical engineers, and tracing out their respective histories forcefully reveals how

the development of engineering fields and subfields frequently involves the negotiation of social,

6 In historical terms, the noun “computers” has frequently been used to refer to the machines themselves,
while the verb “computing” more often refers to the use or application of such machines.

www.manaraa.com

 24

technological, and epistemological boundaries. A review of this history also provides important

background framing for the remainder of this chapter. Established in 1884, the AIEE was formed

as the first national professional society for American electrical engineers. In summary, the

founding of the group was largely stimulated by the rapid development and maturation of

electrical science and technology, along with a growing recognition that the relatively young

field of electrical engineering was distinct from its historical forerunners, such as civil and

mechanical engineering. As explained by historian A. Michael McMahon, the new field “was

veering off sharply from America’s traditional engineering culture” (1984, p. 1).

With its leadership and membership ranks initially filled out with a “broad spectrum of

electricians and capitalists” (McMahon, 1984, p. 29), the founding and early expansion of the

AIEE paralleled the growth and maturation of the electric power industry, and to a lesser extent

the telegraphy industry. Yet the Association was also developing in concert with the increasing

professionalization and academization of electrical engineering work and education. By the late

decades of the nineteenth century, the formal training of electrical engineers was gaining

momentum in colleges and technical schools, initially in physics departments, but increasingly in

standalone engineering departments. The composition of the AIEE – as well as the field of

electrical engineering more generally – was increasingly populated by rank-and-file engineers,

scientist-engineers, and engineering managers, many who happened to hold engineering degrees

(Layton, 1971, p. 39).

By the early 1910s, the AIEE’s primary orientation toward both power engineering and

the commercial sphere was well established. Further, it was clear by this time that the electrical

engineering field was entering a phase of rapid diversification, in no small part due to ongoing

scientific breakthroughs and technological developments. For instance, the discovery of the

electron in the latter part of the nineteenth century opened up a broad swath of research into

related electrical phenomena, devices, and applications. The communications field in particular

benefited greatly from this research, especially as the invention and refinement of vacuum tubes

– one of the most important of the early “electron devices” – helped pave the way for the

development of radio broadcasting and other new types of wireless communication. In a move

that was clearly intended to bring these and other new areas of research under the AIEE’s

umbrella, the institute formed a series of new technical committees from around 1910 onward

(McMahon, 1984, pp. 126-127).

www.manaraa.com

 25

Yet tentative steps to establish a committee in the increasingly important area of radio –

or “wireless telegraphy,” as it was called at the time – came too late. Responding to the AIEE’s

lack of coverage in low-voltage and wireless technologies, two upstart radio engineering

societies merged in 1912 to form the IRE. And while this new group was in many ways indebted

to the AIEE as its historical forerunner and organizational prototype, the IRE also represented a

new and increasingly divergent subculture of electrical engineering. As described by McMahon,

radio engineering, “though close intellectually and institutionally to power engineering,

possessed a distinctive social and technical basis” (McMahon, 1984, p. 131).7

The distinct character of the new group was linked to a number of factors. For starters,

and in contrast to the make-up of the AIEE, radio engineers tended to be younger and often

worked for smaller companies (Abbott, 1988, p. 180). In addition, many of the concerns faced by

the IRE and its members centered on the sorts of issues that typically challenge new fields and

subfields. For example, standardization of units and measures was one such issue that received

significant coverage. Another important topic centered on new technological developments,

especially in the area of electron devices. And finally, Layton has argued that the IRE’s early

orientation toward science and “scientific professionalism” further distinguished it from the

AIEE (Layton, 1971, p. 43; 251).

Yet as the field matured in subsequent decades, the IRE remained largely oriented toward

radio industry and technology, a trend that mirrored the persistent links between the AIEE and

the power industry. This tilting of the IRE toward radio was increasingly problematic, especially

given the growing prominence and expansion of electronics as a more general field of interest

through the 1920s and the 1930s.8 While electronics had largely grown out of radio engineering

and technology, it quickly diversified and grew to the point where radio was overshadowed by

both the rapid expansion of electronics research and a proliferation of new applications. And in a

7 While this comment is ostensibly about the radio engineering, it nicely captures the more general
processes of division and fragmentation that have led to the periodic creation of new engineering fields
and subfields. Yet it is often difficult to sort out the primary reasons for such divisions. Regarding the
IRE, Layton has argued that the motivations for founding the group were largely professional rather than
technical. More specifically, he explains that the formation of the IRE was significantly a reaction to
AIEE moves around 1912 to relax membership requirements – and hence make the organization more
friendly to business (Layton, 1971, p. 43). Per Layton, business interests often tend to promote division in
the engineering field, while professionalism often encourages greater unity (p. 44).
8 Further, and as noted in an early historical retrospective authored by well-known Cambridge computer
pioneer Maurice V. Wilkes, the rising prominence of electronics was in part reflected by the
establishment of the monthly magazine Electronics in 1930 (Wilkes, 2004, p. 1).

www.manaraa.com

 26

somewhat ironic reversal of roles, it was the AIEE’s Communications Committee that moved to

fill this gap in the 1930s, largely by expanding conference activities and publications in the area

of electronics (McMahon, 1984, pp. 188-189). On the one hand, the AIEE succeeded in serving

some of the needs in this budding field, while also encouraging joint AIEE-IRE activities in

areas of common interest. On the other hand, McMahon has argued that the AIEE nonetheless

“remained a predominantly power engineering society” (1984, p. 194), both during this period

and beyond.

The Second World War further shaped the social and technological boundaries of the

electrical engineering field. For starters, wartime research helped set the stage for the continued

ascendance of electronics engineering and technology. Per McMahon, “the wartime R&D

program powerfully launched electronics as the nation’s dominant technology in the postwar

era” (1984, p. 195). Even more importantly for the present analysis, an even larger number of

developments from this period were pivotal for many subsequent technological developments,

including high-speed electronic computers. Research in the area of radar, for instance, led to

innovative new devices like mercury delay lines, as well as to dramatic improvements in existing

devices, such as vacuum tubes. Further, considerable experience was gained during the war in

the design and construction of electronic systems of unprecedented scale and complexity. A

number of major research projects, for instance, advanced the state of the art in the area of

analog computing devices, especially as applied to problems such as automatic gun control.

A wide range of difficult computational problems encountered during the war also helped

sow the seeds for the emergence of large-scale digital computers. The calculation of ballistics

tables was a particularly intense area of activity that provided much of the justification for the

design and building of war-era computers such as the ENIAC. These early projects also hinted

at the major potential areas of involvement for electrical engineers in computing. More

specifically, these areas included components (or devices), systems, and applications. The

distinction between analog and digital computers surfaced as another important boundary that cut

deeply through all phases of computer design and use.

The war also brought into relief the major social and technical divisions of labor in the

area of electronics. Most important for the present analysis, it was increasingly evident that

electrical engineers wielded no clear monopoly over this expanding domain. To be sure, many

electrical engineers played important roles in war-oriented electronics research, but many of their

www.manaraa.com

 27

best-known contributions were in the administration of research programs and shaping of R&D

policy (McMahon, 1984, Ch. 6; pp. 195-206). In terms of actual research and development

work, engineers were often overshadowed by physicists generally, and “electronic physicists”

specifically.

While McMahon sketches the outlines of this story, historian Peter Galison provides a

detailed description of wartime research activities that nicely highlights the typically lop-sided

relation of physicists and engineers (McMahon, 1984, 233-245; Galison, 1997, Ch. 4). Abbott

similarly notes that physicists were often at the forefront of innovation in the area of electrical

engineering and electronics, while engineers were more frequently involved with specific

applications and routine types of work (Abbott, 1988, pp. 181-182). As these accounts make

clear, science in general – and physics in particular – maintained an upper hand over engineering

in terms of prestige and status, both during and after the war. In fact, a prominent speaker at the

1946 National Electronics Conference revealed the extent to which engineering was viewed as

“downstream” from science by titling his talk “Physics of Today Becomes the Engineering of

Tomorrow” (“1946 National Electronics Conference,” 1946, p. 665). As I discuss below, the

early development of the computer field was similarly marked by the presence of both physicists

and engineers, at times working in cooperation, and at times standing in tension.

Finally, it is worth noting that from the 1940s onward the IRE can be credited for

reversing its tendency toward specialization, allowing it to secure a position at the forefront of

the electronics field. As McMahon notes, “the electronics engineers’ choice of the IRE over the

AIEE for their professional society made all the difference for the futures of the two societies”

(1984, p. 214). And as subsequent passages make clear, this was one of a number of factors that

tended to inhibit AIEE’s involvement in computing. On the other hand, the AIEE was one of the

earliest professional organizations to express formal and active interests in computing. Exploring

this interest, however, first requires a review of some early developments in computing.

Intersections of Expertise in Early Computer Development Projects

As noted above, wartime research activities provided significant impetus for the design

and construction of high-speed computing machines. Other key developments can be traced back

to earlier decades and even earlier centuries. Since much of this history has been covered in

detail elsewhere, I will largely restrict my attention to surveying the social composition and

www.manaraa.com

 28

technical character of some of the early computer development projects, labs, and conferences,

with particular emphasis on the roles played by electrical engineers and electrical engineering

knowledge. This section is also focused on the 1940s, when the first high-speed electronic

computing machines were being built and becoming operational, and when a small but growing

cadre of organizations and individuals were coalescing around common areas of interest.

Regarding the overall scope and scale of computing during this time period, Aspray

estimates that by the mid-1940s there were at most ten major computer research centers, ten

operating high-speed computers, and 1,000 persons interested in computer development (Aspray,

1985, p. ix). In rather general terms, each of the early computer projects involved the assembly

of a diverse range competencies, knowledge, and resources, all of which helped facilitate the

successful design, construction, and use of the first high-speed computing and calculating

machines. Cortada, commenting on the skills required to build these machines, explains that

“[t]he electrician had to work with the engineer and the mathematician with the physicist to

make it happen” (Cortada, 1993, p. 14).

More specifically, electricians and low-level (or up-and-coming) engineers often acted as

the “higher technical labor” that was essential for physically building and testing these large and

very complex calculating machines. Numerous electrical engineers and physicists, on the other

hand, contributed a wealth of codified and tacit knowledge, especially in the overall design of

electronic systems, as well as in research and development activities involving electronic

devices, such as vacuum tubes. A large number mathematicians and scientists added important

theoretical angles and mathematical foundations, while also frequently grappling with the

challenges of actually using high-speed computing machines to solve mathematical problems.

This blending of disciplines and talents was evident in all of the early, large-scale

computer projects, albeit with interesting local variations. Yet credit for the design and

development of these early machines was rarely distributed evenly, and was frequently skewed

toward those individuals with more prestigious backgrounds in science or mathematics. At Bell

Labs, for instance, a series of large relay computers was designed and built from the late-1930s

to late-1940s. Much of this effort was led by George Stibitz and Samuel Williams, the former

with a background in mathematics and physics, the latter with significant training and experience

www.manaraa.com

 29

in engineering generally and electrical engineering specifically.9 As historian Atsushi Akera has

documented, in later years Williams was disappointed by the credit that was heaped on Stibitiz

for his role in the design of the Bell computers (Akera, 1998, p. 575).10

A variant of this theme played out in the story of the Automatic Sequence Controlled

Calculator (ASCC) or Mark I, another early computer that was largely based on

electromechanical technology. The design of this high-speed calculating device was primarily

formulated by Harvard’s Howard Aiken, who held an undergraduate degree in electrical

engineering and a Ph.D. in Physics (Aspray, 2000, p. 51).11 Yet the detailed design work and

overall construction of the Mark I was almost entirely in the hands of IBM engineers, who

assembled much of the machine from off-the-shelf components such as relays, switches, rotating

shafts, and clutches.

Completed in 1943, the Mark I was commissioned and used by the Navy and used to

solve numerous war-time computing problems. Yet just as the machine was being put into

service, a dispute between Harvard and IBM surfaced when Aiken failed to acknowledge IBM’s

role in the building of the computer. As described by Aspray, “The dispute may have stemmed in

part from the different ways in which scientists and engineers value contributions: Harvard

thought of Aiken’s functional specifications for the machine as foremost, while IBM regarded

the real work as residing in the engineering design and construction” (2000, p. 51). Far from an

isolated incident, the tendency for these kinds of links to form between university research,

science, and theory, on the one hand, and industry, engineering, and technology, on the other,

was an important factor in the unique trajectory of many subsequent computer development

projects, as well as in the more general development of the computer field.

9 Stibitz held an undergraduate degree in Math and Physics from Denison University, an M.S. from Union
College, and a Ph.D. in physics from Cornell (“Inventor Profile – George Stibitz,” 2002). Williams
received an M.E. degree in Electrical Engineering from Ohio State in 1905 (“Retirements,” 1946, p. 252).
10 Later in this same account, Akera goes so far as to describe Williams as “a mechanic and not a
mathematician” (Akera, 1998, p. 578). In light of both Williams’ education in electrical engineering and
his working experiences as an engineer at Bell Labs, “engineer” is a clearly a more appropriate and
accurate label for Williams.
11 Aiken’s dissertation work, which he completed in 1939, was doubly relevant for his later work in
computing. First, his research was focused on theoretical problems associated with vacuum tubes.
Second, these problems involved non-linear differential equations, which were very difficult to solve via
conventional means. As early as 1936, Aiken was considering how calculating equipment might assist in
solving such equations (Aspray, 2000, p. 51).

www.manaraa.com

 30

Surveying some of the major computer projects that got underway in the mid and late

1940s provides additional clues about the disciplinary composition of the formative computer

field. In terms of the technical foundations of large-scale computing, a shift from

electromechanical components (such as relays) to electronic components (primarily vacuum

tubes) was well underway during this time period. Further, much research in the design and

application of computing machines was situated in university computer labs, often through

extensive government support. In fact, universities were especially well suited to such projects

given the relative ease with which diverse talents, abilities, and resources could be assembled

and coordinated in academic research environments. Among the handful of early focal points for

computer research, Harvard, Princeton, the University of Pennsylvania, and MIT were some of

the key institutions in the 1940s.12 Surveying the activities at these four schools helps shed

additional light on how university research and development activities in computing variously

intersected with the major fields and subfields of science, mathematics, and engineering.

After the Mark I project soured Harvard’s relationship with IBM, Aiken’s Computation

Lab undertook the design and construction of three large-scale computers, namely the Mark II,

III, and IV. But in contrast to other early sites of computer research and development, the

relatively low status of engineering at the school contributed to the evolution of a unique culture

of computing at Harvard, one that emphasized mathematics, theoretical science, and

applications. As evidence for this tendency, the computer lab had close ties to the Department of

Engineering Sciences and Applied Physics, and Aiken’s tenure was in applied mathematics.

Further, many among the “strong cadre of master’s and doctoral students” that passed through

the lab were trained from 1947 onward in an applied mathematics program that was more

specifically oriented toward the use of computing machinery, rather than its design (Aspray,

2000, p. 52).

Yet historians also suggest that Aiken held a favorable view of engineering education as a

pathway into computing, even if it was not a readily available option for Harvard students. As

recounted by Kathleen Broom Williams, in 1945 Aiken told a visitor from the Aberdeen Proving

12 Aspray provides an excellent review of the entry and ongoing involvement of these four schools in
computing, with particular emphasis on educational activities such as courses and degree programs
(2000). And while he also discusses key developments at Columbia University, this school did not
spearhead an early computer design and development project. Instead, it maintained close ties with IBM,
which furnished the school with computers and other calculating equipment, and utilized Columbia
researchers in developing new and improved machines.

www.manaraa.com

 31

Grounds that he should seek engineers rather than mathematicians in staffing the Ballistics

Research Laboratory (1999). Indeed, Aiken may have gained this insight by observing the

researchers with whom he worked. As described by Williams, well-known mathematicians at the

Harvard Computation Lab such as Richard Bloch and Grace Murray Hopper worked very hard to

gain an in-depth understanding of the engineering and technical aspects of the Mark I.

As suggested by this overview, Harvard researchers frequently grappled with aspects of

computing that were likely labeled engineering elsewhere. But at Harvard, the term was

generally avoided. Further, Aiken gained an early reputation for his interest and expertise in

computer use, and both Aiken and Hopper published a number of important early articles

focused on programming and applications. In addition, historians such as Aspray have

documented Aiken’s notoriously “conservative approach to machine design” (2000, p. 54). In

more general terms, the movement of the Harvard Lab away from the engineering and design

dimensions of computing was established relatively early, with Aiken announcing in 1949 that

only one more computer (the Mark IV) would be built at the school (Aiken, 1951).13 Aiken’s

moves hinted at larger trends that were emerging at the time, as the primary locus of computer

design and development activities shifted from universities to industry, a point to which I return.

In many ways, the early history of computing at Princeton paralleled developments at

Harvard. For starters, computing at the school was largely situated in the Institute of Advanced

Studies (IAS), which was primarily composed of distinguished mathematicians and scientists.

One member of the lab, John von Neumann, developed an interest in applied mathematics and

related topics through his war-related research activities. Recognizing the value of high-speed

computing devices in his own work, von Neumann visited the Moore School and gained

familiarity with the ENIAC and EDVAC projects (Ceruzzi, 2003, pp. 21-23; Aspray, 2000, p.

72). By 1945 he was actively pursuing a computer project at the IAS, yet he faced many

obstacles (Aspray, 2000, p. 72). In addition to the challenges that came with finding funding for

such an ambitious project, von Neumann had to work around the dominant culture and

orientation of the IAS, which placed utmost value on theory, science, and mathematics. As

Aspray explains, “Most of the faculty regarded computing as a practical subject area, not worth

13 Soon after the Mark IV was completed in 1952, Aiken explicitly “ceded hardware development to
industry” (Aspray, 2000, p. 54), a point to which I will return.

www.manaraa.com

 32

of their investigation,” adding that “there was great concern among the faculty over having to

share their hallowed grounds with engineers, technicians, coders, and operators” (2000, p. 73).

The resourceful von Neumann ultimately attracted the necessary support and backing for

his venture, in part by soliciting additional design and engineering support from the Radio

Corporation of America (RCA), as well as from other Princeton departments and labs (Aspray,

2000, p. 73). And even though this particular machine didn’t go into operation until 1952, the

technical knowledge gained during the project quickly spread beyond Princeton, and the IAS

computer was even used as a prototype in building machines at other sites, such as the RAND

Corporation (Aspray, 2000, p. 73). Yet formal education in computing at Princeton remained

sparse, and the relationship between the IAS computer project and Princeton’s Electrical

Engineering Department was minimal, at best. Willis Ware, who worked on the IAS computer

project while pursuing a Ph.D. in electrical engineering, more recently noted the difficulties he

faced as he tried to find electrical engineering faculty at Princeton who were qualified to review

his computer-oriented thesis (2005). In more general terms, computing at Princeton went into a

short period of decline in the mid-1950s. But as documented by Aspray (2000), this trend

reversed in the 1950s, in large part due to computer-oriented research and educational activities

that were led by Princeton’s Electrical Engineering Department. I return to this topic below.

The University of Pennsylvania, on the other hand, leaned much more strongly toward

the engineering end of the science-engineering spectrum, perhaps not surprising given that the

Moore School of Electrical engineering was the university’s principal site for computer-related

research. One of the earliest and best-known computer projects at the School involved the design

and construction of the ENIAC between 1943 and 1945. Supported by Army funding and built

for the Ballistics Research Laboratory, the ENIAC’s somewhat esoteric design in part reflected

the wartime context in which it was developed. In fact, a “freeze” was placed on the design of

the machine at a relatively early stage, in hopes that the ENIAC would be up and running as

quickly as possible (Winegrad, 1996, p. 8). The successful construction of the computer also

brought together a broad array of expertise in areas such as engineering, science, and

mathematics, and electrical engineers and electrical engineering knowledge were especially

prominent in this particular project. 14

14 Akera’s history of the ENIAC is especially valuable in revealing the multi- and interdisciplinary
character of the project (Akera, 2000, pp. 62-121).

www.manaraa.com

 33

John W. Mauchly and John Prester Eckert shared much of the credit for the design and

construction of the ENIAC. Mauchly boasted a Ph.D. in Physics and a long-standing interest in

electronics, especially as related to scientific instruments (Stern, 1980; Mauchly, 1984). Eckert,

on the other hand, held B.S. and M.S. degrees in Electrical Engineering, both earned at the

Moore School (Lee, 1995, p. 271). Other important contributions came from the “senior

engineers” assigned to the project. These included T. K. Sharpless, another M.S. graduate of the

Moore School, and Arthur Burks, who both held a Ph.D. in Philosophy and possessed extensive

expertise in the area of logic. Mathematicians at the Moore School such as Hans Rademacher

also assisted with the mathematical dimensions of the ENIAC.15 Another mathematician,

Herman Goldstine, acted as the Army’s liaison between the Ballistics Research Laboratory and

the Moore School, but his contributions to the ENIAC were mainly managerial and logistical.

And finally, it is worth noting that a host of relatively “junior” Moore School engineers and

researchers made significant contributions in many areas, including component design and

testing.

 The ENIAC project clearly boosted the Moore School’s reputation as an influential and

well-known early location for computer development and research. It also became a key site for

the training of computer-oriented electrical engineers, and the historical account below is

checkered with Moore School staffers and graduates. Many of these engineers contributed to the

early computer-related activities of the AIEE and IRE, especially by serving on committees,

publishing articles, and presenting papers at conferences. Yet for various reasons, the Moore

School’s prominent position in computing started to fade from around 1946 onward.16

As a final case, the history of computing at MIT can be placed somewhere between the

Harvard and Penn examples. Research in the general area of computing machinery started early

15 The well-known mathematician John von Neumann also visited the project regularly, although his
precise contributions have been the subject of much debate. He later became well known for his leading
role in the design and constriction of a high-speed electronic computer at Princeton’s Institute for
Advanced Studies (IAS). This machine was fully operational in 1952. von Neumann was also the sole
author of a 1945 report titled First Draft Report on the EDVAC, which introduced the basic concepts of
“stored-program” computing. While questions remain regarding the role of other computer pioneers in the
genesis of the stored-program idea, the term “von Neumann architecture” is often used in reference to this
type of computer design, which remains dominant today.
16 Aspray identifies three major factors that contributed to the declining prominence of the Moore School,
namely post-war civilian redeployment of key staffers, the reluctance of university administration to
support peacetime military research, and the inability of the school to support the commercial interests of
its staff (2000, pp. 59-60).

www.manaraa.com

 34

at MIT, especially through the building of differential analyzers by electrical engineers such as

Vannevar Bush and Samuel Caldwell (Aspray, 2000, pp. 43-46). MIT was also an important site

for the development of network analyzers, another early type of analog computing device.

Project Whirlwind, on the other hand, quickly became one of MIT’s most important and well-

known computer projects. From the mid-1940s onward the Whirlwind effort was headed by Jay

Forrester, who held B.S. and M.S. degrees in Electrical Engineering, the latter earned at MIT.

From the mid-1940s into the early-1950s, the Whirlwind team included top-level staff

and graduate students drawn from electrical engineering, mechanical engineering, physics, and

mathematics (Wildes and Lindgren, 1985, Ch. 17; Redmond and Smith, 1980). Yet despite this

diversity, electrical engineering students made up a very large share of the lab’s ranks. Further,

electrical engineering at MIT around this time had a particularly high level of prestige, as well as

a long-standing reputation for both its roots in physics and its orientation toward science and

mathematics (Aspray, 2000, p. 44). By all appearances, these characteristics made MIT

engineers especially well-suited to computer-related work, and the school was recognized early

on as a key site for computer research and development.

As suggested by these examples, electrical engineers and electrical engineering

knowledge played important roles in early computer research. Yet these roles varied significantly

from site to site, making it clear that there were no long-term guarantees regarding the position

of electrical engineers in the computer field. In fact, it was clear that these engineers often stood

in the shadows of other types of experts. As Akera explains, the hierarchies of prestige in

postwar computing research were largely a continuation of earlier trends: “the applied

mathematicians who aided the physicists in their wartime work first garnered the highest

authority with respect to computing research” (1998, p. 336). Following this line of inquiry,

Akera adds that mathematicians, engineers, and other types of specialists were each beginning to

pursue their own unique approaches to computer research and development, especially in the

postwar era. As the field expanded and diversified, the boundaries between these unique

approaches and particular areas of interest were increasingly evident.

Connecting the Islands: Early Steps toward a Field of Computing

As Akera has argued, the various computer development projects that were launched both

during and soon after World War II were leading toward a “more unified body of knowledge”

www.manaraa.com

 35

and a “more identifiable community” (1998, p. 207). Yet even as these projects started to lay the

social and technical foundations for a more recognizable computer “field,” the points of contact

between isolated researchers and labs remained relatively sparse, even well into the 1940s.

Aspray nicely summarizes the situation, explaining:

There were no professional organizations, regularly scheduled conferences, or

journals concerned primarily with high-speed computation. What few papers were

published appeared mostly in the proceedings of either the Institute of Radio

Engineers (IRE) or the American Institute of Electrical Engineers (AIEE), or in

Mathematical Tables and Other Aids to Computation. … The main channels of

communication between the isolated research centers and individual workers,

aside from individual personal contacts and occasional reports, were one-of-a-

kind seminars and conferences (1985, pp. ix-x).

Perhaps not surprisingly, many of the aforementioned universities and labs hosted these one-off

events, and they often published associated proceedings and reports. This early period was also

marked by some of the earliest expressions of interest in the computing field by the electrical

engineering institutes.

Early meetings of note include a relatively small gathering at MIT in 1945, which Aspray

identifies as one of the first computer conferences (Aspray, 1985, p. x). And another series of six

meetings on digital and analog computing machinery was held at Columbia University in 1946

and 1947, organized by the New York chapter of the AIEE (Alt, 1962, p. 300). While these

AIEE meetings are rarely referenced in today’s historical literature, Alt later claimed that each

attracted more than 200 attendees. And finally, Jay Forrester was instrumental in organizing a

series of five or six lectures on digital computers at MIT in the Spring of 1947, as part of the

Department of Electrical Engineering’s seminar program. Each of these lectures attracted 100 or

more persons (Alt, 1962, p. 300; Wildes and Lindgren, 1985, p. 287).

As researchers in the field came into more frequent contact with another through these

and other events, the social and technological contours of computing became more evident.

Take, for example, the “Moore School Lectures.” This influential and well-known eight-week

lecture course was held during the summer of 1946 at the University of Pennsylvania’s Moore

School. Appropriately titled “Theory and Techniques for Design of Electronic Digital

Computers,” the course brought together a diverse assortment of speakers and attendees, most

www.manaraa.com

 36

with backgrounds in engineering, the sciences, and mathematics (Campbell-Kelly and Williams,

1985, pp. xv-xvii). In terms of content, the course included introductory lectures covering a wide

range of topics, as well as numerous days dedicated to the close study of specific machines.

Yet the schedule for this event also reflected a growing boundary between the

engineering and mathematical dimensions of computing. As explained by one of the event’s

coordinators, roughly two and a half weeks of the course were planned around “two almost

independent programs … one program will treat certain mathematical topics in greater detail,

and the other will be concerned with the engineering design features relating to specific

components” (Campbell-Kelly and Williams, 1985, p. xxx). As suggested by this passage, the

splitting out of these two topic areas revealed that component design and mathematical analysis

were being viewed as quite distinct areas of activity. The “system” level of analysis, on the other

hand, tended to bridge the diverse phases of computer research and development.

The 1947 Symposium on Large-Scale Digital Calculating Machinery provides another

important early snapshot of the field (Harvard Computation Laboratory, 1948). Hosted by

Harvard University and jointly sponsored by Harvard and The Navy Department Bureau of

Ordnance, the relative size and scope of the event made it one of the most influential of the early

computer meetings. For starters, the symposium attracted more than 300 participants, drawn

from academic institutions, the government, and private industry. And while incomplete

information makes it difficult to compile detailed information about the attendees, members of

the symposium identified themselves under a wide variety of occupational and professional

designations, with the most common title being engineer, followed by mathematician and then

physicist (Aspray, 1985, pp. xvii-xxix).17 This was clearly a diverse group, in terms of

institutional affiliation, professional identity, and agenda.

The early heterogeneity of the computer field was further reflected in the range of topics

explored in the eight symposium sessions. A large number of papers and sessions covered

machine design and construction, with particular emphasis on descriptions of existing system

designs, storage devices, and input-output devices. And as a partial reflection of the research

17 Of the 335 “members” of the symposium, 86 were clearly identified as engineers or professors of
engineering. While many of these individuals were listed as electrical and electronic engineers, many
others were simply identified as “engineers,” and still others were affiliated with subfields such as
aeronautical or civil engineering. Another 49 of the participants were identified as mathematicians or
professors thereof, and 35 as physicists or professors thereof.

www.manaraa.com

 37

orientation of the host institution, a large number of sessions and papers coalesced around topics

such as numerical methods, computational techniques, and problem preparation and “coding.”

Follow-up events followed similar patterns. Take, for instance, the “Symposia on Modern

Calculating Machinery and Numerical Methods,” which was held in July of 1948 at UCLA and

attracted more than 500 attendees (“Symposia on Modern Calculating Machinery,” 1949, p.

381). As suggested by the title of the event, the program was organized around two major areas

of interest. The first centered on a series of “progress reports” that reviewed recent developments

at “principal” sites of computer research and development (p. 382). These reports were split out

into two separate sessions, one dedicated to reports from academic research centers, the other to

speakers from commercial laboratories.18 While it is difficult to determine the content of these

presentations, both the roster of speakers and the paper titles suggest that engineering and design

dimensions were prominent topics. On the other hand, an entirely separate set of sessions was

dedicated to an array of topics in areas such as programming, numerical analysis, and applied

mathematics (pp. 381-382).

While the content and organization of these symposia hinted at growing boundaries

between the design and application – or engineering and scientific/ mathematical – dimensions

of computer research and development, commentators like John W. Mauchly were explicitly

commenting on the emergent social and technological boundaries of computing. In order to

foreground these remarks, I turn to a brief description of the ENIAC. While this machine was

one of the best known of the early electronic computers, it also played an important role in

stimulating subsequent technological developments and new divisions of sociotechnical labor.19

Mauchly, the ENIAC, and the Machine-Instruction Boundary

Following a pattern that is well-known among historians of technology, the ENIAC’s

overall ease of operation was clearly limited by its rapid construction, esoteric design, and

18 These two panels also tell us much about the shifting landscapes of computer research and development
in the 1940s. Academic research centers represented at the conference included Harvard, MIT, the
University of Pennsylvania, Princeton, and the Illinois Institute of Technology (IIT). Discussions of
commercial developments included Eckert-Mauchly Computer Corporation, Engineering Research
Associates, IBM, Bell Labs, and Raytheon.
19 There is little question that many important computing devices preceded the ENIAC, including high-
speed electromechanical machines like the Harvard/IBM Mark I and the Bell Labs series of relay
computers. Yet the vacuum-tube-based ENIAC stands apart as one of the earliest, large-scale computers
that was largely based on electronic components and technology (Van der Spiegel, et al., pp. 121, 123).

www.manaraa.com

 38

reliance on a host of new technological developments. In order to solve mathematical problems

using the ENIAC, machine operators set myriad electronic switches and physically

interconnected, via wires or bundles of wires, the various sub-units of the device. The

configuration of the computer at any given time reflected a wide range of considerations,

including the specific mathematical equations to be solved and the sequence of operations to be

performed (Van der Spiegel, et al., 2000). As noted in many historical accounts, literally

“rewiring” the machine to change its operation proved time-consuming and tedious, a reality that

was evident even before the ENIAC was complete and operational.

One limitation of the ENIAC design that quickly became evident centered on the fact that

the sparse memory of the machine could only be used for “data,” while the machine instructions

(that is, the operations to be performed on that data) were entirely “hardwired.” In light of this

issue, the ENIAC project is often credited with stimulating the design of “stored-program”

computing machines. At a 1947 symposium, Mauchly provided one early discussion of this

novel approach.20 Describing a new class of computers called “EDVAC-type” (Electronic

Discrete Variable Arithmetic Computer) machines, Mauchly identified three features that set

these computers apart from previous designs: “(1) an extensive internal memory; (2) elementary

instructions, few in number, to which the machine will respond; and (3) ability to store

instructions as well as numerical quantities in the internal memory, and modify instructions so

stored in accordance with other instructions” (Mauchly, 1948, p. 203). Mauchly’s presentation

was one of a handful of early attempts to describe the design characteristics of a true “stored-

program” computer, where a much larger and more flexible machine memory could be used to

store and manipulate both numerical data and machine instructions.21 Indeed, historians often

point to these characteristics as the central defining characteristics of a “modern” computer.

20 Around this same time, Eckert and Mauchly left the Moore School to start Electronic Control
Company, which was one of the first commercial manufacturers of high-speed electronic computers. The
company was quickly renamed the Eckert-Mauchly Computer Corporation, and was purchased by
Remington Rand in 1950 (Norberg, 2005).
21 While the origins of the “stored-program” concept are not entirely clear, Akera notes that Eckert and
Mauchly were exploring related ideas in as early as 1944. John von Neumann’s well-known “First Draft
of a Report on the EDVAC,” released in 1945, is another key document that “contained many of the
fundamental ideas for the stored-program computer” (Akera, 2002, p. 67). According to computer
scientist and historian Michael Williams, the stored-program concept gained significant traction at the
1946 summer lecture series at Pennsylvania’s Moore School (2002, pp. 23-24). Mauchly’s remarks at the
1947 symposium were a clear extension of these efforts, as suggested by his use of the EDVAC acronym.

www.manaraa.com

 39

Yet Mauchly’s comments about “elementary instructions” in the preceding passage point

to another dimension of computer design that has received somewhat less attention in the

historical literature. In the same Symposium presentation, Mauchly made one of the earliest

attempts to identify and explore the boundaries that were forming around two major areas of

activity in computing, namely machine design and “coding.”22 As Mauchly explained:

A decision must be made as to which operations shall be built in and which are to

be coded into the instructions. Reference has already been made to the uncertain

status of division as a built-in operation. Many others, such as forming logarithm,

cosine, arctangent, or square root, have been built into existing machines.

Ultimate choice must depend upon the analysis by the designer of the character of

the work to be performed by the machine, the frequency of occurrence of

operations, and the ease with which non-built-in operations can be compounded

from those which are built in (Mauchly, 1948, p. 205).

As suggested by this passage, it was evident that the design of a given computing machine

needed to include some minimum set of elementary instructions for manipulating data and

controlling program flow. Instructions such as add, shift or subtract, for instance, were

literally hardwired in the physical machine and called upon as needed. But more complex

operations – such as division –required more complex algorithms, where longer sequences of

basic instructions (such as adding or shifting) were executed to achieve the desired results.23

In fact, the study of such algorithms was a central concern for many of the mathematicians

who were using computers to solve problems.

22 As noted by Aspray, Mauchly’s paper “was perhaps the earliest published discussion of the
consequences of stored programming on logical design and programming” (1985, p. xvi). In
contemporary terms, it should be noted that Mauchly’s paper was one of the first to identify and discuss
the nascent boundary between the physical “hardware” of the machine and the programs (or what would
later come to be called the “software”) that could be run on it.
23 Building on many of the ideas developed by researchers such as Mauchly and von Nuemann, the first
stored-program machines went into operation in the late 1940s and early 1950s. These included the
Manchester University Mark I in 1948, the EDSAC (Electronic Delay Storage Automatic Calculator) at
Cambridge University in 1949, and the Institute for Advanced Studies (IAS) computer at Princeton in
1952 (Randell, 2002, p. 41; Aspray, 2000, p. 73). Each of these machines dealt differently with the sort of
design trade-offs described by Mauchly. The EDSAC, for instance, featured a set of 18 instructions for
basic operations, including addition, subtraction, copy, multiply, and shift. Other instructions were also
included, such as for transferring data to different memory locations, and for performing simple branching
operations (Campbell-Kelly, 2002, pp. 415-416).

www.manaraa.com

 40

In terms of design trade-offs, when many complex operations are “built into” a

machine, it can significantly streamline the work of the machine’s users or operators, since

they can easily call on these instructions as needed. Further, such operations can run more

efficiently given that they are literally “hardwired” into the machine's logical circuitry. On

the downside, built-in operations can greatly increase the complexity of a device, especially

in the case of the early machines, when thousands or even tens of thousands of vacuum tubes

were involved. Further, the particular algorithm used to implement any given operation might

be inefficient or error-prone.24 If such an algorithm is built directly into a machine, it can be

exceedingly difficult to make changes or improvements, except by literally rebuilding some

part of the computer, or perhaps by bypassing the existing operation with an entirely new set

of programmed instructions. And as suggested by Mauchly, the intended application of a

given computing device was a key consideration in determining which operations should be

built-in, and which should left to be “coded” by the users of a machine. If one were designing

a computing device to calculate tables for the firing of ballistics, for instance, it might be

highly advantageous to include trigonometric functions in the machine’s instruction set.

In light of Mauchly’s remarks, we find that even in the mid-1940s distinct research

and development activities were growing up around the “physical machine,” on the one hand,

and “coded instructions.” Further, the essential point of negotiation between these two areas

surfaced as an increasingly important issue in subsequent years, albeit often in tandem with

new terminology and a host of related issues. Before tracing out the development of this

theme, however, it is worth appraising the early role of the AIEE and IRE in the computing

field. As suggested above, AIEE and IRE interests in computing gradually coalesced around

a handful of common areas, including components and devices, systems, and certain areas of

application. And as I demonstrate below, questions about the technological boundaries of the

computing field quickly became intertwined with other concerns, such as the appropriate

scope of organizations, the definitions of various professional identities, and even the actual

design of electronic computers.

24 Errors in hardware-based algorithms have repeatedly surfaced as a problem in the computing industry.
One more recent and widely-publicized example involved a bug in one of the division instructions that
was built into the Intel Pentium processor (“Pentium FDIV Bug,” 2006).

www.manaraa.com

 41

The AIEE and Computing

While AIEE and IRE involvement in computing happened relatively early, the AIEE was

the first of the two institutes to express formal interest in this new area of activity. In fact, the

earliest direct evidence of AIEE interest in computing machines can be traced back to 1946. As

mentioned above, a series of meetings at Columbia University was organized by the New York

chapter of the AIEE in 1946 and 1947. In addition, a subcommittee on Large-scale Computing

Devices was established in 1946 within the AIEE’s larger Basic Sciences technical committee

(“AIEE Officers and Committees,” 1946, p. 1219).25 According to General Electric power

engineer Charles Concordia – who served as the first chairman of the subcommittee – much of

the initiative behind this development came from AIEE President A. S. Lee and two successive

chairmen of the Basic Sciences committee, John G. Brainerd and Julian D. Tebo (Concordia,

1976, p. 42). This push is not entirely surprising, given Brainerd's background as a Moore School

graduate and professor, as well as his role as one of the main supervisors of the ENIAC project

(Weiss, 1988). Concordia’s interests, on the other hand, centered largely on analog computing

devices, which had been used in the power industry since at least the 1920s.26 Brainerd and

Concordia’s respective associations with digital and analog computing technologies symbolized

two of the major areas around which AIEE activities were coalescing.

Yet in the mid-1940s, interest among engineers in the area of calculating and computing

devices remained limited. In fact, Concordia later acknowledged that he faced some difficulty in

forming the original group given that “there were not then a great many AIEE members familiar

with the field” (1976, p. 42). He ultimately assembled the subcommittee around seven founding

25 Aside from chapter activities, interest in particular subject areas was organized around AIEE technical
committees and subcommittees. Through these groups, relatively small groups of engineers who were
knowledgeable and interested in a topic or field would spearhead relevant activities, such as organizing
panels and recommending papers for publication. The somewhat unusual position of the computing
subcommittee within the basic sciences group is also worth noting because it reveals the difficulties that
often came with positioning computing within pre-existing networks of disciplinary expertise, bodies of
knowledge, and professional identities.
26 In fact, Concordia co-authored a 1945 article on the use of “analyzers” (an early type of analog
computer) in solving engineering and scientific problems (Peterson and Concordia, 1945). This paper
reviewed four major types of devices, namely DC network analyzers, AC network analyzers, transient
network analyzers, and differential analyzers. For more details on Concordia’s career trajectory and areas
of technical expertise and interest, see Kaplan (1999).

www.manaraa.com

 42

members.27 And despite an apparent lack of familiarity and interest in the area of computing

among the AIEE’s general membership, Lee soon pushed for the elevation of the subcommittee

to full committee status (Concordia, 1976, p. 42). The AIEE board approved this change in 1948,

and the group was officially renamed the Committee on Computing Devices (“AIEE Forms

Committee on Computing Devices,” 1948). This group – which later was also frequently referred

to as the Computing Devices Committee (CDC) – claimed nine members in 1948 and thirteen by

1949, with the most notable new member being Mauchly of Moore School and ENIAC fame

(“AIEE Officers and Committees for 1948-1949,” 1948, p. 1792; “AIEE Officers and

Committees for 1949-1950,” 1949, p. 802).

While the group’s early focus was primarily on analog computing devices – especially as

applied in the area of electric power systems analysis – it quickly moved to expand its scope. By

1949 Brainerd had taken the chairmanship and two subcommittees had formed, one led by

Mauchly in the area of digital computing, and the other led by Harder and focused on

“continuous-variable” computers – or “analog” computers, as they came to be widely known

later (“AIEE Officers and Committees for 1948-1949,” 1948, p. 1792). A third subcommittee

dedicated to “computer bibliography” appeared in 1951, ostensibly formed to collect and manage

the growing body of literature in the emergent field (“AIEE Technical Subcommittees 1950-

1951,” 1950, p. 942).

From the beginning, the orientation of the AIEE group tended to lean toward systems and

components rather than applications. In one interview, Concordia explained that the first meeting

of the subcommittee was focused on “computing devices, not on applications” (Concordia, 1994,

p. 26).28 This orientation was also evident in a statement of scope that was published after the

group was elevated to full technical committee status:

27 In addition to Concordia and Brainerd, the group included notables such as Samuel H. Caldwell, an
MIT electrical engineering professor known for his research on differential analyzers with colleague
Vannevar Bush, and Edwin L. Harder, a Westinghouse electrical engineer. Other members included J. D.
Tebo, a Bell Labs engineer, Gilbert D. McCann, a Westinghouse electrical engineer who took a position
at CalTech in 1946, and Princeton's W. C. Johnson. Regarding the selection of this group, Harder later
explained that the members “were chosen by people that were already on the committees or the
organization knowing that they were the knowledgeable people and that they should be there” (Harder,
1991, p. 49). As suggested by this remark, pre-existing social networks often played a central role in the
creation and ongoing development of technical committees, both within and beyond the AIEE.
28 Concordia added, “the next year [1947] we also had a small presentation on applications. It was harder
to find people for that. Everyone wanted to talk about what was coming and what was new, or about what

www.manaraa.com

 43

The scope of the committee is [t]he treatment of all matters in which the dominant

factors are the requirements, design, construction, selection, installation, and

operation of machinery and devices relating to computing devices, including

studies of the electromagnetic, electronic, and mechanical phenomena of such

devices. Fundamental mathematic, electronic, and properties of materials entering

into these devices are not included (“AIEE Forms Committee on Computing

Devices,” 1948).

In addition to demarcating the group's boundaries in relation to a pre-existing milieu of dozens of

other AIEE technical committees and subcommittees, this statement also distanced the group's

activities from other areas of computing, such as those more closely linked to mathematics and

“applications.”

The AIEE computing group was instrumental in organizing a broad range of early

publications and presentations, many featuring content that was rather generalized and

introductory. This material served to familiarize the general membership of the AIEE with the

computer field, potentially generating further interest in the topic. Much of this material

appeared in the AIEE journal Electrical Engineering. Aiken and Hopper authored the first such

article in 1946, and their three-part piece provided readers with a description of the Harvard/IBM

Automatic Sequence Controlled Calculator, or Mark I (Aiken and Hopper, 1946).29 In addition to

briefly summarizing the history of mechanical computing machines, the article provided a

lengthy discussion of the construction and operational aspects of the Mark I.

In subsequent years, news and articles about computing appeared in Electrical

Engineering with increasing frequency. Other articles of note include a 1947 review of recent

developments in electronics, which included a brief survey of “electronic computing devices”

(Condon, 1947, pp. 355-256). A paper published in 1948, on the other hand, surveyed both

historical and contemporary developments in the area of calculating machines, with an emphasis

they have been doing to develop computers. But it wasn't as interesting to talk about applications”
(Concordia, 1994, p. 26).
29 Others have recognized the historical significance of this particular article. It was reprinted, for
instance, in Brian Randell's The Origins of Digital Computers: Selected Papers (1982). It is also worth
noting that much of the article was adapted from the much longer and more detailed A Manual of
Operation for the Automatic Sequence Controlled Calculator, an impressive 500+ page tome that was
largely authored by Hopper and published in 1946 as the first volume of the Annals of the Computation
Laboratory of Harvard University (Harvard Computation Laboratory, 1946).

www.manaraa.com

 44

on describing the operational and technical characteristics of the ENIAC, EDVAC, MANIAC,

and UNIVAC computers (Tumbleson, 1948).

Also in 1948, Brainerd and fellow Moore School engineer T. K. Sharpless authored a

more extensive article on the design, construction, and operation of the ENIAC (Brainerd and

Sharpless, 1948). In the article's introduction, the authors noted that “[e]lectrical engineers in the

United Stated have had a major interest in the development of large-scale computing devices” (p.

163). Brainerd and Sharpless also identified AC calculating boards, differential analyzers, and

electromechanical machines (such as the Bell Labs relay computers and the Mark I) as

noteworthy predecessors to the ENIAC. Given that many electrical engineers were already

familiar with these and other analog calculating devices, the author's remarks provided further

emphasis on the role of electrical engineers in the history of computing devices.

In addition to publications, the computing subcommittee arranged many conference

sessions at AIEE district and general meetings. The first of these, at the 1947 Winter Meeting,

featured “men from each of the six leading centers of computer development” (“Tentative

Program, AIEE Winter Meeting,”1947, p. 78; see also “Large Scale Computer Developments

Discussed,” 1947). Notable speakers – including Aiken, Bigelow, McPherson, Sharpless,

Forrester, and Williams – discussed both current and probable developments in digital

computing, and the event attracted an impressive audience of about 350 (Concordia, 1976, p.

42).30 A conference panel at the AIEE’s 1947 summer meeting, on the other hand, was focused

on the engineering applications of computing devices (Condon, 1947, pp. 355-356; “Program,

AIEE Summer General Meeting,” 1947, p. 594). As noted by Concordia, it proved more difficult

to find speakers on this topic, and the session ultimately featured only two presentations and

drew around 70 attendees (Concordia, 1976, p. 42). The relatively lack of engineers working in

the area of applications was increasingly apparent by the late 1940s.

Computing devices and related topics continued to appear regularly in the late 1940s and

early 1950s, both in the publications and in the technical programs of AIEE general and regional

meetings. Through this period, AIEE panels and papers also tended to cluster around a handful

30 Aiken discussed the Harvard/IBM Mark I machine, Princeton’s Bigelow spoke on the design of the
proposed IAS machine, IBM’s McPherson discussed the history of difference engines and current uses of
IBM calculating machines, Sharpless from the Moore School presented on the completed ENIAC and in-
progress EDVAC, Forrester described the proposed MIT computer (later to be called Whirlwind), and
Williams discussed relay computing developments at Bell Labs.

www.manaraa.com

 45

of major topics. In the digital area, systems and components attracted much attention, while

applications received considerably less coverage. At the 1949 Winter General Meeting, for

instance, a session on digital computers featured four papers on the description and design of

systems and components, but only one on applications (“Electronic Digital Computers,” 1949).

As digital computers came to be viewed as increasingly “general purpose,” it helped pave

the way for this deepened division between the areas of design and application. However, the

situation was very different in the analog area. At the same Winter meeting, a session of five

papers on analog computing revealed that analog machines were not so easily divorced from

specific problem areas or types of applications. In addition to describing the design of various

analog computers, this panel discussed how these devices were being applied in areas such as

nonlinear mechanics, heat flow, electric power, vibration, and flight simulation (“Computing

Devices Conference,” 1949). Interest in analog computing was particularly strong at many AIEE

meetings in the early-1950's, and Electrical Engineering carried many articles and news items on

the topic around this time. Yet by at least 1950, it was evident that digital computers might

replace many analog calculators. As one review article noted, “One topic which has been

discussed recently has been the question of whether a-c calculating boards may be replaced by

some of the new large-scale electronic computers” (“1949 Engineering Developments,” 1950, p.

4).

In more general terms, the level of interest in computing among the general membership

of the AIEE is difficult to gage. But in light of the long-standing orientation of the AIEE toward

power engineering rather than electronics, it is reasonable to conclude that interest remained

confined to a relatively small subset of the organization’s membership. Further, computer

pioneer Herb Grosch retrospectively explained that those involved with the AIEE’s computer

activities tended to be older, as well as “more conservative, and more old fashioned” (Grosch,

1971, p. 57). Another witness, Willis Ware, noted that the AIEE remained strongly oriented

toward the increasingly marginalized area of analog computing, even well into the 1950s (Ware,

2005). In light of these and other factors, AIEE activities in computing were increasingly

overshadowed by the IRE’s Professional Group on Electronic Computers (PGEC) in the 1950s.

www.manaraa.com

 46

The IRE and Computing: From Technical Committee to Professional Group

As noted above, the IRE’s history was closely tied to electronics and communications,

making the group’s move into computing a somewhat natural extension of its scope. One of the

earliest efforts to move into this area involved a session on “Electronic Digital Computers” at the

1947 IRE National Convention (“Extensive Plans Set,” 1947, pp. 176-177). The panel was

comprised of computer pioneers such as Forrester (MIT) and Goldstine (Moore School), as well

as Samuel Alexander (National Bureau of Standards), Jan Rajchman (RCA), and Perry Crawford

(Office of Naval Research). Further, the session was primarily oriented toward digital computing

and covered a full range of topics, including g system design, input devices, component devices,

and applications. Speaking on the topic of “Electronic Computing,” Goldstine’s rather general

presentation was particularly noteworthy given its focus on the “interrelationship between the

engineer and mathematician in the development of computing instruments” (p. 177). This session

was one of four at the conference that was repeated due to over-attendance, suggesting

significant early interest in computers among IRE members (“1947 IRE National Convention,

1947,” p. 499). This interest was further reflected in the coordination of two panels on computers

– one dedicated to “systems” and the other to “components” – at the IRE's National Convention

in 1948 (“1948 IRE National Convention Program,” 1948, pp. 377, 379).

An IRE Technical Committee on Electronic Computers was also formed in 1948, with an

initial roster of 21 members. Initially headed by chairman James R. Weiner (Raytheon) and vice-

chairman George Stibitz (formerly of Bell Labs, but by this time an independent consultant), the

group included many other well-known figures such as Alexander, Eckert, and Forrester (Smith,

1991, pp. 6-7; “Technical Committees,” 1948, p. 761).31 And while the original definition of the

committee's scope – approved by the IRE Executive Committee in 1948 – was rather broad, it

did identify some of the group’s major intended areas of activity:

The Technical Committee on Electronic Computers is responsible for all work

relating to digital and continuous computers. Included are applications to

scientific computing, fire control, and industrial control problems. A primary duty

of the Committee will include the compilation of a glossary of definitions ...

31 Other notable early members included J. V. Atanasoff, J. H. Bigelow, Perry Crawford, C. S. Draper, N.
Goldstine, E. L. Harder, B. L. Havens, E. Lakatos, G. D. McCann, C. H. Page, J. A. Rajchman, Nathaniel
Rochester, Robert Serrell, T. K. Sharpless, R. Snyder, and C. F. West.

www.manaraa.com

 47

Additional duties of the Committee include standardization of test methods,

coordination with the Papers Procurement Committee, and computer session

planning (“Executive Committee,” 1948, p. 633).32

By 1949, the group had undertaken a number of activities characteristic for those working in a

new field, such as the compilation of a computer bibliography and development of a list of

computer definitions (“Technical Committee Notes,” 1949, p. 63). The latter was published in

the Proceedings of the IRE in 1951 (“Standards on Electronic Computers,” 1951).

At a 1949 committee meeting, the group revisited its scope and subcommittee structure,

especially with regard to giving “equitable coverage to analog and digital computers”

(“Technical Committee Notes,” 1949). Yet despite such concerns, numerous papers on systems

and components, both in the analog and digital areas, were being published in the Proceedings of

the IRE through the late-1940s. The group was also instrumental in organizing a slightly

expanded presence at the IRE's 1949 national convention. Scheduled events included a panel on

Electronic Computers that was oriented toward analog computing and a larger symposium on

Electronic Computing Machines. The latter was primarily focused on “recent advances in the

state of the art,” especially in the digital area (“1949 IRE National Convention Program,” 1949,

pp. 165-166).

The committee's membership ebbed and flowed – hitting a high of 24 in mid-1949 and

low of 16 by 1954 (“Technical Committees,” 1949, p. 668; “Institute Committees – 1954,” 1954,

p. 1583). The group's leadership also shifted, with Jay Forrester gaining the chairmanship in

1949 and IBM’s Nathanial Rochester taking the position in 1951 (“Technical Committees,”

1949, p. 668; “Technical Committees,” 1949, p. 721). However, the efforts of the technical

committee were increasingly overshadowed by the emergence of IRE professional group

activities in the computing field. The IRE’s new professional group structure, which was

formally adopted in 1948, allowed the diverse membership of the Institute to cluster more

cohesively around special interests, including specific problem areas, particular technical

interests, or various combinations thereof (Van Atta, 1950).33 It also opened the way for the

32 The term “continuous” slowly fell out of favor in the and 1940s and 1950s, and was largely replaced by
“analog.”
33Additional details about the new system appeared in the Proceedings of the IRE in 1948 (“The Institute
on the March,” 1948; The IRE Professional Group System,” 1948). A summary and evaluation of the

www.manaraa.com

 48

formation of local professional group chapters, while simultaneously retaining technical

committees to coordinate specific activities at the national level, such as standards setting. In

light of the historical record, the emergence of the membership-based professional group

structure was timely, for it helped pave the way for a rapid expansion of IRE activity in the

computing field. By contrast, both the AIEE’s orientation toward power engineering and its

organizational reliance on a system of regional chapters and national technical committees

limited AIEE involvement in computing to a relatively small group of members and range of

activities.

In the IRE, interest in a new professional group in the area of electronic computers was

expressed as early as 1948, but the first concrete steps toward this development happened in

1950 (“The IRE Professional Group System,” 1948). In that year, the IRE’s Los Angeles section

organized its own Electronic Computers Professional Group, headed by Harry Huskey of the

National Bureau of Standards Institute for Numerical Analysis at UCLA and Harry Larson of

Hughes Aircraft (Astrahan, 1976, p. 43). While it was perhaps unusual for such a group to

initially emerge at the local level, organization at the national level followed closely behind.34

Nathaniel Rochester – at the time the chairman of the IRE's computing committee prodded

IBM's Morton M. Astrahan to champion the formation of a national group. This led to the

successful establishment of the Professional Group on Electric Computers (PGEC) in 1951, with

Astrahan promoting the group on the East coast and Larson on the West (“Professional Group

Notes,” 1951; Astrahan, 1976, p. 43). The Los Angeles group was formally approved as a PGEC

chapter in 1952 (Astrahan, 1976, p. 44). The PGEC's administrative committee was initially

comprised of twelve members, jumping to fifteen under the group's first constitution. Astrahan

served as the first chairman and Huskey first vice-chairman, again revealing the group's bi-

coastal orientation (Astrahan, 1976, p. 43).

The professional group and technical committee operated in parallel for a number of

years, with the former focused on the formation and organization of regional groups and

meetings, and the latter’s subcommittee structure used to organize work in other areas, such as

professional group system was published in 1950 (Van Atta, 1950). For a good secondary account, see
McMahon (1984, pp. 215-218).
34 The initial origins of the PGEC in the LA area ties into larger issues about the early emergence of
distinct computing communities on the east and west coasts, each having a partially distinct culture of
computer design and application. As Akera has noted, this bi-coastal division was also an important issue
for the ACM in the 1950s (1998, Ch. 7).

www.manaraa.com

 49

terminology and storage devices. Yet technical committee activities were beginning to pale in

light of the rapid growth of the PGEC. The professional group initiated a membership drive soon

after it was founded, leading to a surging member roster. A report issued in late 1953 indicated

that the size of the group had jumped to an impressive 1100 paid and 400 unpaid members

(Astrahan, 1976, p. 44). And by October of 1953 the PGEC boasted 2000 members, and it

claimed active local chapters in Los Angeles, Philadelphia, San Francisco, and Washington, D.C.

(Gannett, 1953a). By September of 1954 the group had around 2,500 members, making it not

only the largest Professional Group in the IRE, but also the largest computing-oriented

professional group in the nation (“News,” 1954).

Rapidly expanding membership was accompanied by an impressive scaling up of PGEC

publication efforts. This flurry of publications from 1951 onward revealed an impressive

expansion of the relevant material available for publication, in no small part due to the ongoing

growth and diversification of the computer field as a whole. In late 1952, for instance, the PGEC

founded its very own journal, titled the Transactions of the IRE Professional Group on

Electronic Computers. Another important and related effort involved the group’s extensive

involvement in the October 1953 publication of a special computer issue of the Proceedings of

the IRE. This issue was especially noteworthy for being roughly three times average size. The

group also played a key role in the publication of proceedings from conferences and meetings.

One such event was the as the 1952 Electronic Computer Symposium, which was organized by

the PGEC’s Los Angeles chapter in cooperation with the UCLA Department of Engineering. The

PGEC also published the proceedings of the well-known Joint Computer Conferences (or JCCs).

In summary, the mid-1940s computing field was characterized by isolated researchers

and research groups, scattered publications and commentary, one-off conferences, and one-off

machines. The flurry of publications and conference sessions from the late-1940s onward – both

within and beyond the AIEE and IRE – hinted at the emergence of a more cohesive computer

field, albeit one that was undergoing considerable growth and diversification. More specific

trends were also becoming evident, such as a shift from universities to industry as the principal

site of computer design and construction, as well as the release of the first commercially

available computers. Even more importantly, we find the origins and early negotiation the key

sociotechnical boundaries in the field. The remainder of the chapter uses the early joint computer

conferences as a window onto these and other themes.

www.manaraa.com

 50

The Joint Computer Conferences

By all appearances, the early relationship of the IRE and AIEE computing committees

was generally congenial and cooperative. By the late-1940s, the two groups were working

together to develop definitions and bibliographies for the computing field. And from the mid-

1940s to early-1950s, at least five individuals were at some point simultaneous members of both

the AIEE and IRE computing committees. Indeed, such cooperation was not unprecedented,

given that the IRE and AIEE had a long history of working together in areas of common interest.

This cooperation was also reflected in the Joint Computer Conferences (JCCs). In historical

terms, these conferences were significant in setting the stage for later developments, including

the formation of the American Federation of Information Processing Societies (AFIPS) in 1961.

But more importantly for the present analysis, surveying the content and scope of the early joint

conferences provides further insights regarding the evolution of the computer field’s major social

and technological boundaries.

The origins of the joint computer conferences can be traced back to a series of meetings

on electron tubes that were co-organized by the AIEE and IRE. In fact, by the late-1940s it was

widely recognized that electron tubes were a crucially important computer system component, as

evidenced by a talk on the topic of “Digital Computers” at the 1948 joint conference on electron

tubes. Presented by Moore School engineer R. L. Snyder, this presentation emphasized two

major issues, namely ongoing efforts to both improve the reliability of existing tubes and

develop new tubes specifically for computers (“Tentative Program, Conference on Electron

Tubes,” 1948).35 In late 1950 the AIEE and IRE co-sponsored a two-day conference that was

more specifically dedicated to the topic of “Electron Tubes for Computers,” and it drew more

than 300 attendees (“Five Sessions Held at Conference,” 1951).36 According to one summary,

important stimulus for the event came from a survey that revealed a need for further

35 Snyder’s presentation revealed two distinct types of technological change. On the one hand, off-the-
shelf components might be applied in entirely new ways in new technological systems. Second, existing
component devices may act as a springboard in the development of new or improved components, often
for use in particular applications or systems.
36 The conference was also a result of collaboration with the Panel on Electron Tubes, a part of the
Department of Defense Research and Development Board.

www.manaraa.com

 51

“clarification” in this area.37 While much of the conference was focused on tube reliability,

design innovations and manufacturing challenges were also discussed.

On the one hand, the computer tubes conference revealed the extensive involvement of

both the AIEE and IRE in the area of electronic devices generally, and computer components

specifically. On the other hand, the conference set the stage for subsequent events. As Akera

explains, the “enthusiasm displayed at this meeting convinced both groups to organize a larger,

regular meeting in the computing field” (1998, p. 577). Others point to John Brainerd, the second

chairman of the AIEE Committee on Computing Devices, as the first to propose the idea of large

computer conference (“Reflections on a Quarter-Century,” 1986, p. 226). The resulting gathering

– which was dubbed the Joint Computer Conference (JCC) and topically titled a “Review of

Electronic Digital Computers” – was held in December of 1951. With 900 attendees, it was one

of the largest computer conferences to date (“Joint AIEE-IRE Computer Conference,” 1952). In

late 1952, more than 1100 attendees were attracted to a second joint computer conference that

was focused more specifically on the use of input-output equipment in computing systems

(“Record Attendance at Computer Conference,” 1953). In 1953 the conference went bi-annual,

with meetings alternating between the east and west coasts.

As I will discuss in subsequent chapters, the planning and scope of the joint conferences

in the 1950s and 1960s brought into further relief the social and technical contours of the

computing field. Yet the first JCC stands out as particularly important, not only because it

occurred at a pivotal time, but also because the scope and tenor of the conference program

revealed important themes and trends. In the following section, I use the JCC to highlight three

such themes. First, the event’s program and speakers placed both implicit and explicit emphasis

on the role of engineers and engineering in the computing field. Second, the conference provided

some of the earliest evidence for the emergence of a distinct and identity and bounded area of

expertise for these engineers, especially through the use of terms such as “computer designer”

and “computer engineer.” And finally, the event hinted at how the major subfields of computing

were developing in relation to one another, as well as in relation to computer technologies.

37 The survey was conducted by Samuel Alexander, an engineer who would become well-known for his
computer-related work from at the National Bureau of Standards from 1946 onward.

www.manaraa.com

 52

Positioning Computers in Engineering

In most general terms, the inaugural JCC was notable in that it was largely organized by

engineers and primarily focused on engineering. In fact, the event was explicitly dedicated to

exploring the “engineering aspects” of computer design and construction, and most of the

presentations and papers were oriented accordingly. As indicated in a foreword that was included

with the published conference proceedings, it was suggested that the meeting “would be of

permanent value in the development of engineering knowledge of this new field of activity”

(“Foreward,” 1952a). And in delivering a closing summary and address to attendees, Jay

Forrester emphasized this theme by pointing to the “magnitude of engineering involved” in the

building of the early digital computers (Forrester, 1952, p. 109). He also noted:

A comparison of the present status of the digital computer field with any of our

older branches of engineering shows that we are not far advanced. We are firmly

on the threshold of a new field, but the digital computer work has reached no real

maturity. … We have first models of a new type of machine. There is no reason to

believe that they are relatively more advanced than were the first models of

automobiles, the first aircraft, or the first radio sets (p. 109).

Forrester’s remark clearly suggested that the technology of computing fell within the jurisdiction

of engineers. Further, his reference to other major technologies implied that the ongoing

expansion of the computer field would require larger numbers of engineers and large amounts of

engineering expertise and knowledge.

Yet Forrester was by no means the first to comment on the role of engineers and

engineering in the computing field. As noted above, in a 1948 article Brainerd and Sharpless

emphasized the historical position of electrical engineers in computer development. And

Forrester himself had commented on the topic in a panel paper titled “Outlook for Electronic

Digital Computers – The Scope of the Engineering Involved,” presented in January of 1949 at

the AIEE’s Winter General Meeting. As described in one summary report on the session,

Forrester used this particular presentation to call for additional study and research in the area of

“systems engineering” (“Electronic Digital Computers,” 1949, p. 266).38

38 According to one review of the panel, Forrester framed systems engineering as “the integration of
computer components into equipment” (“Electronic Digital Computers,” 1949). Further paraphrasing

www.manaraa.com

 53

From the early 1950s onward, commentary on the position of engineers and engineering

knowledge in the computer field – as well as the more specific role of electrical and electronics

engineering – surfaced with increasing regularity. One important source of evidence for this

trend can be found in a 1950 treatise by electrical engineer Lofti Zadeh. While in later years he

became well-known for his work in areas such as system theory and fuzzy logic, the article

appeared just after Zadeh had completed a Ph.D. in electrical engineering at Columbia

University. Suggestively titled “Thinking Machines: A New Field in Electrical Engineering”

(1950), this particular piece is probably the first extended discussion of the engineering-

computing relationship to appear in print.

Discussing the emergence and larger implications of “electronic brains” or “thinking

machines,” Zadeh started the article by asking: “[W]hat is the role played by electrical engineers

in the design of these devices?” (p. 12).39 Reponding to this question, the author went on to

emphasize the role of mathematicians, both in the historical and contemporary development of

computing devices:

Thinking machines are essentially electrical devices. But, unlike most other

electrical devices, they are the brain children of mathematicians and not of

electrical engineers. Even at the present time most of the advanced work on

thinking machines is being done by mathematicians (p. 12).

Zadeh returned to this theme later in the article by adding that “[i]t is true that most of the

fundamental principles on which thinking machines are based, have been contributed by

mathematicians” (p. 31).40

 While the historical record suggests that Zadeh was guilty of exaggeration in these

passages, his remarks were nonetheless well-suited to his forward-looking agenda. He went on to

emphasize, for instance, “the ability of electrical engineers to supply the techniques that make

possible the storage devices, processors, computors [sic], decision makers, and other less

important elements of thinking machines” (p. 31). And after noting that engineers had been

Forrester’s remarks, the summary added: “Greater study must be applied to co-ordination of computers
with communications systems and automatic control devices.”
39 From the late-1940s onward, terms such as “electronic brains” or “thinking machines” were often used
to describe high-speed electronic computers, especially in more popularized accounts.
40 While Zadeh did not specifically mention the role of scientists in the computing field, his use of the
mathematician label likely included some scientists, especially in mathematically-intense fields such as
physics.

www.manaraa.com

 54

exposed to computing-related subjects such as Boolean algebra and multivalued logic through

their association with mathematicians, the author added that the dominance of mathematicians in

the field “will last until electrical engineers become more proficient in those fields of

mathematics which form the theoretical basis for the design of thinking machines” (p. 31).41 The

strategy implied by Zadeh was fairly straightforward. If electrical engineers could meld their

existing knowledge of electronic components and systems with the appropriate mathematical

moorings, they might lay the foundations for a new branch of engineering focused on computers

and computing. And indeed, computer pioneers such as Forrester and Eckert – not to mention

pioneering research groups such as MIT’s Computation Laboratory and Penn’s Moore School –

had already demonstrated the potential success for this type of approach to computer research

and development.

While Zadeh’s commentary was thought-provoking and provocative, the overall impact

of the article was probably limited, especially given that the publication in which it appeared –

Columbia Engineering Quarterly – was probably not read widely outside of some relatively

small circles of engineers. Yet the significance of the article for the present analysis is two-fold.

First, it was likely Zadeh’s first attempt to formulate a disciplinary agenda for computer-oriented

electrical engineers. In fact, he would revisit, refine, and pursue this agenda with vigor in later

years. And second, the article raised important questions about the position of engineers with

respect to computing, Such questions were increasingly salient from the early-1950s onward.

Looking beyond the aforementioned JCC, for instance, reveals a 1952 computer

symposium organized by the IRE-PGEC’s newly-formed Los Angeles chapter. The title of the

meeting, “Engineering Tomorrow's Computers,” reflected both the event’s intended audience

and its topical orientation. One speaker – computer pioneer and self-described “human

computer” Ida Rhodes – pandered to this theme by referring to the early electronic computers as

a “brainchild of electronic engineers,” and she went on to praise the “achievements of electronic

engineers” in the computing field (1952, pp. XII:1, XII:4). Such remarks were not confined to

conference proceedings. An introductory article published in the special 1953 computer issue of

the IRE’s Proceedings, for instance, noted that “[t]he design of a successful computer demands a

high degree of engineering skill” (Buchholz, 1953, p. 1220). Not to be outdone, the editors of the

41 It is possible that much of the motivation behind this argument came from Zadeh’s own impressive
abilities in various areas of mathematics. I return to this point in subsequent chapters.

www.manaraa.com

 55

same issue described “the growth of Electronic Computers as a branch of the radio engineering

field” (Gannett, 1953b).

In summary, the evidence presented here reveals a number of early moves to describe and

probe the relationship between electrical engineering and computing. And while some

commentators simply pointed to the historical role and/or contemporary position of engineers in

the computing field, authors such as Zadeh hinted at a more ambitious forward-looking agenda.

The development of this agenda was intertwined with the emergence of a more distinct and

cohesive identity for these same engineers, and also linked to the idea that computing could

indeed be framed as a “new branch” of electrical engineering.

Computer Engineering Identities

The use of pre-existing labels and titles to describe the engineering dimensions of

computer development can be traced back to the early days of the field. Terms such as

“electronics engineer” or “circuit designer,” for instance, were regularly applied from the 1940s

onward to those engineers who worked on computer systems and components (Felker, 1952b, p.

1584). More specific labels also started to appear in the late-1940s and early-1950s. Not only did

these titles become linked to specific areas of expertise, they also played an important role in the

ongoing efforts of electrical engineers to claim major areas of the computing field as their own.

Some of this boundary-work was explicit, such as when commentators mentioned or defined new

identities for computer-oriented engineers. Additional evidence for these trends can be gleaned

from the scope and content of various publications and conferences.

The most prominent identity markers that were surfacing in the early 1950s were clearly

situated at the intersection of computing and engineering. The term “computer designer,” for

instance, both took hold early and emphasized the dominant image of engineering work as linked

to the theory and practice of design (“Radio Progress During 1951,” 1952, p. 430). “Computer

engineering” also gained currency around this time, mirroring the prior emergence of

engineering titles that were linked to specific areas of technology, such as “radio engineering”

and “power engineering.” The importance of these new engineering titles is two-fold. First, they

facilitated the extension of the major engineering fields into entirely new domains of technology

and technological knowledge. Second, the use of the “engineering” moniker provided these new

fields and subfields with convenient and pre-existing disciplinary and professional structures,

www.manaraa.com

 56

ranging from conferences and publication outlets to professional societies and curricula. In an

important sense, the identity of a radio engineer or computer engineer is as much about

engineering as it is about a specific domain of knowledge and technology.

With regard to “computer engineering,” the term can be traced back to at least the first

JCC, held in 1951. One conference announcement explained that the meeting was “held

specifically to review accomplishments in the relatively new field of large-scale digital computer

engineering” (“Joint IRE/AIEE Computer Conference Slated,” 1951). And while another report

noted that “more than 900 engineers, scientists, and mathematicians” (“Joint AIEE-IRE

Computer Conference,” 1952) attended the conference, a somewhat oblique comment made by

one of the keynote speakers at the conference implied that “computer engineers” were his

primary audience (MacWilliams, 1952, p. 6).42 And if the conference was ostensibly dedicated to

the general area computer engineering, the conference program hinted at the scope of this field of

activity. With an overarching emphasis on “the characteristics and performance of working,

large-scale electronic digital computers,” the vast majority of the papers and published

discussion were focused on the individual computing machines, with particular emphasis on

engineering and design challenges, performance characteristics, and issues of reliability

(“Foreward,” 1952a, p. 3). Only one paper more narrowly dealt with computer components,

although the author’s discussion of the possible uses of transistors in computers was an important

early exposition of the topic, especially when vacuum tube technology still dominated computing

(Felker, 1952a).

On the other hand, topics such as applications, programming, and analog computers

garnered only scattered commentary. One noteworthy exception was a paper on the possible uses

of both analog and digital machines in the solution of aircraft engineering programs. As noted in

a foreword published with the conference proceedings, this presentation “gave the members of

the conference a better understanding of the ultimate usefulness of their efforts” (“Foreward,”

1952a). Yet this particular session was relegated to a luncheon meeting on the last day of the

42 MacWilliams stated: “One could say really that we have been optimists to schedule a meeting like this.
We feel that in addition to keeping computer engineers employed – in itself a praiseworthy objective – a
great deal of worthwhile experience has been obtained from the perhaps $30,000,000 that have been spent
so far on large high-speed digital computers. It is important to get the most out of the experience resulting
form this large amount of work, so that our new machines can be made as good as possible” (p. 6). In
addition to identifying computer engineers as a distinct group of workers, this comment also suggests that
the title was gaining particular salience in the commercial sector. I return to this point below.

www.manaraa.com

 57

conference, suggesting that the conference organizers viewed the area of computer applications

as separable from – and perhaps even tangential to –computer design and engineering.

While the topic of computer applications received short shrift on the official schedule, a

series of informal sessions were hastily convened to “discuss problems arising in programming”

(Carr, 1952, p. 113).43 Interested conference attendees met to address topics such as computer

operating procedures, the prospects for universal machine operating codes, and methods for

preventing and locating programming mistakes (p. 113-114).44 As noted in the conference

review, only eighteen individuals participated in these sessions, and the small discussions that

did take place were marked by an “absence of mathematicians and programmers.” (p. 114).

These informal gatherings – as well as discussions of applications and programming more

generally – were clearly a footnote to an event that was almost wholly dedicated to computer

design and engineering.

Surveying other publications from around this time period reveals that the use of the term

“computer engineering” at the first JCC was part of a more general trend. The term surfaced

again, for instance, in the special 1953 computer issue of the IRE’s Proceedings. In an

introductory article, IBM engineer Werner Buchholz explained that the special issue was

intended:

To provide a set of stimulating and informative articles which would introduce the

non-specialist reader to the new and exciting field of electronic computer

engineering, and to furnish the specialist with a single volume of reference

material on a wide variety of computer subjects (Buchholz, 1953, p. 1220).

In another paper in the same issue, non-specialists were treated to an elementary introduction and

overview of computers that explicitly emphasized “the ‘lingo’ of the computer engineer”

43 This analysis is based on a written summary of these informal discussions, submitted by mathematician
John W. Carr III and published at the very end of the conference proceedings. While I will revisit Carr’s
work in the next chapter, this was one of his earliest attempts to raise the visibility of programming issues
among computer designers.
44 The use of the term “operating codes” here refers to the various machine instructions that are used to
control and direct the operation of a given computer. At the time, each computer had its own unique set of
operating codes, and these codes served as the fundamental building blocks for the development of more
complex sequences of operations, or “programs.” The discussion at the JCC explored the tentative
possibilities for a universal set of codes for all machines. These might be built into a given machine, or
run through an “interpreter” that would convert universal codes into machine-specific instructions. The
idea of developing higher-level languages followed closely behind.

www.manaraa.com

 58

(Samuel, 1953, p. 1223).45 While these passages revealed the increasing importance of

computing – even for IRE members whose primary interests lay elsewhere – they also suggested

the emergence of both a new field called computer engineering and a new identity for the so-

called “computer engineer.”

If the first JCC and the 1953 special issue hinted at the anticipated purview of computer

engineering, early issues of the Transactions of the PGEC both named this new area of activity

and provided a more explicit outline of its scope. A forward in the first issue stated: “It is hoped

that this issue will be the start of a major publication in the field of digital and analog computer

engineering” (“Foreward,” 1952b). And in a second issue, the editors further expressed their

belief that the membership of the PGEC was expected to be principally interested in “hardware,”

adding that papers about the “physical components of which computers are made ... are the

backbone of an engineering journal” (“Editorial,” 1953). Not only did these remarks provide a

definition for the term “hardware” in the context of computing, they also linked this term to the

new field of computer engineering and promoted the Transactions as its preferred journal.

Employing Computer Designers and Engineers

As suggested by the preceding analysis, the general area of computer design and

engineering was emerging as an increasingly distinct area of activity from the early 1950s

onward. Yet it is important to note that this formative subfield was developing in tandem with

the growing dominance of private-sector industry in the design and construction of computers.

While this trend has been well-documented by others, it is worth summarizing that the mid- and

late-1940s were marked by a handful of commercial computing ventures that were slowly

gaining momentum. The trend accelerated in the early 1950s, with many new and existing

companies entering the field. And as the industry grew, computer development activities at

universities entered a period of relative decline.

As noted above, Aiken was one of the first university researchers to explicitly distance

his lab from the area of computer design and construction, perhaps not surprising given both

Harvard’s unfriendly stance toward engineering and Aiken’s long interest in the application of

computing machines. Hinting at larger trends that were afoot, in 1949 Aiken explained:

45 The rich and expansive lexicon of the computing field and its subfields forcefully reveals the
importance of terminology in ongoing efforts to define and delineate particular areas of disciplinary
activity and expertise.

www.manaraa.com

 59

Therefore, at our laboratory we have decided not to undertake the construction of

any more large-scale computing machines with the exception of one, which we

hope to build for our own use and keep at Harvard. There is an ever-increasing

number of industries interested in constructing computing machines outside the

universities (1951, p. 7).

Aiken’s observation certainly captured trends that were afoot, and by the mid-1950s there were

at least a dozen major commercial outfits producing digital computers (Flamm, 1988, p. 81). And

while some schools maintained active research programs in computer design during this period,

commercial computer research quickly overshadowed university research.

Further, the expanding commercial sector appeared to be the primary locus of the new

subfield of “computer engineering.” As one piece of evidence for this trend, the organizing

committee of the first joint conference – which was substantially oriented toward engineering

and design – was almost entirely dominated by those whose primary affiliations were in the

commercial sector (“Joint AIEE-IRE Conference Committee,” 1952). Even more importantly, a

canvass of employment listings in a number of major publications reveals that the term

“computer engineering” quickly gained currency from the early 1950s onward, both within

budding computer companies and beyond. These listings also reveal the major areas of expertise

that were being linked to this newly demarcated area of computer work.

The earliest examples of this trend can be traced back to at least 1952. Surveying the

many open positions published each month in the AIEE’s Electrical Engineering reveals an

October 1952 listing for an “electronic or computer engineer” with a B.S.E.E. or M.E.

(Engineering Societies Personnel Service, Inc., 1952, p. 86A). Also in 1952, a series of ads from

the Gilfillan Corporation that called for “experienced radar and computer engineers” were

published in the Proceedings of the IRE (Gilfillan, 1952a; 1952b).46 Later in the same year,

Engineering Research Associates (ERA) – which was founded in the mid-1940s as one of the

first commercial developers of computer equipment – was similarly seeking “digital computer

engineers” (Engineering Research Associates, Inc., 1952a; 1952b; 1952c). These ERA ads more

specifically called for electrical engineers and physicists with expertise in the design and

development of circuits and system. A 1954 ad from ERA, on the other hand, called for

“electrical engineers and physicists to do digital computer engineering” (Engineering Research

46 Gilfillan was particularly active in radar research and development around this time.

www.manaraa.com

 60

Associates, 1954). And in the same year, the Jet Propulsion Laboratory at Cal Tech posted an

opening for “Computer Engineers (Analog and Digital),” with specific emphasis on circuit

design, logical design, transistors, and “theory of automatic digital computers” (Jet Propulsion

Laboratory, 1954).

From the mid-1950s onward, employment listings from a variety of companies solicited

“computer engineers” with increasing frequency. Other ads from around this time omitted this

specific term, but nonetheless called for electronics engineers and physicists with expertise in

computing and related areas.47 These advertisements also tended to avoid reference to

mathematics, programming, or numerical analysis. For starters, this suggested that the ideal

prospective employees for computer design and development work were male engineers, albeit

with some room for research scientists. Corporate employers were likely eager to employ

computer designers and engineers who had been trained as engineers, and who could be expected

to behave as predictable “professionals.” Further, the relatively large number of postings for

computer-oriented engineers revealed an early division of labor between the design and

application aspects of computer development, as well as a relatively low level of early demand

for application-oriented workers. As I discuss in the following chapter, openings for computer

programmers, numerical analysts, and related positions appeared more regularly in the mid-

1950s and beyond. Yet terms such as “computer engineer” and “computer engineering”

persisted, and they remained closely linked to research and development activities in the

commercial sector.

The Relational Ontology of Computer Engineering48

Like earlier terms such as “radio engineering,” the “computer engineering” moniker was

coupled with a specific and relatively young technology. It also encompassed a broad array of

engineering sub-specialties – including electronics engineering, circuit design, and systems

engineering – that played central roles in the computing field. Further, the term was starting to

subsume new areas of expertise, such as logical design, that were growing out of work in the

computing field. Yet the area of computer engineering was not emerging in isolation, and the

47 For instance, a 1954 Hughes ad that carried the heading “Digital Computer Techniques” called for
engineers, physicists, and “computer applications specialists.” More specific areas of expertise listed in
the ad included logical design, component development, programming, circuit design, and systems
analysis (Hughes Research and Development Laboratories, 1954).
48 On the concept of relational ontology, see Breslau (2000).

www.manaraa.com

 61

definition of “hardware” was not without contestation. It was increasingly necessary to position

the field and its associated technologies with respect to the wider disciplinary and technological

landscape of computing.

As the general area of computer design and computer engineering gained a more

cohesive identity and scope, a number of commentators explicitly discussed how the major

subfields of computing were related. These remarks often centered on the boundaries around

two major areas, the first centered on design, engineering, and “hardware,” and the second

encompassing applications, users, and programming. While this particular theme can be

traced back to Mauchly’s aforementioned remarks at the 1947 symposium, it was revisited

with increasing frequency from the early-1950s onward. At the first JCC, for instance, we

find echoes of Mauchly in Forrester's closing remarks: “A great deal of machine time can be

saved by analyzing computing programs and providing special machine logic or facilities for

saving time in the more frequent types of operations” (1952, p. 113).

While this type of trade-off was an important issue on its own, it was also closely

linked to the boundaries around the activities of computer design and use, as well as the

identities of computer designers and users. A keynote address at the same meeting, delivered

by Bell Labs engineer W. H. MacWilliams, added that one of the major objectives of the

conference was:

[T]o assess the adequacy of the designs of present working high-speed digital

computers in order to point out the direction in which computer design should go,

to make computers best for the jobs that they have been doing and for the jobs

that they will have to do. This is basically an engineering or design objective, but

it is clear that it also involves the users in an important way. This is a meeting of

both builders and users, all of whom are actively interested in the field (1952, p.

5).

As suggested by this remark, by the 1950s computer builders and users were being portrayed as

increasingly distinct groups, each linked to particular areas of expertise, activity, interest, and

technology. Yet given that the two groups were united under the larger umbrella of the

computing field, their emergence and ongoing development were necessarily happening in

relation, not isolation.

www.manaraa.com

 62

MacWilliams’s comment also revealed that the budding divide between computer

builders and users was accompanied by a growing recognition that computer designers needed to

more actively study how computers were being applied, especially as they worked to refine

existing computers and imagining new designs. Further, much of this critique was coming from

mathematicians and other computer users. For instance, Murray Lesser of Northrop spoke at the

1952 LA symposium about the challenges of using high-speed calculating equipment for solving

engineering problems. Playfully chiding engineers for their lack of knowledge regarding the

actual use of computers, Lesser explained: “Although the viewpoint about to be expressed

appears to be largely ignored by the designers and builders of the new breeds of automatic high-

speed digital computing machines, it is the opinion of this writer that the primary reason for the

existence of such devices is to aid in the solution of problems” (Lesser, 1952, p. IX:1).

At the same event, mathematician Derrick Lehmer pushed in a similar direction when he

mentioned the lack of programming knowledge among engineers: “We had a little session on

coding this morning. I think a number of engineers got a clearer picture of how important this

part of computing has to be” (1952, p. XX:2). Lehmer also echoed Goldstine’s aforementioned

1947 conference summary as he commented on the budding tensions between the engineers and

mathematicians involved the computing field. “The engineer and the mathematician are involved

in a joint effort in this particular field,” Lehmer stated, adding that “this symposium ought to

record ... the possibility of cooperation between these two groups” (p. XX:2).

Early editorial remarks in the Transactions of the PGEC provide further evidence

regarding the more general position of engineers with respect to computing. For starters, the

aforementioned emphasis on computer engineering and “hardware” by the editors of the

publication was accompanied by efforts to frame programming and applications as largely

beyond the bounds of the journal: “We may think of programming as relating to applications and

being outside the sphere of interest of most computer engineers” (“Editorial,” 1953). Yet the

same editorial acknowledged that the topic of programming might prove relevant to the journal's

audience, particularly when it was clearly related to issues of computer design:

It is a fairly recent discovery that, with general-purpose computers, we can

replace hardware by programs [...] The design of suitable programs is analogous

to the design of the computer circuits or the development of the internal logic. We

might call it program engineering, for the existence of good programs to assist in

www.manaraa.com

 63

running a computer can be as vital to its success as good circuits. We plan to

publish papers on a wide range of subjects, including circuits, components,

systems, input and output, logic, and “program engineering” (“Editorial,” 1953).

On the one hand, this statement is striking in that it subtly foreshadowed the much later

development of “software engineering” as a new subfield of computing.49 But more importantly

for the present analysis, the editorial revealed a central point of tension in the field's nascent

social and technical boundaries. To whit, if hardware could be replaced by programs (and vice-

versa), to what extent were the boundaries around the areas of computer engineering and

computer programming justifiable or maintainable? This tension, I contend, is a primary and

persistent source of instability in ongoing efforts to bound off and define a field of computer

engineering.

Hopper and Mauchly also revisited the design-programming relationship in a 1953 article

titled “Influence of Programming Techniques on the Design of Computers” (Hopper and

Mauchly, 1953). In general, the article provides further evidence for the major divisions of labor

that were increasingly common in the field. The authors described design engineers as being

principally concerned with circuits and “hardware,” while programmers were mainly focused on

“discover[ing] new ways of adapting the computer to particular applications” (p. 1250).

Sketching out the relationship between these two groups, Mauchly and Hopper added:

This relation between the programmer and the designer of computers is by no

means a static one. While the engineer is developing new components and better

ways of using such components, the programmer is likewise developing new

techniques for the application of computers and is continually enlarging the range

of applications as well. ... The development of new techniques in programming

may have as profound an influence on computer design as would be produced by

an entirely new type of memory or switching element (p. 1250).

This rather taken-for-granted description of the two subfields is noteworthy, especially given that

the tentative boundaries around these areas had only emerged a few years prior, largely in

tandem with the advent of the first stored-program, general purpose computers.

Yet Mauchly and Hopper's major concern in this article centered on the relation of the

two groups, rather than on their definition or even existence. In fact, they followed in the

49 On the history of software engineering, see the work of historian Michael Mahoney (1990; 2004b).

www.manaraa.com

 64

footsteps of earlier commentators as they pushed computer designers to grapple with the

concerns and techniques of programmers. “Certainly the programmer must help the engineer in

evaluating proposed engineering plans” they stated, adding that “he can often suggest

possibilities for the engineer to consider. Sometimes a relatively minor design modification can

result in savings in programming” (p. 1250). In the remainder of the article, Mauchly and Hopper

outlined a number of specific areas where programming developments had informed – or could

potentially inform – the design of computing machines.

In a 1953 article on the topic of “compiling routines,” Hopper pushed in similar

directions (Hopper, 1953). Noting that computers had already been designed with instruction sets

of widely varying sizes – ranging from a total of about eight to eighty individual machine orders

– Hopper explained that decisions about the composition of a machine’s instruction set were

often linked to key design trade-offs, such as ease of programming versus machine complexity.

Coming down in favor of relatively small instruction sets, Hopper described how various

techniques – including the use of programmed subroutines – could be used to tailor general-

purpose computers for particular applications. She also stressed the need for close cooperation

between programmers and engineers in the design and building of these machines:

[I]t is desirable that programmers work side by side with logical designers and

engineers at the time that the design of a computer, large or small, is begun. Thus,

a computer will be delivered with its basic programs tested and proven, ready to

be used flexibly and conveniently (pp. 1-2).

Yet this call for reform seemed to be gaining little traction outside of a handful of outspoken

commentators, many of whom happened to be mathematicians and programmers. Computer-

oriented engineers might acknowledge the relation between programming, applications, and

computer design, but speaking of close cooperation with programmers was all but taboo.

It is also worth noting that the influence of Hopper’s remarks was further blunted by the

fact that she was one of only a handful of women in the computing field. Through the early-

1950s, it had become abundantly clear that while women might make their way into computer

programming, their contributions in the area of computer design were almost entirely limited to

documenting existing work, and perhaps even commenting on it. Hence, it is perhaps not

surprising that Hopper’s 1953 article was relegated to Edmund Berkeley’s upstart computer

journal Computers and Automation, while her article with co-author Mauchly – who, unlike

www.manaraa.com

 65

Hopper, happened to be a member of IRE – was published in the more prestigious and

technically-oriented Transactions of the IRE. No matter the impressive the technical expertise

accumulated by pioneers such as Rhodes and Hopper, the early computer engineering field was

all but impermeable to women, as well as to others without the appropriate credentials,

experience, or identity.

Conclusion

In this chapter I have discussed the emergence of a more recognizable computer “field”

from the mid-1940s onward, as reflected in the scope and scale of numerous meetings, symposia,

publications, and computer development projects. Yet I also emphasize the countervailing forces

that were simultaneously deepening the field’s social and technical boundaries, leading to an

incipient tendency for fragmentation. These themes are brought into further relief as we look

more specifically as the role and position of engineers and engineering knowledge in the early

development of high-speed computing. As I have argued, electrical engineers made a number of

early moves to bring computers into engineering, just as their predecessors had done with radio

decades before. Authors such as Zadeh, for example, clearly painted the computing field as a

new branch of electrical engineering. Further, the term “computer engineering” created an

important semantic link between the pre-existing professional identities and practices of

engineers, on the one hand, and the new activities and bodies of knowledge that were associated

with computer design and construction, on the other.

As this vision for a field of computer engineering started to materialize in the early and

mid-1950s, it was also increasingly evident that the interests of electrical engineers were limited

in scope. Events such as the first JCC were almost exclusively dedicated to the engineering

aspects of computing, and the IRE-PGEC explicitly itself positioned at the intersection of

computer design, engineering, and “hardware.” Early issues of the PGEC’s Transactions went so

far as to explain that topics such as such as numerical analysis and programming were largely

tangential to computer engineers, except where application and design were most directly and

obviously related.50 As suggested by this historical account, parceling off computer design and

50 By this time there were growing numbers of engineers who were interested in the use of high-speed
digital computers for engineering problem solving, but these were rarely the same engineers who were
doing computer design work. On the other hand, analog computing was an area where the users and

www.manaraa.com

 66

engineering as a distinct field required acts of boundary definition and negotiation that were as

much social as they were technical. To put it another way, the proponents of this disciplinary

project were engaged in extensive sociotechnical boundary-work.

But just as the social and technical foundations for a more recognizable field of computer

design and engineering were laid, large swaths of computing were being claimed by other

interested individuals and groups, many of them without strong ties to engineers or engineering.

This trend can be traced back to the prominent early role of mathematicians and scientists in

computing, as well as to early conferences and publications where topics such as computer

programming and applications were frequently separated from discussions of computer design

and engineering. As I document in the following chapter, the major social and technical divides

between the design and application dimensions of computing persisted through the 1950s and

into the 1960s, as evidenced in the ongoing evolution of educational programs, professional

groups, and university-industry relations, to name a few important themes.

By the early 1950s, however, prescient commentators such as Lehmer, Mauchly, and

Hopper were already recognizing some of the possible consequences of the field’s deepening

social and technical boundaries. More specifically, they argued that closer cooperation between

designers and programmers might be an important step toward making computer systems more

flexible, reliable, and easy to use. While the vision offered by these pundits was both compelling

and rather straightforward, it tended to obscure the challenging social and technical realities that

were at the heart of the situation, and that would grow increasingly salient in subsequent years.

designers of computers were often one and the same. But as noted above, my primary focus here is on the
field of high-speed digital computing.

www.manaraa.com

 67

Chapter 3

A System of Professional Societies:

Negotiating the Sociotechnical Settlements

Professional societies often play important roles in the development of professional fields

and academic disciplines. In fact, their activities often span and bridge the social and the

technical – as well as the disciplinary and professional – such as in ongoing efforts to establish

professional identities, define the scope of fields and subfields, codify relevant bodies of

knowledge, set standards, and develop curricular recommendations. Professional society

publications and activities can also help reveal major trends and issues in contexts that are

otherwise difficult to access or assess, such as the private sector. The present chapter is largely

focused on the internal development and relational interaction of three organizations that

maintained interests in the computer field from the mid-1950s to mid-1960s, namely the

Association for Computing Machinery (ACM), the Institute of Radio Engineers Professional

Group on Electronic Computers (IRE PGEC), and the American Institute of Electrical Engineers

Computing Devices Committee (AIEE CDC).

Yet unlike other historical and social studies of disciplines and professions, my focus on

these particular groups stems not from their unambiguous association with a single, common

professional or disciplinary domain. Rather, these organizations maintained partially overlapping

interests – or “settlements” – in various domains of technology, bodies of knowledge, and types

of work. I therefore frame these three organizations as constituting a dynamic “system of

professional societies.” Further, I document how a modicum of stability was achieved in this

system through a long series of negotiations and compromises that were worked out both within

and between these groups, often against a backdrop of rapid sociotechnical change.

I place particular emphasis on the role of the Joint Computer Conferences (JCCs) in this

process. As discussed in the preceding chapter, by the early 1950s a growing band of electrical

www.manaraa.com

 68

engineers was staking out territory in the expanding computer field. The first JCC – which was

held in 1951 – provides important evidence for this movement. In fact, the proceedings from this

event include some of the first published uses of the term “computer engineer,” revealing the

emergence of a distinct professional identity for computer designers and related types of

workers. Yet if the preceding analysis stressed the role of the joint conferences in the early and

tentative emergence of “computer engineering” as a new field, the present chapter documents

key shifts in the orientation and function of the JCCs through the 1950s and into the early 1960s.

As I discuss below, the prominence of engineers in the early joint conferences gradually faded as

these events became a common point of intersection for a more diverse assortment of actors and

groups. In fact, the joint conference series and its associated joint committee both reflected and

reinforced the respective sociotechnical settlements of the ACM, IRE PGEC, and AIEE CDC.

Even more generally, this chapter sheds light on the interplay of both stabilizing and

destabilizing forces in the context of a system of professional societies. Potential sources of

instability in this system include technological developments, changes in the size and scope of

organizations, and incursions from “outside” groups. Sources of stability, on the other hand,

include relative homogeneity in the composition of a given group, joint committees and other

activities between groups, and the mirroring of various social and technical boundaries in diverse

contexts, ranging from professional groups and the workplace to educational sites. Ultimately, I

argue in this chapter that the joint conference series and its associated organizing committee

helped ameliorate the persistent risk of instability in this system of professional societies.

The Early History of the ACM: “What Computers Do”

In the preceding chapter I largely sidestepped the early position and role of the ACM in

the computer field. And while the history of the ACM has to some extent been covered

elsewhere, an overview is necessary to frame the evolving relation of the ACM, IRE, and AIEE,

as well as to set the stage for later historical developments. To begin with, the ACM deserves

credit as the first stand-alone professional group in the computing field. Originally dubbed the

“Eastern Association for Computing Machinery,” the new group attracted 52 members to its first

meeting at Columbia University in September of 1947 (Alt, 1962, p. 300). An early “Notice of

Organization” outlined the organization’s rather wide-ranging purpose: “to advance the science,

development, construction, and application of the new machinery for computing, reasoning, and

www.manaraa.com

 69

other handling of information” (Alt, 1962, p. 305).51 The broad scope of the ACM was also

reflected in the composition of the group’s first governing councils, which included many of the

individuals introduced in the previous chapter, ranging from physicist and ENIAC co-developer

John W. Mauchly to engineers such as Charles Concordia, T. K. Sharpless, and Jay Forrester. A

number of computer-oriented mathematicians – such as Franz L. Alt, Hans Rademacher, and

Mina Rees – also took on early leadership roles in the ACM.52

The group was renamed the “Association for Computing Machinery” in 1948 and it

expanded rapidly thereafter, claiming roughly 250 members in April of 1948, more than 450 in

early 1949, and more than 1100 in late 1951 (“News: Association for Computing Machinery,”

1948; “News: Association for Computing Machinery,” 1949; Alt, 1962, p. 301). Until the

Journal of the ACM was established in 1954, Mathematical Tables and Other Aids to

Computation served as the primary publication outlet for ACM news and articles.53 Beginning in

1947, the group also organized its own national meetings and conferences, and it published

proceedings for many of these events. In contrast to the more engineering- and industry-oriented

AIEE and IRE, the ACM attracted relatively large numbers of computer-oriented mathematicians

and scientists, and the group gained an early reputation for both its theoretical leanings and its

reasonably close ties to the academic sphere.

In fact, the orientation of the Association toward science and computing – rather than

engineers and computers – was evident in the proceedings for one of the group’s national

meetings in 1952. This particular volume included a Forward, authored by outgoing ACM

President Franz L. Alt, that restated the group’s purpose: “It is the purpose of the Association for

51 A news item that appeared in Mathematical Tables and Other Aids to Computation included a
statement of purpose for the ACM that was nearly identical to the one cited here, only differing in the
replacement of the word “development” with “design” (“News: Association for Computing Machinery,”
1948, p. 133). This modified version of the statement persisted well into the 1950s. The use of the word
“science” in this statement also reflected the orientation and interests of many ACM members.
52 Mathematician Mina Rees also served on the first ACM Council. Her early involvement with the
computer field largely stemmed from her work at the Office of Naval Research from 1946 to 1953 (Green
et al., 1998, p. 867). Rees’ position on the ACM council suggests that the Association provided a more
hospitable environment for computer-oriented mathematicians, including those that happened to be
women. The AIEE and IRE, on the other hand, largely restricted membership to those who held degrees
in engineering or physics. This only reinforced the homogeneity of these groups since few women had
these qualifications.
53 Founded in 1943, the scope of this journal steadily expanded from the mid-1940s on to include various
topics related to high-speed calculating and computing machines. In addition to serving the early
publication needs of the ACM, this journal also referenced and reviewed many of the papers published
and events held by other professional societies, including the AIEE and the IRE.

www.manaraa.com

 70

Computing Machinery to advance the science of numerical computation, in particular the design,

development, construction, and application of modern computing machinery” (1952).54 As

suggested by this passage, many in and around the field were beginning to frame large swaths of

computing as a new type or branch of “science.” And while the term “design” also appeared in

Householder’s remarks, there was no mention of “engineering.”

In its early years the ACM enjoyed a relationship with the AIEE and IRE that was

generally friendly and cooperative. By the early 1950s, however, new tensions surfaced,

especially amid ongoing moves to define and clarify the orientation and jurisdiction of the major

computer-oriented professional groups. As noted above, for example, in 1951 the ACM was

officially listed as a “participant” in the first Joint Computer Conference (JCC), rather than as a

full co-organizer. According to one more recent account, the first JCC was actually spearheaded

by members of the AIEE, with the IRE accepting invitation as a joint sponsor (Armer et al.,

1986, p. 226). The ACM declined a similar invitation, wishing instead to be listed as

“cooperating.” While larger political and financial motivations likely played a role in the ACM’s

guarded participation in the first JCC, more practical concerns were also afoot, including

questions about the appropriate schedule and scope of the various national computer meetings.

Yet as Alt explains, these types of issues were largely smoothed out by 1953, when “an

unwritten compromise was worked out between JCC [Joint Computer Committee] and ACM, by

which the latter would hold one national meeting per year, normally in summer … while JCC

meetings would be held in the East in late fall and West in spring” (1962, p. 302).

The scheduling of conferences, however, was but one aspect of a more general process of

professional and disciplinary negotiation that started to receive significant attention beginning in

the early 1950s. In fact, it is somewhat ironic that Samuel B. Williams was in the middle of some

of the earliest debates about the appropriate position of the ACM with respect to both the

computer field generally and the computer-oriented groups of AIEE and IRE specifically. As

noted in the preceding chapter, Williams was well-known for his involvement in the early design

and construction of relay computers at Bell Labs. Yet he went on to serve as the ACM’s Vice-

President from 1950 and 1951 and President from 1952 to 1953.55 As Akera describes it,

54 Alt, like many other ACM leaders, held a Ph.D. in mathematics. He was also a co-founder of the ACM.
55 As suggested by this biographical sketch, the term “hybrid actor” is appropriate for Williams. In fact, I
identify a number of such actors in this chapter, and through their individual histories I bring into further
relief how personal experiences and background frequently come into contact, mesh, and/or clash with

www.manaraa.com

 71

Williams “turned to the ACM as a way of retraining himself, particularly with respect to

electronic computers and computing techniques” (1998, pp. 578-579). This move followed his

retirement from Bell Labs in 1946 after 41 years of service, as well as a brief but generally

unsuccessful stint at the University of Pennsylvania’s Moore School in the mid-1940s

(“Retirements: Samuel Byron Williams,” 1946; Akera, 1998, pp. 578-579). Looking beyond his

career trajectory, Williams' engineering background and previous experiences in computing were

quite unlike those of prior ACM Presidents such as Alt, and Williams’ loyalties were certainly

tested as debates about the ACM’s scope and proper position in the field rose in prominence.

As Akera explains, questions about the orientation of the ACM were surfacing by at least

1952, when a Policy and Planning Committee established by the ACM’s governing council

reported that areas of interest such as system requirements, logical design, and performance

requirements should remain within the domain of the ACM (1998, p. 580). But an amendment

proposed in 1953 pushed in a somewhat different direction as it called for the removal of the

word “construction” from the ACM’s constitution. According to Alt, this motion was intended to

“reduce the overlap between the ACM and the purely engineering organizations, IRE and AIEE”

(Alt, 1962, p. 305). As documented by Akera, much of the original impetus for this amendment

came from IBM engineer and IRE-PGEC chair Morton Astrahan. After taking over as the editor

of the IRE-PGEC's Transactions, Astrahan wrote a letter to Williams in which he declared, “We

feel the major emphasis of ACM activities should be on the theory of computing and the

applications of computing equipment in the scientific and commercial field” (cited in Akera,

1998, pp. 579-580). But in his response to Astrahan, Williams stood his ground: “I personally

feel that the ACM has a very definite place in the engineering and scientific world” (cited in

Akera, 1998, p. 580). In the end – and after much discussion and debate – the amendment was

defeated by a slim margin of member votes.56 At least for the time being, the term “construction”

was to remain in the ACM’s official statement of scope.

Yet despite both the Council’s earlier recommendations and the failed constitutional

amendment, from the mid-1950s onward Williams and other ACM leaders made their own

various technologies, social groups, institutions, and bodies of knowledge. Simply put, people frequently
transcend and defy boundaries.
56 According to Akera, this particular amendment was approved by the members of ACM's council. But
as recounted by both Alt and Akera, it was ultimately defeated by ACM members (Alt, 1962, p. 305;
Akera, 1998, p. 586).

www.manaraa.com

 72

strategic moves to distance the Association from the general sphere of computer hardware. In

1953, for instance, Williams authored a position piece that appeared in a new magazine titled

The Computing Machinery Field.57 In this short article, Williams noted that the AIEE, IRE, and

ACM were all expressing “active interest in the field of computer machinery,” and he asked

whether the presence of these three groups was leading to overlap, duplication, and/or confusion

(1953, p. 21). On the one hand, Williams explained that “[p]art of the overlap and duplication is

beginning to be avoided through the activities of the Joint Computer Conference Committee” (p.

21). This was an important insight. As I note below, the joint committee and conferences were

beginning to play an increasingly pivotal role in maintaining a balance between the ACM and its

more engineering-oriented counterpart societies.

On the other hand, Williams also went on to argue that more could be done to partition

the field between the three professional societies in question:

But some more of the overlap and duplication may be avoided, by allocating

portions of the field of computing machinery according to main interest. As

between the ACM and the other two organizations, there is one area which is

preeminently in the area of the ACM: “What Computers Do”. This includes

programming, logical design, problems to be solved, numerical and logical

analysis of scientific and business problems, etc. (1953, p. 21).

Williams concluded his editorial by suggesting that AIEE and IRE publications were the primary

outlets for “technical papers on machinery,” and he noted that the division between these two

groups would be worked out over time.58 He also explained that ACM meetings and publications

were largely focused on “what computers do.” This allocation scheme clearly positioned the

ACM as picking up where the more engineering- and machine-oriented IRE-PGEC and AIEE

CDC left off.

Williams also made it clear that his 1953 article reflected only his personal views.

However, he was soon addressing many of these same issues in his officially capacity as

57 Established by ACM co-founder Edmund Berkeley in the early 1950s, this magazine took the title
Computers and Automation in March of 1953. This is the name by which it is most widely known.
58 Reflecting the dominant image associated with each organization, Williams explained that “the division
[between the AIEE and IRE] will be worked out in much the same was as the division has been worked
out in the past: electronic, high frequency, communication, to the IRE; electrical, low frequency, power,
to the AIEE” (1953, p. 21). As suggested by this remark, the IRE seemed to have a bigger potential stake
in the computer field, including in areas such as the design of electronic components and systems. In
subsequent sections I discuss this point at length.

www.manaraa.com

 73

President of the ACM. In a speech that was delivered at the Association’s 1953 national meeting

and published the following year in the inaugural issue of the Journal of the Association for

Computing Machinery (JACM), Williams started with a brief history of the “automatic

computing field” that included a number of details about the formation of the Association

(1954). He added:

The Association has become an important factor in the field of computing

machinery. Until the engineering societies became sufficiently interested to

struggle with the “hardware”, the Association provided a forum for all phases of

the field. Now the Association can direct its efforts to the other phases of

computing systems, such as numerical analysis, logical design, application and

use, and last, but not least, to programming (p. 3).

And in another part of his talk, Williams continued to build on this theme by incorrectly stating

that the AIEE and IRE computer committees were both established in 1951.59

As outlined above, the historical record reveals that electrical engineers in general – and

the engineering societies in particular – were interested in computer hardware and other areas of

computing by at least the mid-1940s. And while it is difficult to pin down the exact reasons for

Williams’ somewhat inaccurate account, by this time the ACM was clearly facing jurisdictional

pressure from both the AIEE and IRE. In addition, Williams’ framing opened the way for a more

graceful exit to the debate, both by emphasizing the historical position of the ACM and by

shifting the conversation toward a discipline-building agenda that centered on the ACM’s

presence in less contested areas, such as numerical analysis, applications, and programming. Yet

boundary work is rarely so simple or clear-cut, and one of the topics identified by Williams –

namely logical design – was an increasingly important area of negotiation in ongoing debates

over the boundaries the various computing groups, a point to which I will return.60

59 As noted in the previous chapter, a computing subcommittee was established by the AIEE in 1946, and
elevated to full technical committee status in 1948. The IRE’s computer committee was formed in 1948,
and the PGEC in 1951. Yet even today, parts of the ACM web site include a subtitle that reads “The First
Society in Computing” (“ACM: Association for,” n.d.).
60 The concept of “logical design” can be traced back to at least the work of Alan Turing in the 1930s.
The term was also featured prominently in the title of a well-known 1946 report titled Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument (Burks, Goldstine, and von
Neumann, 1989). As nicely summarized in a more recent volume, “The term ‘logic design’ refers to the
process of specifying an interconnection of logic elements in digital computer hardware so that a desired

www.manaraa.com

 74

Subsequent leaders of the ACM revisted many of the issues that Williams had addressed.

In late 1955, for instance, the Association’s Presidency passed to Alston S. Householder, a

mathematician who at the time was working for the Mathematics Panel at Oak Ridge National

Laboratory. In a Presidential address delivered in 1955, Householder boasted that the

membership of the group was approaching 2,000. Echoing Williams’ prior remarks, he added:

“Today there are active groups in the IRE and the AIEE concerned with componentry and

construction, and the ACM is restricting its sphere to that of the effective use and application of

those machines” (1956a, p. 1).61 Yet in this same talk, Householder acknowledged that the field

might be more aptly described as a spectrum rather than two distinct spheres:

Design, construction, and use are but points on a continuous spectrum since

clearly a designer must have a use in mind, and a user, if he is to be intelligent,

must know something of the design. But ACM concerns now fall largely in the

applications region of the spectrum (pp. 1-2).

And in 1956, Householder stated even more directly that there was general agreement that the

ACM “should no longer concern itself with hardware” (1957, p. 2).62 Householder’s remarks

hinted at the difficulties that came with bringing the activities, mission, and scope of a

professional society into alignment with the major social and technical boundaries that were

growing up in the computer field. Just how does one partition a “continuous spectrum,” much

less in ways that satisfy three professional groups? As I argue in this chapter, the concept of

“sociotechnical settlement” helps us understand how this challenge was dealt with.

Further, by the late 1950s it was evident that the ACM and its members were increasingly

aligned with mathematics and programming, theory and applications. The group also maintained

close ties to the academic context, especially through its leadership ranks. These trends were

reflected in the election of subsequent ACM Presidents, including mathematics professor and

function is performed” (McCluskey, 1976, p. 809). This general meaning of the phrase has remained
roughly constant from the earliest days of the field to the present.
61 Householder also indicated that engineers were extensively involved with the ACM in its early days,
and he noted that “[i]n 1949 there was much discussion of componentry and design, less of techniques
and applications” (1956, p. 1). By the time of his talk, however, the area of “techniques and applications”
had risen dramatically in prominence and importance, both within and beyond the group.
62 Householder raised another notable concern in this talk, namely the increasing mathematical orientation
of the group: “I have heard the complaint that too many papers, in the meetings and in the Journal, are too
mathematical, and that, in particular, there are not enough papers dealing with business applications”
(1957, p. 2). Similar concerns have periodically resurfaced throughout the history of the ACM.

www.manaraa.com

 75

computer researcher John W. Carr III, who headed the organization from 1956 to 1958.

Mathematician Richard Hamming, on the other hand, took the post from 1958 to 1960. In fact,

Hamming emphasized in his inaugural Presidential address that the group had given up its

interest in computing machinery, and was instead largely acting as a point of common ground for

mathematicians, logicians, and users (Akera, 1998, p. 593). As documented by Akera, the ACM

was also attracting large numbers of programmers to its ranks, and the group’s membership rolls

more than doubled from approximately 2,300 members in 1956 to more than 5,000 in 1959 (Alt,

1962, p. 301).

Perhaps not surprisingly, the ACM Conferences tilted accordingly. As reported in

Computers and Automation, only about 15% (11 of 75) of the papers presented at the 1958 ACM

National Meeting were focused on computer design, while 38% dealt primarily with computer

mathematics, 20% with computer applications, and 19% with computer programming (“Is the

Computer Field,” 1958). As the editors noted, this data raised questions about whether the

computer field “will stay together or come apart into pieces.” On the other hand, evidence for the

ACM’s leanings toward mathematics and the sciences came in 1958, when the organization

secured official representation in the Mathematical Sciences Division of the National Academy

of Sciences – National Research Council (Alt, 1962, p. 304).

By some accounts, the ACM looked like a healthy and expanding organization as the

1950s drew to a close. However, it faced a growing roster of concerns. Paul Armer – who was

defeated by Hamming in the group’s 1958 Presidential run-off – identified many of these issues

in an editorial published in early 1959. Complaining that the ACM was in “a state of complacent

lethargy,” Armer urged the leaders and members of the group to “think big” (Armer, 1959, p. 2-

3). He also posited that the ACM might one day become “the professional society unifying all

computer users” (p. 3, my emphasis). Armer went on to offer a number of more specific

suggestions, including the establishment of a special interest group system and a change of venue

for the ACM’s national meetings from universities to hotels.63 An ad-hoc committee led by

ACM Vice President Harry Huskey made a number of similar recommendations in a 1959

63 As Akera explains, the latter suggestion was an important challenge to the long-standing academic
orientation of the group and its leadership (1958, p. 596). The idea was implemented in 1961, when the
ACM’s 16th annual national conference was held at a hotel in Los Angeles. This was also the first ACM
meeting to feature manufacturer’s exhibits, which was another significant change for an organization that
had long resisted industrial or commercial influences (Huskey, 1961a).

www.manaraa.com

 76

report, including the special interest group idea. As described by Akera, this report recommended

many organizational and representational changes, especially in light of the group’s ongoing

movement beyond “scientific computing” and into the realm of business data processing (Akera,

1998, pp. 597-598).

But even as the wheels of organizational change were starting to turn, outspoken ACM

members continued to complain about the group’s scope and orientation. Philip R. Bagley of

MIT’s Lincoln Laboratory noted in 1959, for example, that “[i]t is not at all clear to me what the

ACM’s actual sphere of interest is. If one were to judge from the Journal, it appears to be largely

in mathematical techniques suitable for computers, and includes a smattering of programming

techniques” (Bagley, 1959). Pointing to a disconnect between the ACM’s constitution and its

actual activities and publications, Bagley went on to note that many areas of possible interest to

the ACM were “being staked out by other societies, principally SIAM, AIEE, and IRE-PGEC.”64

He called on the ACM to clarify its interests, and to carefully consider how these interests

overlapped with other, “adjoining” societies.

Questions about the scope of the ACM were also paralleled by a sort of identity crisis

among many of the group’s members. Early evidence for this theme can be found in

Communications of the ACM (CACM) a monthly publication that was established in 1958 as an

outlet for news, notices, letters, and other materials not suitable for the more technical Journal of

the ACM. In a letter that appeared in one early issue of Communications, representatives of the

ACM’s Los Angeles chapter asked: “What is your reply when someone asks your profession?

Computing Engineer? Numerical Analyst? Data Processing Specialist?” (Editors of DATA-

LINK, p. 6).65 Noting a lack of suitable alternatives, the authors added:

It would help our profession to be widely recognized if it had a brief, definitive,

and distinctive name. This should be general enough to cover a variety of

subfields – from numerical analysis to data processing, but specific enough to

64 The Society for Industrial and Applied Mathematics (SIAM) was formally established in 1952. While
largely beyond the scope of my analysis, “Looking Back, Looking Ahead: A Siam History” (2002)
provides a summary overview of this organization’s history.
65 It is worth noting the intentional use of the phrase computing engineer rather than computer engineer.
The former suggests a concern with applications and hence computing, while the latter implies an
individual who designs or engineers computers. In the following chapter I document the use of these
terms as occupational designations.

www.manaraa.com

 77

imply that computing applications are involved. Consider the solid professional

sound of such terms as “Petroleum Engineer” or “Nuclear Physicist.”

In addition to revealing a perceived lack of disciplinary identity and unity among many

computer-oriented workers, this letter also reflected concerns about “professional” recognition.

Further, the authors hinted that other domains, such as engineering or the sciences, might provide

inspiration in their quest for a suitable professional identity.

Responding to this letter, ACM members put forward a number of creative suggestions.

One letter defined the obvious yet awkward term “comptology” as “[t]he science of computers,

computation, and computer control. Also of computer application” (Correll, 1958). The author

also included a number of more specific variations of the term, including “electrical engineering

comptologist.” And a subsequent writer, noting inspiration from the Greek hypologi (“to

compute”) suggested “‘hypologist’ for the man and ‘hypology’ for the field,” (Zaphyr, 1959).

And while these terms never came into widespread use, the underlying issues were clearly

important. In fact, below I discuss the emergence of some other titles that ultimately proved

more successful.

In the early 1960s the ACM continued a general pattern of growth and expansion, and

debates over the identity and scope of the group temporarily took a backseat to other pressing

matters. In fact, many of the issues addressed around this time were at least partially skewed

toward the interests and agenda of ACM President Harry D. Huskey. After serving as Vice

President under Hamming, Huskey took over the ACM’s top spot from mid-1960 to mid-1962.

In terms of background, Huskey followed in the footsteps of other “hybrid” actors, such as the

aforementioned Samuel Williams. He held M.S. and Ph.D. degrees in mathematics – an

appropriate pedigree for an ACM leader (Lee, 1995, pp. 390-391). Yet Huskey was also well-

known for his early work and many contributions in the area of computer design, and he

maintained close ties with the IRE-PGEC, having served as Review Editor for the group’s

Transactions from 1953 to 1957.66 Even Huskey’s joint appointment at Berkeley – in 1954 he

took the title Professor of Mathematics and Electrical Engineering – reflected his somewhat

ambiguous position with regard to the computer field’s major boundaries (Huskey, 1991, p. 294).

66 Huskey was involved with the ENIAC project from 1943 to 1946, and he worked on the early logical
design of the EDVAC. He also played a leading role in the design and construction of the well-known
Standards Western Automatic Computer (SWAC) in the late 1940s and early 1950s, and he was the
principal designer of the commercially produced Bendix G-15 computer (Lee, 1995, pp. 390-391).

www.manaraa.com

 78

Huskey’s frequent “Letters from the President” column reveals that the early 1960s were

a time when the leaders of the ACM were dealing with new publications and publication

policies, new institutional membership and student chapter programs, and the formation of the

American Federation of Information Processing Societies (AFIPS). The group’s membership

also continued to expand, with the membership count breaking through 10,000 barrier around

1962 (Huskey, 1962a). But perhaps just as importantly, changes to the ACM bylaws that were

passed in 1960 opened the way for the official formation of Special Interest Committees (SICs)

and Special Interest Groups (SIGs) (Huskey, 1960a; Gilchrist, 1961a). The former were smaller

and more exploratory in nature, while the latter required a larger membership and were viewed

as “miniature professional societies” that operated under the auspices of the ACM.67

As other groups such as the IRE had demonstrated, the SIG strategy could better

accommodate rapid growth in the size and scope of a professional organization, especially by

allowing various special interests to segment, but not secede. In fact, for the ACM the success of

this structural change was reflected in the rapid establishment groups and committees. By late

1964, three SICs were active in the areas of Computer Installation Management, Computer

Languages, and Digital Computer Programmer Training (Forsythe, 1964b). Five SIGs were also

established by this time, including SIGBDP (Business Data Processing), SIGIR (Information

Retrieval), SIGMAP (Mathematical Programming), SIGUCC (University Computer Centers),

and SIGBIO (Digital Computing in Medicine).

The titles of these groups also suggest that the ACM’s sociotechnical settlement in the

areas of computer applications and programming – or “What Computers Do” – was reasonably

well-established. The existence of the SIGUCC, on the other hand, hinted at the group’s

continued ties to the academic sphere. Additional evidence for these trends can be found in

membership surveys that were conducted in the early 1960s. Data collected in 1961, for instance,

revealed that 85.5% of members were primarily interested in “programming and using

computers,” while just 12.6% expressed a major interest in the “design of computers” (Gilchrist,

1961b).68 As ACM Secretary Bruce Gilchrist concluded, “[T]he major interest of present ACM

67 The phrase “miniature professional societies” was used in a 1961 call for members from the ACM SIG
for Mathematical Programming (“ACM Special Interest Group,” 1961).
68 A follow-up survey that was conducted in 1962 provided a more detailed breakdown of these numbers
(Gilchrist, 1962). It indicated that 13.7% of members were primarily interested in design, followed by
18.6% in “Systems Programming” and 37.2% in “Applications Programming.” Those interested in

www.manaraa.com

 79

members is very definitely the programming and use of computers, rather than the construction

and design of computers.” Yet as suggested by the preceding overview, Gilchrist’s remarks are

not entirely surprising, as they reflected pre-existing trends that were rooted rather deeply in the

history of the ACM. 69 In subsequent sections I follow these trends into the 1960s, when the

ACM and many of its members became increasingly engaged with educational issues and

aligned with the emergent field of “computer science.” Before doing so, however, it is necessary

to review the history of the IRE-PGEC and AIEE CDC from the mid-1950s to early-1960s. As I

discuss in the following sections, these organizations evolved in tandem with both one another

and the ACM, and an overall stability of this system of professional societies was maintained.

IRE-PGEC: The Voice of the Computer Engineering Profession

As discussed in the preceding chapter, the IRE’s Professional Group on Electronic

Computers (IRE-PGEC) was established in 1951, and both the group’s size and range of

activities ramped up quickly thereafter. In fact, by 1954 the membership of the PGEC had

swelled to over 2500 members, making it the IRE’s largest professional group (“News,” 1954).

But just who were these members? A series of surveys provide important evidence regarding the

make-up of the IRE-PGEC in the mid-1950 to early-1960 period. More specifically, this data

reveals the extent to which the group was largely composed of individuals who held engineering

degrees and were employed in the private sector. A 1956 survey indicated, for instance, that a

vast majority of the more than 2500 respondents were affiliated with private industry in either

the commercial (40%) or military (37%) sectors, and 54% of all members noted that they were

involved with computers as “producers” (Martin and Olson, 1957, p. 49). With regard to

educational background, a vast majority of this same pool of members held engineering degrees,

and a question about the “nature of work most actively engaged in” revealed three leading

responses: electronic design, technical management, and logical design (p. 54). The work area

labeled “programming” followed a distant fourth.

“Installations” and “Marketing” respectively made up 7.6% and 6.1% of all respondents, and “Education”
was a major interest for another 2.9% of members. The remaining 13.9% of members indicated “General”
or did not respond.
69 Gilchrist also noted that “19 per cent [sic] of ACM members reporting ten years or more of experience
in the computing field must mean, even allowing for reporting errors, that the Association for Computing
Machinery numbers among its members a very high percentage of the people who were in the computing
field in its early days” (Gilchrist, 1961b). Such remarks clearly emphasized both the historical and
contemporary importance of the group.

www.manaraa.com

 80

On the other hand, individuals with interests in education, computer applications, and

programming were clearly in the minority of the group’s members. Only 22% of those surveyed

in 1956 claimed that their primary involvement with the field was as computer “users,” and

approximately 18% indicated that they were actively engaged in the “applications” phase of the

computer field (pp. 49; 54). Further, roughly 15% of respondents indicated “programming or

mathematics” as their primary work activity (p. 54). In terms of employment, only 12% indicated

that they worked for an educational institution or research group, and a mere 67 individual

respondents (out of more than 2500 total) identified themselves as “educators” (p. 49) And

finally, the survey revealed the extent to which IRE membership overlapped with other

organizations, with about 23% and 15% of those surveyed also claiming membership in the

AIEE and ACM, respectively (p. 54).70

These data show that professional engineers with interests in computer systems,

electronic design, and related subjects largely filled out the ranks of the IRE-PGEC. A second

membership survey that was conducted in 1958 reinforced the earlier findings, albeit with a

larger sample size (Uncapher, 1959). One data point worthy of note centers on a revised “nature

of work” question where large numbers of respondents classified their primary work activities as

most closely related to “engineering” (about 65% of responding members) and “research” (about

25% of members) (p. 61).71 Conversely, “programming/math” and “education” were respectively

selected by about 6% and 5% of respondents (p. 61).

In 1959, IRE-PGEC chairman Willis Ware boasted that the group’s membership had

topped 7000 (Ware, 1959, p. 90). Yet even in light of this impressive growth, a survey conducted

the following year suggested that the overall composition of the group was changing very little

(Uncapher, 1961). Based on nearly 4000 responses, the collected data indicated that employment

of members in the private sector had risen slightly to 86%, including 44% and 42% in the

defense and commercial sectors, respectively (p. 84). In addition, 58% of respondents specified

that their work was primarily in “engineering,” while another 15% indicated “research” and 10%

70 Perhaps even more suggestively, those respondents who indicated that they “usually” attended the
ACM National and AIEE National meetings numbered a mere 7 and 18 individual members, respectively.
However, approximately 34% of all responding members regularly went to the IRE National Meeting,
26% to the Eastern Joint Computer Conference (EJCC), and 11% to the Western Joint Computer
Conference (WJCC) (Martin and Olson, 1957, p. 55).
71 These percentage values are my own approximations, based on published bar graphs of the 1958 survey
data. Unfortunately, this summary of the survey did not include numerical totals or percentages for most
of the results.

www.manaraa.com

 81

selected “administration” (p. 83). Conversely, just 3% indicated that their primary work activities

were in the area of “education,” while 4% opted for “programming/math” (p. 83) Those

employed by educational institutions jumped to 7%, although this clearly still represented a

rather small segment of the group (p. 84).

In the 1950s the PGEC was repeatedly framed as the organization of choice for those

whose interests centered on the “the theory and practice of computer engineering” and “the allied

arts and sciences” (“Constitution,” 1955). Yet the group also developed additional strategies and

policies to help bolster its position in the field. An “affiliate” plan was proposed, for instance,

that allowed an interested individual to become a member of an IRE professional group without

first having to join the IRE, although they did need to belong to an “accredited organization

approved by that group and the IRE Executive Committee” (Baker, 1957). As documented in a

historical retrospective authored by former PGEC chair Walter Anderson, this idea emerged in

the mid-1950s when it was increasingly clear that

some of the best logic designers in the computer field were physicists who

normally would not participate in IRE publications. The Computer Group wanted

to relate to such companion professionals as these and to the mathematicians

engaged in programming (Anderson, 1976, p. 48).

While the idea of affiliate membership initially received a lukewarm reception when pitched to

the top leadership of the IRE, persistent lobbying helped lead to the implementation of the

program in 1957.72 And by 1960, a total of 15 societies had been approved as affiliates, including

the AIEE and ACM (“Affiliate Status,” 1960). This was an important change, as it enabled

greater potential participation in the PGEC by those who might not otherwise qualify for IRE

membership, including many individuals who did not hold engineering degrees.73

72 As Anderson recounts, when PGEC chair Harry Larson pitched the affiliate member concept to the
IRE’s Groups Committee “it found little support from a roomful of men 10 to 20 years his senior, who
gravely explained the dire effect this would have on the IRE and solemnly questioned the value of the
concept” (1976, p. 48). As suggested by these remarks, professional societies often maintain membership
gate-keeping functions that are difficult to change.
73 According to Ryder and Fink (1984), the IRE was historically more liberal than the AIEE with respect
to membership requirements (pp. 214-215). However, even the IRE restricted access to voting member
grades to graduates of “schools of recognized standing,” while a non-voting “Associate” grade was
reserved for those who had an interest – but not the appropriate educational credentials – in radio
engineering. The ACM, on the other hand, had an early history of open membership, but this ended in
1965 when the group made four-year degrees mandatory for new members (Ensmenger, 2001, p. 63).

www.manaraa.com

 82

And as the winds of change started to sweep through the ACM in the late 1950s and early

1960s, so too did the IRE-PGEC enter its own phase of reflection and evaluation. In fact, by the

late 1950s numerous discussions about the scope and position of the group were appearing in

publications such as the group’s Transactions. In a 1959 editorial, for instance, PGEC chair

Willis Ware explained:

The PGEC also needs to review its domestic position; with other PG’s

[Professional Groups] critically reviewing their areas of interest in view of

technological advances and the opening of new fields, it is time for the PGEC to

introspect and determine which position it wants to have in the U.S. computing

fraternity and to move in that direction. It might even be desirable to consider

modifying the name of the group (Ware, 1959, p. 91).

Ware’s remark revealed the extent to which the scope and position of the PGEC required two

types of jurisdictional negotiations, one centering on other Professional Groups within the IRE,

and the other involving various organizations outside of the IRE, such as the ACM. The rapid

“technological advances” referenced by Ware only further complicated these processes.

In light of these challenges, the IRE PGEC worked to both secure and expand its

sociotechnical settlement. In 1961, for instance, PGEC chairman Arnold A. Cohen followed in

Ware’s footsteps by suggesting that the name of the group might be changed to the Professional

Group on Information Processing Systems, or PGIPS (Cohen, 1961). As Cohen explained, this

new title carried a broader connotation and included the important word “systems.” He added:

The combination gives recognition to the long established fact that our attention is

not confined to components and techniques internal to computers. Further, it is

certainly our responsibility, whether as PGEC or as PGIPS, to serve the increasing

interest in system engineering of computer-centered systems (p. 845).

As suggested by Cohen’s remark, it was increasingly evident that computers were being

used with increasing frequency as components in larger technological systems. Hence,

explicitly recognizing this new area of activity and claiming it looked like a sound

strategy for the PGEC, although Cohen’s letter provided little in the way of additional

details about this expansionist agenda.

On the other hand, around this same time Cohen and other PGEC leaders were

working on a suggestive update of the group’s official statement of scope. Through

www.manaraa.com

 83

September of 1961, a statement that appeared in each issue of the Transactions on

Electronic Computers declared that the scope of the journal “includes the design, theory,

and practice of electronic computers and data-processing machines, digital and analog,

and parts of certain related disciplines such as switching theory and pulse circuits”

(“Information for Authors,” 1961a). But beginning in December of 1961, this relatively

simple declaration was replaced by a new statement of scope that identified and described

five subject areas in substantial detail:

a) all aspects of design, theory and practice relating to systems for digital and

analog communication and information processing;

b) components and circuits for digital and analog systems, including techniques for

accomplishing the functions of logic, arithmetic, storage, control, mass data

storage, input, output, and external communication in such systems;

c) relevant portions of supporting disciplines, including switching theory, symbolic

logic, numerical methods, codes and number representation systems, abstract

machine or automation theory, symbolic logic, bio-sciences, machine learning,

pattern recognition, and other extensions of logical machine capabilities;

d) production, testing, operation, and reliability of digital and analog systems; and

e) those aspects of application, use, and programming of digital and analog

computing devices and information systems that relate to their design and

operation (“Information for Authors,” 1961b).

While this passage was ostensibly framed as the scope of a journal, to some extent it clarified the

PGEC’s settlement in the computer field. In fact, and as I note below, much of this statement was

incorporated into one of the group’s later constitutions. This passage is also striking in that it

identified and intertwined many different bodies of knowledge and types of technology,

especially through the use of terms such as design, theory, practice, components, circuits,

systems, and techniques. As a part of the IRE-PGEC’s ongoing efforts to “critically review” its

position, this statement of scope spelled out the group’s settlement in rather extensive detail.

A number of additional points are worth noting with regard to this passage. First, the use

of terms and phrases such as “systems,” “information processing,” and “information systems”

reflected Cohen’s prior remarks about increasing the group’s presence in the area of “systems”

and perhaps even renaming the PGEC accordingly. And second, some of the subject areas

www.manaraa.com

 84

outlined in this statement were clearly in overlapping areas of interest, even if many of the

“core” areas had long been viewed as the province of computer designers and engineers. Section

(c), for instance, acknowledged some of the areas where the settlement of the PGEC tended to

overlap with other fields.

Yet the use of the phrase “supporting disciplines” rather than “related disciplines” in this

statement of scope framed these other (and unidentified) fields as secondary – and perhaps even

subservient – to the PGEC’s major area of settlement. Further, describing this wide range of

special interest areas as “extensions of logical machine capabilities” clearly emphasized the

importance of the “machine,” even in those phases of computing that were more application- or

user-oriented. And on another closely related note, this new statement reiterated the assertion –

which was first made in the early 1950s – that the areas of “application, use, and programming”

were of particular relevance to the PGEC and its members when they impinged on machine

design and operation.74 Of course, this point remained significantly open to interpretation,

especially given that the boundaries around design and use are rarely so clear-cut.

In the midst of ongoing efforts to clarify the scope of the PGEC, chairman Cohen also

indicated that the group was considering the establishment of new “Technical Activities

Committees” (or “TACs”) as another way for the group to focus on special-interest topic areas.

As Cohen explained, these committees might spearhead various types of activities, such as

planning symposia, organizing conference sessions, reviewing papers, and cooperating with

other IRE technical committees (Cohen, 1961). He added that each TAC would function as a

“vigorous steering committee for organizing technical activities,” especially in light of the

ongoing growth of “specialties within specialties.” By April of 1962, it was announced that the

first two TACs would be dedicated to “analog and hybrid computing” and “logic and switching

theory” (Cohen, 1962b). These developments were something of a throwback to the late 1940s,

when the IRE’s Technical Committee on Electronic Computers was first established. And while

the IRE’s technical committee and associated subcommittees gradually faded in the 1950s as

professional group structure rose in prominence, this revival of the committee structure in the

74 As indicated in the previous chapter, a 1953 editorial in the PGEC’s Transactions on Electronic
Computers explained that “[w]e may think of programming as relating to applications and being outside
the sphere of interest of most computer engineers” (“Editorial,” 1953). However, in light of the fact that
the same journal issue included a paper that discussed a particular programming technique, the authors
qualified that this topic “should be of concern to the engineer because such programs offer an alternative
to designing auxiliary equipment for the same purpose.”

www.manaraa.com

 85

early 1960s revealed how the PGEC was looking for new ways to cope with its own expanding

size and settlement.

But despite the PGEC’s increasingly expansive settlement, other prominent

spokespersons reaffirmed the group’s traditional identity. In a 1961 editorial, for instance,

University of Michigan electrical engineer and incoming PGEC Transactions editor Norman R.

Scott noted that the expanding page count of the group’s flagship journal was “evidence not only

of the growth of the computer engineering profession but also of the growth of the PGEC as a

voice of that profession” (Scott, 1961). Membership rolls were also expanding, and by 1960 the

group boasted about 9000 members, bringing into rough parity with the 8900 members that the

ACM claimed the following year (Anderson, 1976, p. 49; Huskey, 1961b). Yet whether stability

could be maintained between the ACM and PGEC – or the “computer users” society and the

“computer engineering organization” – remained an open question, especially into the 1960s.

Further, the PGEC was not the only engineering organization that had a stake in the computer

field. I now turn to the remaining organization in this triad of professional societies.

The AIEE CDC: Committee-Bound and Power Industry-Oriented

As indicated in the preceding chapter, the larger and more influential IRE-PGEC casts a

rather long shadow over the history of the AIEE’s Computing Devices Committee (CDC). This

tendency was only exacerbated in the 1950s by the persistent orientation of the AIEE toward

power engineering, as well as the concomitant tendency of the group to focus much of its activity

on the analog and application aspects of computing. Yet it is worth reviewing the history of the

CDC from the mid-1950s onward, both in the interest of rounding out this system of professional

systems and in order to set the stage for other developments.

To begin with, through much of the 1950s the CDC continued many of the activities that

the group had initiated in the late 1940s and early 1950s. For example, CDC committee members

were responsible for contributing short summaries of progress in computing devices for an

annual “engineering developments” feature article, which was published each January in the

AIEE’s widely-read Electrical Engineering magazine. The committee also continued to review

papers for AIEE publications and organize panels for AIEE conferences. Yet by 1954, an annual

report summarized that “much of the committee’s effort has been exercised through its

participation in the Joint Computer Conferences” (“Report of the Board,” 1954). In fact, this

www.manaraa.com

 86

same report explained that the joint conferences “provide a much needed forum for concentrated

discussion of particular phases of computer activity and have the tremendous advantage of

concerted action on the part of AIEE, IRE, and ACM rather than dispersing this activity in

several places” (p. 774). Below I discuss in more detail the pivotal role of the JCC in maintaining

stability in this system of professional societies. However, this passage clearly hinted at the

perceived importance of the joint conferences and its associated committee in uniting the diverse

phases of the field. In addition, the “Institute Activities” section of Electrical Engineering

regularly covered the JCCs, providing further evidence for the perceived importance of these

events, even for the AIEE writ large.

The composition and direction of the CDC remained largely consistent in the mid-1950s.

In fact, many of the leaders of the group had much in common with their predecessors. Frank

Maginniss, chairman of the group from 1953-1955, was as an electrical engineer in General

Electric’s Analytic Engineering Department (“AIEE Officers,” 1954, p. 852). Like his General

Electric colleague Charles Concordia – who was the first chair of the AIEE’s original

subcommittee on Large-scale Computing Devices – one of Maginniss’ main areas of interest

centered on using computers to solve engineering problems that were relevant to the electrical

utilities (“New Attendance Record,” 1956, p. 1111). Edwin L. Harder, who chaired from 1955 to

1957, was similarly an engineer in the “Analytical Section” of Westinghouse Electric. Harder’s

expertise in and orientation toward analog computing was reflected in his earlier position as chair

of the CDC’s Analog Computer Subcommittee, as well as his leading role in the design and

construction of the well-known ANACOM analog computer in the late 1940s (Aspray, 1993).

And while Harder gained familiarity with the use of digital computers through his position at

Westinghouse, his expertise in the area of computer design was limited to the analog domain.75

Under the leadership of Maginniss, the number of CDC members hovered around 30, and

the activities of the group were clustered around six active subcommittees.76 Harder’s tenure as

chair, however, was accompanied by a noticeable expansion of the CDC’s member rolls. By

75 In 1991, Harder recounted his early involvement with the AIEE CDC. As he explained, “[t]here was a
digital subcommittee and an analog subcommittee all in the Computer Committee. My part with it was
analog at first. And as Westinghouse never really did build digital computers, why, I remained a user all
my life” (Harder, 1991).
76 A total of 31 members were listed on the committee’s official roster in 1954, and 30 members were
listed in 1955 (“AIEE Officers,” 1954, p. 852; “AIEE Officers,” 1955, p. 846). The subcommittees during
this time included the Digital Computers, Analog Computers, Computer Bibliography, Digital Computer
Comparisons, Analog-Digital Converters, and West Coast (“AIEE Officers,” 1954, p. 852).

www.manaraa.com

 87

1956 the membership roster stood at 42, and in 1957 it listed 58 affiliated individuals (“AIEE

Officers,” 1956, p. 851; “AIEE Officers,” 1957, p. 844). Through this same time period the CDC

also appeared poised to both lead an expanded array of activities and assume a more prominent

position in the AIEE. An annual report published in 1956, for instance, indicated that the CDC

was reviewing its organizational structure in light of “rapid expansion in the computing devices

field” (“Report of the Board,” 1956, p. 752). And a 1957 committee report noted that the

increasingly diverse activities of the CDC might eventually lead to the formation of an entirely

new AIEE division dedicated to computing devices (“Report of the Board,” 1957, p. 737).

While this was certainly an ambitious and forward-looking proposition, the group’s

expansion remained closely linked to member interests in computer application and use. In a

1955 report, for instance, it was noted that the CDC “may have an important part to play in a

combined educational and application function to aid the industry in bringing into play the

rapidly increasing power of the digital computer” (“Report of the Board,” 1955, p. 730). It was

reasonably clear that the use of the phrase “the industry” in this passage primarily referred to the

power industry. In fact, this same report indicated plans for collaborative activities with the

AIEE Committee on System Engineering, with particular emphasis on surveying how electric

utilities were using digital computers to handle accounting and other business problems. AIEE

interests in the use of computers received more formal recognition in 1956, when an

Applications Subcommittee was added to the CDC. In addition to serving as a liaison with other

AIEE committees with interests in computer applications, the scope of this subcommittee

centered on the “treatment of all phases of the application of computers in which the dominant

factors are the design, construction, selection, installation, and operation of computing and

related devices” (“Report of the Board,” 1956, p. 752).77 The increasing relevance of computing

and data processing in the AIEE was also reflected in the establishment of a “Joint Division

Committee on Automation and Data Processing.” In 1957 this committee consisted of 21

77 As this statement suggests, the involvement of many electrical engineers in the area of computer
applications remained significantly oriented toward the physical “hardware” of computing. That is, even
if not directly interested in machine design, engineers might be called upon to specify, select, and install
computer equipment, perhaps even as part of a larger technological system. By contrast, organizations
such as the ACM were developing a reputation for their “top-down” orientation toward theory, languages,
algorithms, and applications. These two very different ways of looking at computers and computing set
the stage for new conflicts of culture and interest among the major sociotechnical factions of the field.

www.manaraa.com

 88

members, including the outgoing and incoming chairmen of the AIEE CDC (“AIEE Officers,”

1957, p. 845).

While serving as head of the CDC Harder authored a two-part article on “The Computing

Revolution” that was published in Electrical Engineering in 1957 (Harder, 1957a; 1957b).

Harder’s focus in this piece tended toward applications, as suggested by his leading remark that

“[c]omputing progress in electrical engineering is an integral part of a revolution in information

processing” (1957a, p. 476). And while the author reviewed some major “Advances in

Machines,” Harding devoted much of the article to reviewing the state of the programming art

and surveying how computers were being used in research, engineering, business, and

manufacturing. Other papers, conference panels, and news items revealed that interest in

computing among AIEE members often clustered around two more specific areas of engineering

application, namely aeronautics and power systems. Both of these areas had high demands for

computational power, especially for design and simulation. In fact, the organization of an AIEE

Power Industry Computer Application Conference in Toronto in 1958 revealed the rapidly

expending use of computers in even this relatively conservative and old-guard province of

electrical engineering (“AIEE Power Industry,” 1958). In fact, the conference program indicated

that many of the conference papers discussed how computers were being used to design power

machinery, and to analyze and simulate power networks (p. 848).

The CDC continued a modest pattern of growth as it entered the late-1950s, and by 1958

the committee boasted 65 members (“AIEE Officers,” 1958, p. 882). Even more importantly,

from 1957 to 1959 the chairmanship of the CDC was taken over by Morris Rubinoff, whose

background was quite unlike that of Maginniss and Harder. Affiliated at the time with both the

University of Pennsylvania’s Moore School and Philco Corporation, Rubinoff held academic

credentials in mathematics and physics, and he had worked with Aiken at Harvard on the Mark

series of computers (“Alumni: Obituaries,” 2004; Rubinoff, 1971, pp. 4-6). From 1948 to 1950

he was also involved with computer design work at Princeton’s Institute for Advanced Studies

(Rubinoff, 1971).

Evidence suggests that Rubinoff’s particular interests inflected his agenda while serving

as chair of the CDC. As retrospectively noted by Willis Ware, for instance, Rubinoff was an

“upstart” who was trying to change the direction of CDC, especially in terms of shifting its

emphasis from analog to digital computers (Ware, 2005). In 1959 – at the end of his tenure as

www.manaraa.com

 89

CDC chair – Rubinoff similarly explained that “[t]he primary objective of the AIEE in the last

few years has been to do that job of education” (“Is it Overhaul,” 1959a, p. 30). Describing the

success of these efforts, Rubinoff added that “in the power industries, for example, there has

been a big increase in the use of digital computers in the last few years. This is because we in the

AIEE went hammers and tongs at the problem of educating the power engineers to the use of

computers” (p. 30). Given the early prevalence of analog computing devices in the power

industry, promoting digital computers was likely one of Rubinoff’s major goals as CDC chair.

Even more generally, the AIEE fell into a pattern of slowed growth in the mid and late

1950s, and by 1957 the total IRE membership for the first time surpassed that of the AIEE

(Ryder and Fink, 1984, pp. 215-216). The leaders of the AIEE were increasingly concerned

about the future of their Institute, and a special task force was convened in 1957 to evaluate the

state of the organization and its objectives (pp. 219-220). This group concluded that the AIEE

had largely failed to enter new fields, did not have sufficient appeal to student members, and did

not adequately cover the whole field of electrical engineering (pp. 219-220). The task force also

critiqued both the AIEE board and its technical committee structure for perpetuating these

problems, and it recommended the establishment of national-level “Institute Technical Groups”

(ITG). These were to be similar in form and purpose to the IRE’s SIGs (p. 220).

Around the time of ITG proposal, a growing body of evidence also revealed the extent to

which AIEE members maintained some level of interest in many different phases of electrical

engineering, including computers and computing. For instance, in 1959 Rubinoff claimed that, of

the AIEE’s roughly 50,000 members, “some two or three thousand have indicated that their

primary or secondary interest is in computers” (“Is it Overhal,” 1959a, p. 30). Yet Rubinoff

indicated that that in light of these statistics, there remained “47,000 engineers who could use

computers and who should be made aware of computers if only someone would only take the

trouble to do it” (p. 30). Rubinoff’s comment once more revealed the extent to which the leaders

of the CDC viewed the activities and future growth of their committee as linked to the use and

application of computers rather than computer engineering and design.

Rubinoff’s rough statistical estimates were likely based on survey and reader response

data that was collected and published in the late 1950s and early 1960s. A survey conducted in

1960 and published in 1961, for example, revealed that only about 3.6% (1,608 of 44,308) of

responding AIEE members indicated that their “primary interest” was in the area of computing

www.manaraa.com

 90

devices, while about 4% (1,555 of 38,515) noted a “secondary interest” (“Progress of Institute,”

1961, p. 373). On the other hand, this same survey revealed the persistent dominance of the

Power Division, which captured an impressive 36% of all primary and almost 38% of secondary

member interests. Other significant areas of interest included electronics (4.6% primary and

6.1% secondary). In addition, various Industrial Division sub-fields, including Feedback Control

Systems, Industrial and Commercial Power Systems, and Industrial Control received reasonably

high response rates.

This same survey also reported on member preferences with regard to technical groups

(“Progress of the Institute,” 1961, p. 373). For starters, about 5% (or 114 of 2298) of responding

members expressed an explicit interest in the formation of a “Computing Devices” technical

group. By contrast, more than 10% of respondents called for the formation of an ITG dedicated

to “Power Transmission and Distribution,” and sizable numbers of members also recommended

the creation of groups in areas such as Electronics (6.2%), Power Generation (5.1%), and Basic

Sciences (4.5%). Other popular ITG proposals included Data Communication and Feedback

Control Systems, which garnered about 5% each. In light of these results, by September of 1961

the new ITG program was being built up around eleven proposed technical groups (“Which

Institute Technical Groups,” 1961, p. 704). One of the ITGs was dedicated to “Computing

Devices,” and was situated in a Science and Electronics Division along with the Basic Sciences

and Electronics groups. As suggested by this development, computers and computing were well-

established areas interest for many AIEE members. In fact, the prospects for a larger and more

vibrant computer-oriented technical group was likely encouraging for those who had worked

hard in the 1950s to maintain and expand the scope and activities of the CDC. On the other hand,

computing was still a somewhat peripheral extension of the AIEE, especially in light of the

continued dominance of power and electric industry interests in the organization writ large.

But even more importantly, the initial momentum of the ITG proposal was quickly

subverted as high-level moves toward an AIEE-IRE merger gained traction. By the time that the

merger announcement and resolution appeared in Electrical Engineering in December of 1961,

the technical groups plan was essentially obsolete (Chase, 1961). As many surely recognized at

the time, grafting technical groups onto the AIEE was a good idea that had come too late, both

for the organization generally and for those members who maintained significant interests in the

area of computing devices. As summarized by Ware, Rubinoff and his successors “gradually got

www.manaraa.com

 91

things turned around a little bit, but it never got turned very markedly before the merger of AIEE

and IRE” (Ware, 2005).

The AIEE Winter General Meeting in 1961 featured an impressive roster of thirty seven

computer papers in seven sessions (Kagan, 1961). And in 1963, an ad-hoc subcommittee of the

CDC produced a paper that outlined recent advances in the computer field. In addition to being

presented at the 1963 Winter General Meeting of the newly-formed Institute of Electrical and

Electronics Engineers (IEEE), this paper appeared in near-verbatim form in both Electrical

Engineering and Computers and Automation (Ad Hoc Group, 1963a; 1963b). Yet these activities

were clearly something of a last hurrah, as the final two CDC chairs – namely Ruben Imm (1961

to 1963) and Claude Kagan (1963 to 1964) – were primarily focused on representing the interests

of the CDC in the merger of the IRE and AIEE and in the formation of the American Federation

of Information Processing Societies (AFIPS).

Merger, Identity, and Scope: Forming the IEEE Computer Group

As noted above and documented by historian A. Michal McMahon, various factors

contributed to persistent tensions between the IRE and AIEE in the 1940s and 1950s, including

the ebb and flow of membership numbers and questions about the scope of each group’s

activities.78 Yet in the 1950s, the two groups started to grow closer, including through a Joint

AIEE-IRE Coordination Committee that was established in 1952 (McMahon, 1984, p. 240). Joint

activities in areas such as student groups and standardization were also increasingly common

through the 1950s, and in 1956 a reciprocal AIEE-IRE membership plan was established (IEEE

Center, 1984). The groups continued to move closer until the AIEE and IRE Boards agreed to

work toward a merger in 1961 (McMahon, 1984, p. 241). Of course, there remained countless

details to hash out, in areas ranging from publication outlets and the format of conferences to the

appropriate geographic scope of the organization (i.e. American or International). Further,

melding the AIEE’s technical committee structure with the IRE’s professional group system

loomed as a particularly large challenge as the merger progressed.

Ultimately, a professional group structure – which was such a pivotally important

ingredient in the IRE’s post-war growth and vitality, and which also inspired the AIEE to

78 My historical overview of the merger is largely a summary of the accounts developed by McMahon
(1984, pp. 239-243) and Ryder and Fink (1984, Ch. 12).

www.manaraa.com

 92

propose its own technical group system – quickly emerged as a defining feature of the new

organization. However, these groups were rechristened as “professional technical groups,”

thereby representing the legacy of the AIEE technical committees. But as McMahon explains,

“[s]ome of the AIEE’s Technical Committees were immediately absorbed into Groups; others

retained their committee status, to be later merged into the Groups system” (1984, pp. 242-243).

As suggested by this summary, the technical committees were quickly engulfed by and

integrated into the professional groups, which were larger in size and largely self-governing.

Following a member vote that approved the AIEE-IRE merger by a relatively large

margin, the completion of the merger at the “headquarters” level was officially complete by

January of 1963, resulting in the official establishment of the Institute of Electrical and

Electronics Engineers, or IEEE (Ryder and Fink, 1984, p. 225).79 Ongoing efforts to merge the

various committees and groups of the prior parent organizations took somewhat longer to

complete. In fact, this process proceeded with some variability from group to group, as reflected

in the unique amalgamation that brought together the AIEE CDC and the IRE PGEC. One early

step in this process involved the late 1962 formation of a four-member Joint Study Committee,

consisting of representatives from both the AIEE CDC and the IRE PGEC. As retrospectively

explained by Anderson, the merger process required the working out of many subtle and not-so-

subtle differences in the traditions and preferred approaches of the two groups, ranging from the

processes by which leaders were selected to the use of different rules for peer review (Anderson,

1976, p. 49).

Following a mandate from IEEE headquarters, by early 1963 the PGEC was officially

renamed the IEEE Professional Technical Group on Electronic Computers, or “PTGEC”

(Anderson, 1963b). The Joint Study Committee subsequently prepared a plan for the merger of

the group and the committee. This plan was approved in mid-1963, leading to the formation of a

four-member Constitution of and Bylaws Committee (Anderson, 1963c). By February of 1964

PTGEC Chairman Walter Anderson noted the “careful design work” thus far involved with the

merger, an apt description given that the process was being led by engineers (Anderson, 1964a).

79 Ryder and Fink describe this process under a heading that reads “The IEEE is Born” (1984, p. 225).
However, I prefer the more nuanced – and perhaps more accurate – framing presented by McMahon:
“The makers of the IEEE had drawn copiously on its tangible past and, so, in a real sense, this new
national engineering society was formed, not founded. Its technical fields, publications, and convention
habits were only the most obvious components of a rich and detailed inheritance” (1984, p. 243).

www.manaraa.com

 93

And while Anderson also complained that the merger was progressing with “more rigor than

vigor,” in April of 1964 the merger of the CDC and PTGEC to form the “IEEE Computer

Group” (or “IEEE CG”) was officially announced (Uncapher, 1964a). As incoming Chairman

Keith W. Uncapher pronounced, “The event marked the culmination of a long effort to create an

effective organization whose service to its members and to computer technology would be

greater than the sum of the prior independent contributions of the CDC and PTGEC” (Uncapher,

1964a, p. 184).

One major aspect of the merger processes that appears to have advanced relatively

smoothly involved the development of a committee structure for the two groups. As noted above,

the AIEE CDC was organized around a number of subcommittees, and the IRE-PGEC launched

its own technical committee structure in the early 1960s.80 In fact, PGEC Chairman Anderson

announced the formation of the first TAC in 1962 (1962). Dedicated to the area of Logic and

Switching Theory, from the start the new group was recognized as a joint AIEE-IRE committee.

By early 1965 the twelve Technical Committees of the newly-formed Computer Group were

listed in the IEEE Transactions on Electronic Computers (“IEEE Computer Group,” 1965).

Yet a closer examination of the merger reveals some key variations in the framing of the

new group’s identity and scope. As noted above, PGEC chair Arnold A. Cohen proposed in 1961

that the PGEC be renamed the Professional Group on Information Processing Systems (PGIPS),

which tended to emphasize the group’s broad interests in all phases of information processing.

On the other hand, during the lead-up to the merger Cohen emphasized that “the combined

computer wings of the two Institutes contain the ingredients for a strong, effective computer

engineering organization” (1962a). Cohen reiterated this statement verbatim in a second letter,

also published in early 1962 (1962b). As merger activities continued to ramp up, ongoing

discussions about the name of the group hinted at further questions about the extent to which the

group’s interests extended beyond the domain of “computer engineering.”

In a 1963 letter published in the PTGEC’s Transactions, Louis Fein picked up where

Cohen’s prior PGIPS suggestion had left off (Fein, 1963). Fein started by asserting that any new

name for the organization should be broad enough to cover its full range of activities and

interests, yet not so broad that it “includes the principal activities and interests of other groups of

80 Through the 1950s and into the early 1960s, the IRE continued to maintain technical committees at the
top level of the organization, largely outside the purview of any single professional group. However, these
were primarily dedicated to standards (Chase, 1961, p. 912).

www.manaraa.com

 94

engineers and scientists.” As I discuss in more detail below, by this time Fein was acutely aware

of the professional and disciplinary politics that were in play. Further clarifying his view of the

PTGEC’s scope, Fein posited that the membership was primarily concerned with “the theory and

practice of the design, construction, test, operation and maintenance of reliable components,

circuits and equipment to be used by itself or as part of a larger system.” He also emphasized the

importance of selecting a name that included or implied terms such as “equipment,” “systems,”

and the associated “purposes” thereof. After declaring that a variety of existing and new names

were inadequate, the author ultimately proposed “Professional Technical Group on Synnoeta.”81

Referencing his own 1961 article that proposed the establishment and development of a new

field that he dubbed “synnoetics” – or the “computer-related sciences” – Fein explained that the

Greek-derived term “synnoeta” referred to the use of systems or equipment in the performance

intellectual tasks. He concluded his letter by noting that organizations such as the ACM might

also “get around to changing their names to more adequately describe their scope of interest and

activity.”

While Fein’s proposal generated little in the way of follow-up commentary or discussion,

the leaders of the PTGEC were nonetheless toying with other naming possibilities during this

important transitional period. By early 1963, for example, PTGEC Chairman Anderson started

using the simple phrase “Electronic Computer Group” to refer to the organization (1963a), and in

June 1963 he both commented on the group’s “alphabet soup” name and suggested that it might

be more appropriate to adopt a more simple title such as the “Computer Group” (1963c). He

even signed his letter as the chairman of the “IEEE Computer Group,” even though the group

was still officially known as the PTGEC. In early 1964, however, Anderson noted that moves

were afoot to adopt the name “Society for Electronic Computers,” which was intended to reflect

the organization’s true size and scale (1964a). And indeed, many commentators around this time

were quick to point out that the organization’s membership had topped 10,000.

But as the merger progressed, yet another possible name surfaced. In an April 1964 letter,

chairman Anderson explained that the newly drafted constitution included “a new name for the

group, the Society for Computer Sciences” (Anderson, 1964b). And the following month, the

81 The other names discussed by Fein included the Professional Technical Group on Intellectronic
Systems (with the term Intellectronics borrowed from Simon Ramo), Professional Technical Group on
Information Processing Systems (with an explicit reference to Cohen’s PGIPS suggestion), and
Professional Technical Group on Automata (Fein, 1963).

www.manaraa.com

 95

trade magazine Datamation carried a news item that referenced this same name (“SJCC Society

Gleanings,” 1964). Later in the year, ad hoc Secretary and former PGEC chair Arnold A. Cohen

cautioned that the group should be referred to as the IEEE “Electronic Computer Group” until

the name change was approved more formally (1964). And by the end of 1964, Uncapher

indicated that the official name of the organization was the “IEEE Computer Group,” but he

added that the name was subject to revision in light of a more general overhaul of the IEEE’s

naming conventions that was planned for 1965 (Uncapher, 1964b). At least for the time being,

the IEEE’s interests in the computer field would remain under the purview of a group rather than

a more autonomous society.

Published at the beginning of 1965, the group’s new Constitution and Bylaws proclaimed

that “[t]he name of this organization shall be the Computer Group of the Institute of Electrical

and Electronics Engineers” (“IEEE Computer Group Constitution and Bylaws,” 1965, p. 2). Yet

the phrase “computer sciences” was also featured prominently in this document. In contrast to

earlier PGEC constitutions – which emphasized the group’s orientation toward “computer

engineering and allied arts and sciences” – the new constitution explained that “[t]he group shall

strive for the advancement of the theory and practice of computer sciences” (p. 2). As I discuss

in more detail below, the term “computer science” was coined in the late 1950s, and it entered

wider circulation in the 1960s. As suggested by the Computer Group’s new constitution, the

phrase had broad appeal among computer professionals, including many computer-oriented

engineers. In fact, it was so appealing that it displaced any reference to engineering in the

Computer Group’s statement of objective.

The group’s scope, as outlined in the second article of the new Constitution, also hinted

at possible shifts and expansions in the organization’s agenda (“IEEE Computer Group

Constitution and Bylaws,” 1965, p. 3). In most general terms, this declaration closely followed

the statement of scope that was established in 1961 for the PGEC’s Transactions on Electronic

Computers. In fact, the first four sections of the new scope mirrored items (a) through (d) of the

prior statement in near verbatim form. The fifth section, however, was suggestively revised. As

noted above, part (e) of the original statement declared that “application, use, and programming”

were within the scope of the journal, but only as long as these subjects were related to issues of

“design and operation.” Yet the new statement declared that the group’s scope more generally

encompassed “[a]pplications, use, and programming of digital and analog computing devices and

www.manaraa.com

 96

information processing systems and the use of computers in electrical and electronic

engineering” (p. 2). While this statement placed particular emphasis on computer applications in

electrical engineering – perhaps not surprising given the historical orientation of the parent

Institutes – the first part of this passage removed the “design and operation” qualifier. At least

hypothetically, this change expanded the computer field’s settlement to cover an even wider

swath of sociotechnical territory.

The Constitution more clearly spelled out certain parts of the group’s settlement via

specific statements of scope that were written for each of eleven technical committees.82 In fact,

many of these statements spelled out both “included” and “excluded” subjects, topics, and

technologies, suggesting that the committees were being positioned with respect to one another,

as well as other groups within and beyond the IEEE. And while many of these committees were

dedicated to areas that had long been associated with computer design and engineering – to name

a few, Logic and Switching Theory, Computer Systems, Computer Elements, and Reliability –

others were in more contested areas. In fact, the committees that impinged most directly on other

fields and groups were described in rather strategic terms. The scope of the Programming

committee, for example, was framed as including:

Treatment of the theory and development of generalized computer programs,

especially those falling in the categories of assembly programs, compiler

programs, executive programs and processors for problem-oriented programming

languages which are used in the writing of working programs by a broad segment

of users (p. 6).

As suggested by this passage, the interests and activities of this committee were described as

reaching only so far into the domain of programming. More specifically, both the categories

listed and the use of phrases such as “generalized computer programs” reveal that the

committee’s scope included “system software” and “programming software,” but largely stopped

82 While a total of twelve “Technical Committees” were listed in the IEEE Transactions on Electronic
Computers in early 1965, the “Standardization” group was reclassified in the Constitution as one of ten
“Standing Committees.” The eleven technical committees included Logic and Switching Circuit Theory,
Computer Systems, Computer Elements, Programming, Reliability, Applications in Management Data,
Applications in Automation Processes, Design Automation, Data Acquisition and Transformation, Design
Evaluation and Simulation, and West Coast Committee.

www.manaraa.com

 97

short of end user applications. This statement of scope therefore revealed a point of overlap and

perhaps even conflict with the ACM, which maintained wide-ranging interests in software.83

The formation of the IEEE Computer Group was a significant development, as it

combined the activities of the two major electrical engineering groups that maintained

settlements in various areas of the computer field. Further, the establishment of this group

provided its members and leaders with opportunities to revisit and refine the relation of electrical

engineers, computer technology, and computing. From a more systems-oriented perspective, the

formation of the Computer Group was a potential source of disciplinary and professional

instability. That is, bringing computer-oriented engineers together in a single organization

demanded a renegotiation of settlements with other groups, such as the ACM. As I discuss in the

following sections, unifying bodies such as the National Joint Computer Committee and its

historical successors played important roles in maintaining a measure of stability in a dynamic

and rapidly evolving system of professional societies.

Stabilizing the System: The Joint Computer Conferences and Committees

As discussed in the preceding chapter, the early Joint Computer Conference series

provide early evidence for the emergence of a distinct field of “computer engineering.” Yet

through the mid and late 1950s, the joint conferences were an increasingly important point of

intersection for all of the major phases of the computer field. In addition to being both well-

known and well-attended by a reasonably wide variety of computer professionals, the JCCs

tended to cover an array of topics, even if many of the individual conferences were topically

skewed toward particular phases of the field. Further, it is worth emphasizing that these

conferences were not “co-located.” Rather, these were true joint meetings, organized, executed,

and attended by members of the ACM, AIEE, IRE, and later the IEEE. Taking a closer look at

the history of these events reveals the role they played in helping to balance the computer field’s

competing forces of integration and fragmentation.

To begin with, the orientation of the Joint Computer Conferences toward engineering and

design topics remained particularly strong in the early years of the event. In a summary review of

83 The Constitution also identified and described committees that were dedicated to specific domains of
application, such as “Applications in Management Data” and “Applications Automation Processes.” Yet
these groups were also qualified accordingly. The former, for example, was framed as being primarily
focused on the selection of “desirable equipment and systems characteristics” (“IEEE Computer Group
Constitution and Bylaws,” 1965, p. 6).

www.manaraa.com

 98

the 1953 Eastern Joint Computer Conference (EJCC), for example, Householder noted that the

joint conferences tended to emphasize computer design and construction, while ACM meetings

were often focused on applications (1954). Yet he also observed that the computer field “is on

the way to disintegration into a hundred little field of specialization” (p. 6), and he argued that

future ACM and JCC meetings might be organized in ways that countered this tendency. Indeed,

the official addition of the ACM as a full sponsor and participant in the joint conferences in 1953

looked like an important step toward greater collaboration and cooperation among the AIEE,

IRE, and ACM. The three-way composition of the joint committee was codified in one of the

group’s first official organizational documents. Titled “Organization of the Joint Computer

Committee” (1954) and published in the proceedings of the 1954 EJCC, this document explicitly

specified that the JCC was “jointly and equally” sponsored by the ACM, AIEE, and IRE.84 This

same document also made it clear that the principle activity of the group centered on planning

and running the joint conferences, thereby mitigating against the possibility that the joint

committee might take over the territories or activities of the three participating societies.

This same statement of organization also specified a fifteen-member governing body for

the committee, composed of five members from each of the participating groups. This

composition clearly favored the engineering organizations over the ACM.85 The tilting of the

joint committee toward engineering was also reflected in this document. A rather suggestive

“statement of object,” for instance, indicated that “[t]he Committee shall aid in the promotion of

close co-operation and co-ordination in the activities of the sponsoring societies related to the

field of computer engineering and allied arts and sciences” (p. 91). And while the “general

scope” of the Joint Computer Committee was described as principally stemming from the scope

of each participating society, a subsequent passage on the committee’s “major interests”

suggestively declared: “The major field of interest of the JCC shall be the engineering aspects of

the design, development, manufacture, and use of computers, but shall also include an interest in

84 However, subsequent commentators recognized the secondary position of the ACM in the early years
of the joint conferences. For example, in 1959 Paul Armer explained that, with respect to the early joint
conferences, “the ACM was a second class citizen for a period of time” (Is it Overhaul,” 1959b, p. 19).
85 More specifically, the fifteen-member committee included three ex-officio members, namely the
president of the ACM, chairman of the AIEE CDC, and chairman of the IRE PGEC. Four additional
members from each group filled the remaining twelve spots. Further, each group’s four representatives
were evenly divided between East and West Coasts.

www.manaraa.com

 99

the various activities that contribute to this field or utilize the products or techniques of the field”

(p. 91). Such statements clearly place primary emphasis on engineering over applications.

By the mid-1950s, however, shifts in the orientation of the joint conferences were

becoming more evident. In a foreword published with the proceedings for the 1955 Western

Joint Computer Conference (WJCC), for example, conference manager William L. Martin noted

that “[t]he Conference has changed in character from a meeting of small groups of specialists

discussing problems of mutual interest to large meetings involving people from many phases of

engineering, management, business control” (1955, p. 1). The 1955 EJCC, on the other hand,

was topically dedicated to “Computers in Business and Industrial Systems,” and conference chair

John G. Brainerd explained in a keynote address that this topic area “should be of major interest

to both [computer] creators and users” (1955, p. 6). Brainerd also noted in his talk that the Joint

Computer Committee was dedicated to organizing conferences and carrying out other relevant

work, “so as to avoid duplication of effort on the part of its sponsors” (1955, p. 6).86

The pendulum swung back to the “engineering phases of computers” for the 1956 WJCC

(Whitby, 1956), and in mid-1956 ACM President Householder generalized that the joint

conferences “relate mainly to hardware” (1957, p. 1). Yet when the joint computer committee

revised its statement of organization in 1956, a number of minor revisions revealed ongoing

changes in its orientation and identity (“Organization of the National,” 1956). In addition to

being renamed the National Joint Computer Committee (NJCC), this document included a

revised statement of “major interests” that omitted the phrase “engineering aspects” (p. 1).

Instead, it indicated that the “major field of interest of the NJCC shall be the design,

development, manufacture and use of computers, but shall also include an interest in the various

activities that contribute to this field or utilize the products or techniques of this field” (p. 1). On

the other hand, this same document reiterated that the committee was dedicated to promoting

cooperation and collaboration among those sponsoring societies “related to the field of computer

engineering and allied arts and sciences” (p. 1). This revised document once again placed subtle

emphasis on “computer engineering” over computer use and applications.

In the late 1950s, industry trade magazines periodically carried commentaries about the

computer field’s major professional societies and conferences. In 1958, for example, Datamation

86 More than three decades later, IBM’s Morton Astrahan similarly recalled that one of the primary,
original purposes of the NJCC was “[t]o promote cooperation instead of duplication of effort”
(“Reflections on a Quarter-Century,” 1986, p. 228).

www.manaraa.com

 100

published a series of candid remarks from attendees at the most recent WJCC. Commenting on

the ongoing shift of the joint conferences away from issues of engineering and design, Eric

Weiss explained that “there are fewer design people and many more ‘users’ at this conference.

… Unfortunately, there’s not much in the way of new things here for engineers” (quoted in “Post

Conference Feedback,” 1958, p. 20). And while many factors likely contributed to this trend,

others were quick to note that the increasingly commercialized and competitive computer field

was having an impact on the content and climate of the joint conferences. In fact, Weiss himself

noted the “ultra cautious” attitude of many conference speakers, and he added that “[t]hese

conferences could be much more effective if a freer exchange at panel discussions and technical

sessions were possible” (p. 20). Another conference attendee noted the possibility that many

companies were holding back information for competitive reasons. He went on to describe the

conference presentations as “a kind of game played with information. On the one hand, a firm

doesn’t want to tip its hand but in a year they would like to say that a year ago they presented a

paper on a new development” (p. 20). As these remarks reveal, the close relation of computer-

oriented engineers with industry was having a negative impact on their ability to participate fully

in some professional activities.

A 1959 Datamation editorial expressed further concerns about the increasingly

fragmented character of the joint conference series. Authored by Rand Corporation employees

Keith Uncapher, Malcolm Davis, James Babcock, and Shirley Marks – the former two explicitly

identified as engineers, the latter as “programmers” – the article argued that “[t]o stress the joint

aspect of a joint computer conference, subjects should transcend the divisions between engineers,

programmers, and users of computers” (Uncapher, et al., 1959). These authors clearly recognized

the potential for the joint conferences to help unify the field. In fact, the authors noted in this

same piece that a number of speakers at the recent December 1958 EJCC had clearly

“recognized that professional personnel, occupied in diverse branches of the computing industry,

must one day come together in a unified effort.” While this call stood in tension with many of the

sociotechnical schisms that were growing up in the field, other outspoken commentators

expressed similar views, a point to which I will return. Further, the types of concerns expressed

in this editorial revealed that many questions remained about the future potential of the joint

conferences to promote what the authors called a “unity of purpose” for the computer field.

www.manaraa.com

 101

In subsequent years the JCC pendulum continued to swing between two ends of a

sociotechnical spectrum. According to Datamation, some complained that the 1959 EJCC

“seemed too hardware oriented with not enough emphasis on applications” (Grems, et al., 1960,

p. 25). Yet countervailing tendencies prevailed at the 1960 EJCC, as reflected in one

commentator’s claim that “the relative emphasis on usage problems as opposed to hardware

papers was greater than at any EJCC since the 1955 Boston Conference” (Heising, 1961 p. 36).

Attempting to explain these trends, the author suggested that “new usage techniques are required

to keep pace” with advances in computer design and construction generally, and faster machines

specifically (p. 36). As suggested by this commentator’s remark, the destabilizing forces of rapid

technological change were making it difficult for the joint conference organizers to plan

programs that spanned the broad sweep of the field.

Still other conference review articles revealed the relative extent to which the JCCs were

attracting attendees from each of the main participating societies. Registration data for the 1960

WJCC, for instance, revealed strong attendance from ACM and IRE members, who respectively

made up about 38% and 26% of all registrants (Barnard, 1960). However, those who maintained

affiliations with the AIEE and neither the ACM nor IRE made up only about 3% of registered

attendees (p. 23).87 The 1961 EJCC, on the other hand, was clearly dominated by ACM

members. According to a post-conference report by ACM President Harry Huskey, “Of those

who registered, 60 per cent [sic] were from ACM, 30 per cent from IRE, and 3 per cent from

AIEE” (1962b). Not only do these data highlight the relatively marginal role of AIEE members

in these events, they also suggest that the ACM and its members were moving to the forefront of

a joint conference series that was originally initiated and dominated by engineers.

In summary, the NJCC and its conference series were a well-established institution by the

late 1950s and early 1960s, despite the ebb and flow of individual conferences. The three

participating organizations had settled into stable and effective patterns of cooperation, and the

joint conferences were characterized by expansive programs, large crowds, and healthy financial

returns. In fact, by 1959 RAND’s Paul Armer quipped, “If the JCC meetings get any larger there

87 While these statistics excluded those AIEE members who were also members of the IRE and/or ACM,
the data nonetheless suggests AIEE members were relatively sparse at many of the joint conferences.

www.manaraa.com

 102

will be damn few places where they can be held just because of their size” (“Is it Overhaul,”

1959a, p. 33).88

On the other hand, this period of apparent stability and vitality was threatened by at least

three major challenges. First, concerns persisted about the purpose and scope of the joint

conferences, especially in light of ongoing tendencies toward fragmentation and deepening

specialization, within both the participating societies and the field writ large. Second, other

professional groups with interests in the broad domain of “information processing” were

clamoring to participate more formally in the joint committee and conferences. For example, the

National Machine Accountants Association (NMAA) – which later became the Data Processing

Management Association (DPMA) – lobbied for this type participation through a 1959

presentation to the leaders of the NJCC, but with little success (“Reflections on a Quarter-

Century,” 1986, p. 235). Members of Simulation Councils, Inc. also tried to become formal

participants in the NJCC in the 1950s, and they were similarly rebuffed (“Reflections on a

Quarter-Century,” 1986, p. 235). Using terminology originally developed by Callon (1999), the

joint conferences and committee had become an “obligatory passage point” that was exclusively

controlled by representatives of the AIEE, IRE, and ACM (Latour, 1987).89

A third major challenge to the stability of the field stemmed from growing demands for a

single and more cohesive organization that could represent all phases of the computer field,

especially on the international stage. By the late-1950s, these and other undercurrents were

threatening to upset this system of professional societies, as well as the stabilizing agent known

as the NJCC. For additional perspective and background on these trends, I turn to a well-known

symposium that was held at the RAND Corporation in 1959.

88 Armer was well-qualified to make such a remark, as around this time he served both as an ACM
representative to the NJCC and as a vice-chair of the NJCC.
89 That is, achieving full participation and recognition in the computer field required participation in the
joint conferences, but the joint committee made moves to block the expansion of the committee beyond
the original three groups. In fact, former NJCC members have recounted how the representatives of the
NMAA were treated “incredibly rudely” when they made their 1959 request to join the joint committee.
As Armer summarized, the NMAA “wasn’t considered a professional society. They were punched-card
people, and we looked down our noses at them” (“Reflections on a Quarter-Century,” 1986, p. 235).
Rubinoff noted yet another important reason for why the NMAA was turned away: “[T]here was already
enough internecine warfare” (“Reflections on a Quarter Century,” 1986, p. 235).

www.manaraa.com

 103

“Is It Overhaul or Trade-In Time?”: The 1959 Rand Symposium

In 1958, the RAND Corporation hosted the first in a series of invitational symposia that

were scheduled in tandem with the annual WJCC. These events typically involved small groups

of prominent computer professionals who engaged in candid discussions about some of the

pressing issues that faced their field. The second such event, held in March of 1959, brought

together seventeen individuals to explore a number of topics that are particularly relevant to the

present analysis. Many of these persons were affiliated with commercial interests, but four hailed

from universities or university labs, one came from the Department of Defense, and three were

employed by RAND. The group also included at least one individual with close ties to each of

the major organizations in the computer field, namely the NJCC, ACM, IRE, and AIEE.

Not only was the resulting discussion provocative and wide-ranging, it was recorded,

transcribed, and partially published in Datamation (“Is it Overhaul,” 1959a; 1959b). And as

these transcripts revealed, the participants spent significant time on one specific agenda item that

queried, “What Can Be Done to Increase the Effectiveness of our Professional Organizations?”

The Datamation editors more creatively captured the essence of the discussion via their own

headline: “Is It Overhaul or Trade-In Time? Perennial Professional Society Question Worked

Over by Computer Specialists” (1959a, p. 24). As participant Paul Armer later explained, the

attention heaped on this particular topic was significantly stimulated by ongoing questions about

whether and how to allow other professional groups to join the NJCC (“Reflections on a Quarter

Century,” 1986, p. 230). Armer also noted that questions about how to represent U.S. interests in

information processing at the international level also loomed large, a point to which I return.

In most general terms, few could disagree with one participant’s assertion that the major

groups in the computer field were united by a common interest in “that big box of stuff sitting in

the middle of the room” (“Is it Overhaul,” 1959a, p. 24). Yet in discussing how interest in this

boundary-object was – or should be – parceled up among the relevant professional societies, the

attendees painted a rather discordant picture. Participant Herb Bright – at the time a

Westinghouse engineer who was also affiliated with the ACM– characterized the relation of the

AIEE, IRE, and ACM as an “impossible jurisdictional mess,” and he added that the three

organizations “pretend to be working together when actually they’re fighting each other tooth

and nail” (“Is it Overhaul, 1959a, p. 30). And as aptly summarized by well-known computer

pioneer and instigator Herb Grosch, “we have two warring hardware groups and one poor

www.manaraa.com

 104

moribund user’s group, all trying to work together in this JCC farce” (“Is it Overhaul,” 1959b, p.

26). Even

Providing further insights regarding these apparent jurisdictional conflicts, other

participants hinted at persistent tensions between the “gentlemanly” ideals of computer

professionals and the expansionist agendas of the major computer groups. For example,

aforementioned Bright explained: “Each one of them [the ACM, IRE, and AIEE], in a way

which it piously hopes is gentlemanly and forward-looking is trying to cover some of the same

ground as the other two” (“Is it Overhaul,” 1959b, p. 25). Pointing to the seemingly unique

nature of the situation, Bright added the three groups were “trying to make believe their interests

don’t conflict” (“Is it Overhaul,” 1959b, p. 25). And in a later part of the discussion that was

focused on the persistent schisms in the field between hardware and applications, Willis Ware

put a slightly different spin on the issue when he explained that “[t]here seems to be a

gentlemen’s agreement between the ACM and the PGEC to keep the division that way” (“Is it

Overhaul,” 1959b, p. 23).90 These statements reveal that ongoing jurisdictional negotiations

between the ACM, IRE, and AIEE were often characterized by an outward appearance of

stability and civility but with many persistent undercurrents of instability and conflict.

Still other participants expressed more specific concerns about the relevant professional

societies, while also proposing various approaches to reorganizing the field. Philco Corporation

employee and outgoing AIEE CDC Chairman Morris Rubinoff, for instance, noted that a

relatively small fraction of IRE and AIEE members had a primary interest in computers, and he

concluded that “the IRE and the AIEE should recognize that they are primarily electrical

engineers with a side interest in computers as such” (“Is it Overhaul,” 1959b, p. 26). And at

another point he noted that those interested in “hardware” should get involved in the AIEE or

IRE, “which should be merged in any case” (Is it Overhaul, 1959b, p. 19).91 And while Rubinoff

clearly recognized the role of designers and engineers in the field, he also put forward the idea

that “all computer activities should filter through the ACM. All other groups should then affiliate

90 At the time, Ware was employed by the RAND Corporation and serving as chair of the IRE-PGEC.
91 In another suggestive passage, Rubinoff noted that the IRE and AIEE tended to publish the same types
of material. Indicating that he was serving on editorial boards for both groups, he explained, “If a paper is
submitted to me in my capacity with Society X then I’m going to place it in the publication of Society X.
But, actually, the man [sic] really doesn’t know where to send it, because we haven’t defined what is
going to be published” (“Is it Overhaul, 1959a, p. 27).

www.manaraa.com

 105

with the ACM” (“Is it Overhual,” 1959b, p. 26).92 Indeed, many participants noted that the ACM

appeared best-suited to take on such a role, especially given its size, scope, and independence.

However, this proposal stood in tension with Rubinoff’s own assertion that the ACM had

largely failed to take a leadership role in the field, and he suggested that “the ACM should have

some new blood injected intravenously” (“Is it Overhaul,” 1959b, p. 26). Rubinoff also quite

correctly noted that if the ACM moved to the forefront of the field, “[a] lot of people are going to

feel that they have had the rug pulled out from under them” (“Is it Overhaul,” 1959b, p. 26). In

light of these and other concerns, Rubinoff’s idea gained little traction. Saul Gorn, who had ties

to the ACM, was also sympathetic with the idea of “reformulating” the Association so that it

could take on more of a leadership role. Yet even Gorn acknowledged the inflexibility of the

group‘s constitution, and at one point he added that the “ACM is in the throes of trying to find

out the extent of its own amorphousness and decide what its justification is” (“Is it Overhaul,”

1959b, p. 19). Others offered even more forceful critiques. UCLA’s Curtis B. Tompkins, for one,

suggested that the Association “doesn’t have any status goals that are adequate at the moment”

(“Is it Overhaul,” 1959a, p. 24). Grosch, on the other hand, referred to “[t]he void left by the

ACM” (“Is it Overhaul,” 1959a, p. 25), and he later disparaged the Association and its leaders

for focusing on the scientific and academic side of computing while ignoring the growing

importance of computers in the business sphere (“Is it Overhaul,” 1959a, p. 33).

In light of such concerns, participants put forth a number of additional ideas for

reorganizing the field. One approach centered on expanding the role of the NJCC, although

participants acknowledged that the committee’s form and charter limited its ability to do

anything but organize conferences.93 Other options proposed at the symposium included the

creation of either a new membership-based organization or an “Institution of Societies.”

Ultimately sympathetic toward the latter idea, the discussants proposed the formation of an

“American Association for the Advancement of Computing” (AAAC), with explicit reference to

the American Association for the Advancement of Science (AAAS) as a prototype organization

92 While Rubinoff’s sympathy with this idea may appear unusual, the interests of the AIEE CDC in the
1950s often tilted toward the application of computers in various areas of engineering. And the CDC –
unlike the IRE-PGEC – was a relatively small group that stood to lose relatively little if the ACM rose in
prominence. But as noted below, control over the lucrative joint conferences was a sticking point for all
of the groups involved, including the AIEE.
93 As Grosch noted, the NJCC was “reaching for responsibilities which their charter really prohibits. …
Most of the people who get in there really want more responsibility, but this is withheld from them by the
nature of the committee charter” (“Is it Overhaul,” 1959a, p. 25).

www.manaraa.com

 106

(“Is it Overhaul,” 1959b). As suggested by some attendees, such an Association could

accommodate broad participation by users groups, manufacturers, and a wide range of

professional societies, including those with both direct and indirect interests in the field.

The discussants clearly recognized the challenges and difficulties that came with bringing

such an Association to fruition. As Bright summarized, “Each of these organizations wants a

solution which fits the area which it has carved out for itself, which overlaps the other areas.

You’ve reached a real impasse here” (“Is it Overhaul,” 1959a, p. 27). But in an important sense,

commentators such as Bright failed to recognize the extent to which the stability of this system

of professional societies was maintained not via rigid jurisdictional claims, but rather through the

ongoing negotiation of sociotechnical settlements. Hence, the overlapping and interpenetrating

interests of these groups were not by definition problematic, as evidenced by the ability of these

organizations to work together and co-evolve through much of the 1950s. However, maintaining

balance and stability both within and between these professional societies was made more

difficult by the many currents of change that increasingly pervaded all aspects of the field.

And in the end, the participants in the 1959 RAND symposium offered little in the way of

hard and fast recommendations regarding how this system of professional societies might be

reformed or reorganized. Yet the publication of parts of their conversation clearly drew attention

to many of the issues that were play, and some of the ideas discussed at the meeting were later

realized in the early 1960s transformation of the NJCC into the American Federation of

Information Processing Societies (AFIPS).

From the NJCC to AFIPS: Preserving Stability in the System

Understanding the ultimate fate of the NJCC demands that we take a step back to

examine the formation of the International Federation of Information Processing Societies

(IFIPS). And indeed, tracing out this development requires that we look at some of the earliest

efforts to organize an international conference on information processing, an idea that can be

traced back to at least 1955 (Auerbach, 1986a, p. 180). After the concept for such a conference

was presented to the NJCC by Isaac Auerbach – an engineer who at the time was working for

Burroughs Corporation – an ad hoc committee composed of AIEE, ACM, and IRE

www.manaraa.com

 107

representatives was formed to pursue the idea (p. 180).94 This led to the 1957 submission of a

proposal to UNESCO (United Nations Educational, Scientific, and Cultural Organization) that

called for the organization of a conference “to promote a freer exchange of technical information

among leading scientists and engineers of many nations” (p. 181), especially in the area of

information processing systems. UNESCO support was garnered through a series of meetings

involving an array of international experts in many areas of computing and information

processing, and two important developments followed. The first of these involved the

organization and execution of a series of international conferences, as originally envisioned by

Auerbach. The inaugural event, held in Paris in 1959, was dubbed the International Conference

on Information Processing (p. 184). As recounted by Auerbach, it attracted 1,800 participants

and attendees from 38 countries and 13 international organizations.

A second important development involved the formation of the International Federation

for Information Processing (IFIP) in 1960. This so-called “society of societies” gained primary

fame for organizing and executing subsequent international conferences, although the group was

also involved in other important activities, such as in the area of standardization (Auerbach,

1986a, pp. 186-187).95 The Federation has also been credited with helping to usher in the new

terminology of “information processing,” which gradually started to displace alternative terms

such as “computers” and “computing.” But even more importantly for the present analysis, the

initial formation of IFIP required that just one professional society from each participating nation

could join the Federation. Hence, the process for approving the formation of IFIP in the U.S. was

rather convoluted, with the ACM, AIEE, and IRE separately approving the IFIP statutes and

authorizing the NJCC to report these decisions back to IFIP. As Auerbach explains, “all hell

broke loose” when the statutes started to make their rounds for approval, as many claimed that

94 According to Auerbach, this committee consisted of Samuel N. Alexander of the National Bureau of
Standards representing the AIEE and Alston S. Householder of the Oak Ridge National Laboratory
representing the ACM. Auerbach, who at the time was employed by Burroughs Research Laboratory,
represented the IRE.
95 The formation of IFIP significantly trailed the 1956 founding of the International Association for
Analogue Computation (AICA). While initially focused on analog computing, the scope of the group
expanded in subsequent years, and in 1976 it was renamed the International Association for Mathematics
and Computers in Simulation (IMACS). The AICA founding was also shortly followed by IFAC in 1957
(Automatic Control), IMEKO in 1959 (Measurement), IFORS in 1959 (Operations Research), and IFIP in
1960. The activities of the five groups were coordinated under the purview of FIACC (Five International
Associations Coordinating Committee), which was established in 1972 with UNESCO support (“Call for
Papers,” n.d.).

www.manaraa.com

 108

the NJCC possessed neither the adequate legal status nor authority to deal with an international

body (“Reflections on a Quarter-Century,” 1986, p. 230).

The statutes were ultimately approved by the ACM, IRE, and AIEE, but the process

helped push the leaders of the computer field to develop a more unified national voice. An NJCC

committee chaired by Harry Goode was charged with addressing the major issues in play, such

as determining how to involve other professional groups in the NJCC or its successor, as well as

establishing representation for the United States in IFIP (Auerbach, 1986b, pp. 258-259). Goode

and his committee approached their task with both rigor and caution, and by 1959 they had

developed a “Proposed Constitution for a Federation of Information Processing Societies.” This

document that directly modeled on the constitution for another Federation, namely the American

Institute of Physics (“Reflections on a Quarter-Century, 1986, pp. 235-236). After various

adjustments were made to this document, support was garnered from each of the participating

societies, and at a meeting in mid-1961 the NJCC was officially replaced by the “American

Federation of Information Processing Societies” (AFIPS).96

In general, the orientation, scope, and purpose of AFIPS pointed in a number of

important directions. For instance, the organization’s new constitution indicated that “[t]he

purpose of this Federation shall be the advancement and diffusion of knowledge of the

information processing sciences and for literary and scientific purposes … These sciences

include, but are by no means restricted to, the computer sciences and their applications to

Society” (252). This statement stood as yet another reflection of the increasingly widespread use

of the term “science” – rather then “engineering” – to describe wide swaths of activity in the

computer field. This was also a significant departure from the NJCC’s prior statement of

organization, which emphasized the group’s orientation toward “the field of computing

engineering and allied arts and science” (1956, 1). Further, AFIPS was conceived so that its

activities could potentially extend beyond the organization of joint conferences. As Ware later

explained, AFIPS was intended as “the preeminent national single spokesperson for the

96 While the influence of the aforementioned RAND Symposium on this process is not entirely clear, at
least three of the participants were in some way involved with the drafting and approval of the AFIPS
constitution. And one of these individuals, namely Willis Ware, was elected the first Chairman of AFIPS.
More recently, Armer has claimed that the NJCC committee recommendations – which in turn led to the
AFIPS constitution – were “essentially the consensus of the participants in the Rand symposium”
(“Reflections on a Quarter-Century,” 1986, p. 231).

www.manaraa.com

 109

computer,” and to some extent its constitution was tailored accordingly (1986, p. 304, author’s

emphasis).

Yet in other ways, the formation of AFIPS involved a rather conservative transition from

the NJCC. For example, AFIPS was established as a “society of societies” that was headed by

twelve directors, four each drawn from the ACM, AIEE, and IRE. The structure of AFIPS was

also largely synergistic with IFIP, its international counterpart. As succinctly described by

Robert Rector, who was closely involved with the formation of AFIPS, “IFIP provided a

working model of a federation, and the NJCC was a readily available structure to do the

building” (1986, p. 262). Of course, many other factors impinged on the ultimate form and

function of AFIPS. Ware, for instance, has noted that time pressures were a major issue,

especially for those who preferred the much more difficult task of either forming a new

membership-based professional group or moving an existing group to the forefront of the field

(1986, pp. 303-304).

It is also worth noting that AFIPS was intentionally organized in a “non-threatening”

manner. That is, the constitution of the group largely preserved the delicate balance of power that

had been worked out by the three major constituent groups over roughly a decade-long period. In

fact, Rubinoff has noted that the ACM was particularly “nervous” about the extent to which

AFIPS might take over its “turf” (“Reflections on a Quarter-Century, 1986, p. 231). This feeling

of vulnerability was likely heightened by the different characteristics of the ACM – which was

largely composed of programmers, computer users, and academics – and the IRE and AIEE,

which were large organizations with membership rosters and activities that extended well beyond

computing (p. 231). If AFIPS somehow displaced the IRE-PGEC, for example, the IRE would

surely persist. But if the ACM was similarly challenged, it might ultimately face decline and

even dissolution. As Rubinoff has argued, “The organization that stood to lose most was the

ACM” (p. 231).

As a result of such concerns, various protections were written directly into the AFIPS

Constitution. It stated, for example, that “the Federation shall do nothing that is in direct

competition with the activities of its member societies” (“Reflections on a Quarter-Century,”

1986, p. 231). This particular issue was further mitigated as a result of the AIEE-IRE merger,

which led to the replacement of the eight total AIEE and IRE slots on the AFIPS board with just

www.manaraa.com

 110

four IEEE positions, in parity with the four already held by the ACM (Rector, 186, p. 263).97 In

addition to reducing the chances of an AFIPS-led coup, the structure and constitution of the

Federation also helped mitigate against outside encroachments. This issue was of particular

salience given both the steadily increasing financial magnitude of the joint conferences and the

numerous prior requests from outside organizations to participate formally and officially in the

NJCC and its associated conferences.98 In order to address these issues, the AFIPS constitution

mandated that the “full members” of AFIPS – namely the AIEE, IRE, and ACM – retained full

control over the joint conferneces. Organizations approved as “affiliate members,” on the other

hand, remained locked out of the JCC finances, but they were given a vote on the AFIPS board.

In 1962, The Simulation Councils, Inc. was approved as the first such affiliate member (“AFIPS

Appoints,” 1962; Ware, 1963, p. 42).

Many of these themes were evident in a 1964 article that outlined both the position of,

and prospects for, AFIPS. As explained by Willis Ware, who at the time was serving as the chair

of the Federation, “AFIPS represents the intellectual activity of the entire field of information

processing. There is no other organization with such a universal goal” (Ware, 1963, p. 42). The

author went on to use the emergent discourse of “software” and “hardware” to outline the unique

territories that had been claimed by the two major constituent societies: “The IEEE is largely the

hardware population of the computing field, and the ACM, largely the software population

which has grown into information processing through scientific computing” (p. 42). Ware also

cautiously described the prospective future role of AFIPS. For instance, he indicated that it might

be appropriate for AFIPS to take the lead in certain areas, such as in coordinating educational

matters, interfacing with the public and other disciplines, or acting as a clearinghouse on

standardization issues. Yet he noted that “AFIPS must serve its member societies,” and “AFIPS

activities will be fully coordinated with and agreeable to is members” (p. 43).99 Like the NJCC

97 As further evidence for the relatively good relationship between the ACM and AFIPS around this time,
in 1964 a small ad-hoc committee that was charged with reviewing the structure and purpose of the ACM
concluded that “[n]o substantial change in ACM-AFIPS relations seems to be called for” (Perlis, 1964, p.
508).
98 More recent accounts have identified a number of groups that at one time or anotherwanted to join the
NJCC, including the NMAA (National Machine Accountants Association, which later became the
DPMA), The Simulation Councils, and the Society for Industrial and Applied Mathematics (SIAM)
(“Reflections on a Quarter-Century,” 1986, p. 235).
99 Ware’s commentary also revealed ongoing anxieties about the appropriate role of other organizations in
the information processing field. He indicated, for instance, that The Simulation Councils were

www.manaraa.com

 111

before it, AFIPS was clearly positioned at the center of a “system of professional societies” that

had been carefully nurtured for more than a decade. Yet AFIPS was ultimately designed to

preserve the stability of this system, and to protect the sociotechnical settlements that had been

carved out by its constituent societies. As a result, the ability of the Federation to promote a more

thoroughgoing “integration” of the field was limited.

Conclusion

In this chapter I have documented the historical trajectory of a number of professional

societies that maintained major interests in the computer field. More specifically, I analyzed the

internal development of these groups by discussing ongoing efforts to negotiate their respective

identities and sociotechnical settlements. I also tracked trends the composition and activities of

these groups, and I emphasized how they interacted with one another in a larger “system of

professional societies.” Through the 1950s the Joint Computer Conference series and its

associated joint committee came to play centrally important roles in this system, especially as the

JCCs shifted from being a locus for computer-oriented engineers to a common point of

intersection for diverse phases of the field, including the members and leaders of the ACM, IRE-

PGEC, and AIEE CDC. Hence, one of my main arguments in this chapter centers on the claim

that the joint conferences and committees helped stabilize this system of professional societies,

despite persistent tendencies toward specialization and fragmentation. Further, I contend that the

JCCs in part reflected and enabled the overlapping and interpenetrating character of the

sociotechnical settlements claimed by each of its constituent groups.

My analysis also highlights the impressive overall stability of this system of professional

societies. In fact, this stability was preserved through the late 1950s and early 1960s, which was

a period marked by rapid technological development, major increases in the number of

professionals working in the field, and ongoing expansions in relevant bodies of knowledge. This

system also weathered a number of major organizational changes, including the merger of the

recognized as an “affiliate” member of AFIPS through their coverage of the “analog and mixed analog-
digital aspects of computing” (p. 42). The author also identified two other major organizations with
relevant interests, namely the Business Equipment Manufacturers Association (BEMA) and the Data
Processing Management Association (DPMA). The former represented manufacturers of office and data
processing equipment, while the latter was a membership-based organization composed of individuals
(such as accountants) who were interested in computer applications in business (p. 42). Ware
acknowledged that the DPMA, as a “society of individuals,” was eligible for membership in AFIPS and
“may, one day, decide to join” (p. 42).

www.manaraa.com

 112

AIEE and IRE and formation of AFIPS. Yet these changes were also gradually reconfiguring the

field in important ways, and by the mid 1960s we find the emergence of new points of parity

between the ACM and the IEEE Computer Group. These two professional societies claimed

roughly equal numbers of members, they were evenly represented in AFIPS, and they had a

balanced stake in the lucrative Joint Computer Conferences.

Further, the dominant image of the ACM had largely coalesced around mathematics,

programming, and applications, while the Computer Group was primarily aligned with

engineering, design, and “hardware.” In many ways, this balance both reflected and reinforced

the larger social and technical boundaries that pervaded the computer field. In subsequent

chapters, I document how the boundary between computer engineers and other computer-

oriented professionals evolved in the commercial sector and educational sectors. I also discuss

the ongoing evolution of the divide between hardware and software. As I contend, these

“mirrored dichotomies” helped perpetuate and stabilize the unique and evolving structure of the

computer field in the United States.

It is also worth noting that there were tentative signs that the ACM was starting to move

into a more prominent position in the field, especially in the early and mid 1960s. As noted

above, for example, the ACM members and interests were gaining prominence in the JCCs, and

in early 1963 the editors of Datamation quite directly asked, “Are the Joint Conferences overly

software oriented to a point of diminishing returns for the hardware registrant?” (“The Great

Conference Debate,” p. 25). They went on to note that attendees affiliated with the “software-

oriented” ACM were beginning to “far outweigh representation for the IEEE at the JCC” (p. 26).

The editors pointed to a number of factors that were contributing to these trends, including rapid

growth in the “programmer population” and an expanding gulf between engineers and

applications (p. 25). The hardware-oriented sessions at the JCCs were therefore bringing in

relatively few attendees, while other engineering conferences seemed to be attracting many of

the better hardware papers.100 Still another editorial that appeared in the upstart trade magazine

100 J. Don Madden, the chairmen elect of AFIPS, responded to this concern in a follow-up piece, also
published in Datamation. As Madden argued, more could be done to tailor conference papers, sessions,
and programs to mixed audiences of engineers and programmers. As Madden explained, “The software
and hardware aspects of computers are becoming so closely interrelated that it is increasingly important
for specialists in one area to understand the other” (1963, p. 45). Yet as my analysis suggests, realizing
these reciprocal types of understanding proved perennially difficult in actual practice, even though similar
calls for “intercommunication” had been surfacing since at least the early 1950s.

www.manaraa.com

 113

Computer Design complained about the lack of “‘hardware-oriented’ design engineers among

the attendees” of the 1963 SJCC, as well as the overall tilt of the program toward “software” and

applications over design techniques (Sacks, 1963). This same editorial called for the joint

conferences to become a common meeting place for designers and users.

These were interesting developments indeed, especially given that the early joint

conferences were strongly linked to both engineers and the electrical engineering societies. And

while some of the subsequent joint conferences started to tilt back toward “hardware,” it was

clear that the landscape of computing had changed dramatically since the field’s early years. The

Computer Group that emerged out of the AIEE-IRE merger occupied a prominent position on

this landscape, especially in light of its large membership and somewhat expansive agenda. Yet

the leaders and members of the IEEE-CG also faced an increasingly segmented field and

ambitious ACM. As I discuss in subsequent chapters, a host of developments and negotiations

helped preserve an overall balance of forces in the computer field from the mid-1960s onward,

but not without implication or cost. Before tracing this history forward, however, it is necessary

to step back to fill out the rest of this segmentation story. As I argue below, reaching a better

understanding of the historical trajectory of the “system of professional societies” described in

this chapter requires engagement with other contexts of sociotechnical negotiation, including

various places of employment, a number of different educational arenas, and even the sphere of

computer technology itself.

www.manaraa.com

 114

Chapter 4

Dichotomous Developments in the Early Computer Field:

Profession, Technology, and Education, c. 1955-1963

“Although there is considerable mutuality of concern in their ultimate objects, ‘the
advancement of computer technology and application,’ hardware personnel and
their software peers have long been widely separated by geography, education and
interest, and all that is written and said has not as yet made one head out of Humpty
and Dumpty. … Perhaps, when the seemingly insurmountable hurdles are charged
for the last time, it may suddenly appear that Humpty Dumpty is after all, a single
entity and must be fitted properly together to continue sitting high on the wall.”

(“A Datamation Staff Survey,” 1961, p. 36)

As indicated in the epigraph above, in 1961 the editors of the trade magazine Datamation

cleverly described the state of the computer field with an analogy to Humpy Dumpty, the well-

known nursery rhyme. And despite its whimsical character, this editorial remark carried more

than a grain of truth. As discussed in the preceding chapter, the pervasive divide between the so-

called “hardware personnel and their software peers” was both reflected in and reinforced by the

“system of professional societies” that emerged and evolved through the 1950s and into the

1960s. Yet these groups and their relation stand as pieces in a much larger historical puzzle. In

the first part of this chapter, I analyze how the major social and technical dichotomies of the

computer field were mirrored and partially stabilized in other sites and contexts, including within

both corporate worksites and the sphere of technology itself. My analysis also leads into a

discussion of how various actors called into question the dichotomies that separated the field,

leading them to articulate alternative visions for the future of computer technology and

computer-oriented professional work that were more “integrated” than fragmented.

The second major part of this chapter is focused on still another context – namely the

educational sphere – where computer-oriented courses and degree-programs remained largely in

flux through the 1950s and into the 1960s. In addition to tracing out the early emergence of new

www.manaraa.com

 115

discipline-building movements in the computer field, I document the evolving role of electrical

engineering departments in various spheres of computer design and use. The latter parts of this

chapter begin to point to the rising importance of university faculties and departments in ongoing

debates over the appropriate relation of the Humpty and Dumpty of computer technology and

application, while also hinting at the importance of the academic context as a crucially important

site for the formation and development of new disciplines.

Part I – Mirrored Dichotomies: Hardware/Software and Engineer/Programmer

While one can overemphasize the historical evolution of specific words and phrases,

tracing out the development of the term “computer engineer” and its variations provides

important insights into a number of major currents and trends. In fact, such an analysis reveals

how these terms both reflected and reinforced the links between various educational pathways,

professional and disciplinary identities, and jurisdictions of knowledge, work, and technology.101

As noted in Chapter 2, calls for “computer engineers” and “computer designers” started to

appear in private-sector employment ads by 1952. In the present section, I follow the use of the

term “computer engineer” through the remainder of the 1950s and into the early 1960s. In doing

so, I look at how job advertisements for computer-oriented engineers proliferated in the 1950s,

especially as the computer industry expanded. My analysis shows how “computer engineer” and

a number of closely related terms went through a period of “interpretive flexibility” before

moving toward a more stable set of meanings. In doing so, I also emphasize how formal

education in electrical engineering was increasingly viewed as a prerequisite for computer design

work, thereby promoting the dominant image of computer engineering as both a branch of the

engineering profession generally and subfield of electrical engineering specifically. In summary,

my account reveals the establishment and normalization of a distinct professional jurisdictions

and set of educational requirements for computer designers and engineers.

In subsequent sections, I use a variety of advertisements and other sources to discuss both

the divisions of labor that were expanding within the domain of computer engineering and the

growing schisms between computer engineers and other types of computer-oriented workers.

101 As Stuart Shapiro quips, “What’s in a name? Plenty.” He goes on to argue that many of the labels that
have been associated with various aspects of computers and computing “have not been applied as merely
post-facto descriptions but as prescriptive models for shaping the IT [Information Technology]
profession” (1994, para. 7). This tendency to use disciplinary labels in a prescriptive manner is perhaps
most evident in the academic context, but Shapiro’s point has salience in the commercial sector as well.

www.manaraa.com

 116

These themes provide a convenient segue to a more general discussion of the computer field’s

evolving sociotechnical boundaries. More specifically, I juxtapose the fragmentary tendencies of

the emergent “software/hardware” dichotomy with a variety calls for the “integration” of the

computer field’s major divisions of labor, technologies, and bodies of knowledge.

Computer Engineering Identities: From Interpretive Flexibility to Stable Jurisdictions

In Chapter Two I discussed how early employment openings for computer engineers

were frequently described as involving design-oriented engineering work in circuits, logic, and

systems. Yet in tandem with this trend, variations in the use of the term “computer engineer”

started to surface. A 1954 ad from Bendix Aviation Corporation, for instance, called for a

“computer engineer” with an engineering degree who was “capable of handling programming in

the simulation and study of jet and reciprocating engine fuel systems, and aircraft shock strut and

brake systems” (Bendix, 1954). Quite contrary to the “computer designer” role suggested by

other ads from around this time, this opening clearly demanded a worker who could effectively

use computers in the solution of engineering problems. As additional evidence for this

interpretation, the ad provided an appropriate disclaimer: “no maintenance ability necessary.”

Bendix announcements in 1955 and 1956 for “Senior Computer Engineer” and

“Computer Engineer” positions further muddied the waters, as the former called for experience

with “analog computers with control applications,” and the latter demanded a “digital computer

programmer” (Bendix, 1955b; 1956). This occupational nomenclature was further refined in a

1955 Bendix ad that was headlined “Analog Computer Engineers.” This posting briefly

described three work positions, namely for “Senior Analog Computer Problem Analyst,” “Senior

Computer Problem Engineer,” and “Analog Computer Problem Engineer” (Bendix, 1955a).

Once again, the ad revealed that these positions involved wide-ranging job responsibilities and

educational requirements, and they were focused on analog rather than digital technology.102

A further canvas of the literature reveals that while many companies were using

variations of the term “computer engineer” around this time, the aircraft industry led the way. A

1956 ad from Northrop Aircraft, for example, explained that “applied mathematicians and

102 The first of these positions involved the most extensive experience and responsibility in areas ranging
from problem analysis to computer set-up and operation. The latter two openings, however, were focused
on computer set-up and operation, suggesting that the company was making rather broad use of the term
“engineer.” In fact, one of these positions stipulated a degree in math or physics, and the other in math,
physics, or electrical engineering.

www.manaraa.com

 117

engineers are needed as computing analysts” (Northrop, 1956). The ad listed a series of more

specific job titles, ranging from “computing engineers” and “computing analysts” to “electronics

engineers” and “applied mathematicians.” And while the use of terms such as “computing

engineer” drew on established distinctions between “computers” and “computing,”

advertisements such as this one were vague about how the listed job titles were linked to specific

types of work, expertise, or educational prerequisites. The body text for this same ad also

indicated that technicians, electronic engineers, and mechanical engineers were needed for

design and development work in Northrop’s Computing Center. Companies such as Northrop

and Bendix were clearly seeking employees with a wide variety of backgrounds for computer-

oriented work. And since more precise classifications for these types of employees had not yet

emerged, these companies crafted their own partially unique sets of terminology.

Along similar lines, a 1956 series of announcements from Autonetics – a division of

North American Aviation, Inc. – indicated many opportunities for “engineers and scientists” to

fill openings as “computer specialists,” “computer programmers,” and “computer application

engineers” (Autonetics, 1956). And Temco Aircraft Corporation announced in 1957 that it was

looking for “analog computations engineers” who possessed analysis and programming

experience (Temco, 1957). Douglas Aircraft Company, on the other hand, called for those with

formal training in mathematics, science, or engineering to work as “expert programmers” or

“computing engineers” (Douglas, 1957). While this laundry-list of positions was clearly oriented

toward programming and applications, still other openings blurred the boundaries between

computer design and use. A 1957 ad from Westinghouse-Baltimore, for example, explained that

“Digital Computer Engineers” were needed “[f]or the extensive application of present and future

digital techniques to military problems. Applicants with background and interest in digital

coding, digital programming, and in the necessary hardware to implement such systems”

(Westinghouse-Baltimore, 1957).

The many variations of the term “computer engineer” surveyed here can be accounted for

in a number of ways. To begin with, many of these examples are from aircraft and aerospace

companies, which by the mid-1950s had established major interests in both the design of special-

purpose computers for major aerospace projects and the use of general-purpose computers for

solving a wide variety of engineering problems. Hence, terms such as “computer engineer” were

sufficiently flexible to capture professional work involving both the design and application

www.manaraa.com

 118

dimensions of computer-oriented work. And as reviewed above, number of more descriptive and

specific variations helped clear up some definitional ambiguities, at least until better alternatives

emerged. In addition to the aforementioned examples of “computer problem engineer,”

“computing engineer,” and “computations engineer,” other companies invoked terms such as

“computer applications specialist” (Hughes, 1954), “computer programmers” (Autonetics, 1956),

and “computing analyst” (Northrop, 1956).

On the one hand, these latter terms – which avoided the engineering appellation

altogether – appeared with increasing frequency through the 1950s. On the other hand, many of

the companies highlighted above were probably using variations of the term “computer

engineer” for good reasons. For example, a number of these advertisements clearly pandered to

computer-oriented engineers who might otherwise avoid openings that carried titles such as

“programmer” or “analyst.” Further, engineers were likely a preferred pool of employees for

many of these companies, for at least two major reasons. First, there was a growing perception

around this time that training an engineer or other specialist how to use a computer for problem

solving was far easier than the reverse approach, namely teaching a programmer or analyst the

necessary knowledge to undertake domain-specific work in engineering and design. And second,

employer demand and average salaries were spiraling upward for computer programmers,

operators, and applications experts, and new questions were being raised about both the quality

and motivations of the diverse individuals who were taking these types of positions. Engineers,

by contrast, were a well-established occupational pool with comparatively high stability,

predictability, and homogeneity (i.e., white and male).103

A further canvas of employment listings from the mid-1950s onward reveals other

relevant trends. First, the use of the term “computer engineer” in its more design-oriented sense

103 A 1957 ad from Burroughs Corporation provided a rather lengthy description of the company’s “ideal”
prospective engineer. Headlined “That Certain Man,” the ad copy explained that “good engineers” often
shared a number of common characteristics: “He’s ambitious, he’s inquisitive, and if he’s still a young
man he’s been out of college only a few years, has a wife and possibly one or two children. He likes his
job and the company he works for … but he’s a little restless. He knows he is a good engineer but wants a
chance to prove it. In many cases, he’s bogged down with too much paper work, – not enough
responsibility. Or perhaps doing the job of a trained technician. He needs a change of pace. He needs
creative work to still his restlessness and prove his ability. He wants recognition, and a chance to
advance” (Burroughs, 1957). Weaving together themes of masculine socialization and identity, this ad
stands as a potent example of the “dominant image” of the ideal engineer. The emergent identity of the
computer programmer or analyst, on the other hand, was comparatively vague, ill-defined, and of lower
professional status.

www.manaraa.com

 119

persisted throughout this period, and by the late-1950s most of the ambiguities evident in earlier

ads were starting to fade. A 1955 Republic Aviation ad, for example, complemented its call for

an applications-oriented “Senior Computing Engineer” with an opening for a “Computer

Engineer” to “supervise maintenance and to design special circuitry for computers” of either the

digital or analog variety (Republic, 1955). Notices from National Cash Register (NCR) published

in 1956 prominently displayed the terms “Computer Engineers” and “Digital Computer

Engineers,” as well as more specific associated titles, such as “Senior Electronics Engineers,”

“Transistor Circuitry Engineers,” and “Senior Digital Computer Engineers” (National Cash

Register, 1956a; 1956b). According to the copy for the second of these two ads, the “Senior

Digital Computer Engineer” position involved “advanced computer design, development, and

application,” and required a “thorough knowledge of digital computer logic and circuitry, input-

output devices, programming” (1956b). Noting that employees would “enjoy the freedom of a

small, select research group – operated by engineers for engineers,” the ad hinted at NCR’s ideal

prospective employee, as well as the company’s dominant culture of research and design.

NCR’s depiction of the digital computer engineer – which tended to emphasize hardware

and design over applications and programming – captured both the formative image and

jurisdiction of this emergent professional domain. And from the late-1950s onward, other uses of

the term that both drew on and reinforced this image appeared with increasing frequency.

“Experienced analog or digital computer engineers” were needed at North American Aviation in

1956 (North American Aviation, 1956), while a 1957 ad from Librascope – a “computers,

controls, components” company – called for “Digital Computer Engineers,” including in sub-

fields such as “Logical Design” (Librascope, 1957). And throughout 1958, Hughes indicated

immediate openings for engineers in many areas, including “Computer Engineering” (Hughes,

1958a) and “Digital Computer Engineering” (Hughes, 1959b).

A 1960 ad from Hughes, on the other hand, displayed the labels “circuit designers,”

“logical designers,” “systems analysts,” and “programmers” beneath a larger heading that read

“digital computer engineers” (Hughes, 1960). In 1960, the Kearfott Division of General

Precision, Inc. listed similar types of work under the banner of “Digital Computer Engineers,”

including “Digital Circuit Design and Development” and “Computer System Synthesis and

Logic Design” (Kearfott, 1960). NCR also returned with a 1960 posting for “Digital Computer

Engineers” that called for applicants with EE degrees who were experienced in areas such as

www.manaraa.com

 120

logic design, circuit design, product engineering, and systems engineering (National, 1960). The

major areas of expertise outlined in these ads – which had been tentatively linked to computer

engineering earlier in the decade – were becoming more widely recognized as core domains of

knowledge and practice for the field. To put it another way, these advertisements both described

and prescribed a preferred educational background for computer designers and engineers, as well

as the types of work tasks, bodies of knowledge, and technologies that were within their purview.

Further evidence for these trends can be found in advertisements from International

Business Machines (IBM), which through the 1950s emerged as a dominant player in the

commercial computer industry. To begin with, many early IBM ads emphasized the role of

engineers and engineering in the development of the company’s best-known machines. A 1954

ad for “electronic and electro-mechanical engineers,” for example, pitched that prospective

employees would “be working with the great terms of engineers that created and developed the

world’s most advanced digital computers” (IBM, 1954). And in 1955, one personnel ad

described IBM as an “outstanding engineering organization,” and it encouraged applications

from “[m]en with BSEE degrees and some experience in design” (IBM, 1955a). And later in the

same year another IBM posting carried a headline that read “The Challenge of Creative

Engineering” (IBM, 1955b). Text that appeared directly beneath a picture of two men – who

were surrounded by electronic equipment, and who were presumably engineers – explained: “At

IBM, engineers are continually exploring the frontiers of man’s knowledge in the expanding

field of electronics.” In addition to framing IBM as an engineering organization, these

advertisements portrayed cutting-edge work in electronics and computer development as a

jurisdiction that was claimed by engineers and engineering.

 Through the 1950s IBM also regularly advertised openings for electrical, electronic, and

“electro-mechanical” engineers. And while these ads generally did not make general reference to

“computer engineers,” more specific variations of the term were plentiful. A 1957 ad for the

company’s military products division, for example, listed openings for “computer circuit design

engineers” and “computer logical design engineers,” as well as “systems evaluation engineers,”

“systems engineers,” and “systems analysts” (IBM, 1957). Each of these five positions was

accompanied by a profile of an existing IBM employee, and all but one of these individuals held

www.manaraa.com

 121

an electrical engineering degree.104 In 1961 IBM similarly announced immediate opportunities

for “Systems Engineers” and “Computer Engineers,” as well as for various programmers,

analysts, and other specialists (IBM, 1961). As suggested by these ads, IBM followed many

other companies in linking the profession of computer engineering with both formal education in

electrical engineering and design-oriented expertise in circuits, logic, and systems.

 Still other sources suggests that what was happening at IBM was largely the norm in the

commercial sector. In a 1959 Computers and Automation article on the demand for college-level

computer training, Penn State’s Frank Hartman concluded that “[t]raining in computer design is

at present deemed to be almost entirely the prerogative of the electrical engineers” (Hartman,

1959, p. 13). As additional evidence for this claim, Hartman presented data on the demand for

computer-oriented personnel based on survey results from 325 companies (Hartman, 1959, p.

13). With regard to a total of 191 employees who were hired in 1958 with a “[b]ackground in the

engineering problems associated with computers (maintenance, modification, design, etc.),” a

total of 155 of these individuals (or 81%) had backgrounds in electrical engineering. The vast

majority of the remaining employees in this category (34 of 191, or 18%) were trained as

mechanical engineers. Similarly, these same companies reported a total of 44 vacancies for

individuals who had this same type of background, and it was expected that 43 of these positions

would be filled with graduates of electrical engineering programs. While pockets of definitional

ambiguity surely persisted, by the early-1960s the assumed educational prerequisites – as well as

the professional identity and jurisdiction – of the “computer engineer” had largely stabilized.105

Divisions of Labor and Hierarchies of Design: Bounding and Segmenting Computer

Engineering

In addition to revealing the historical trajectory of the term “computer engineer” in the

commercial sector, many of the personnel advertisements that appeared in the mid 1950s to early

104 In fact, the exceptional individual on this list did hold an engineering degree, but in the area of
mechanical rather than electrical engineering (IBM, 1957, p. 79A).
105 One pocket of definitional ambiguity was evident in a series of 1960 postings from Philco for
“computer engineers.” In addition to associating these positions with rather typical types of computer
design and engineering work, these ads called for “[e]xperienced computer engineers … to install, start
up, and maintain large-scale, high speed digital computer systems” (Philco, 1960). The required
qualifications these positions were not entirely clear, but an associated heading that read “Customer
Service Engineers” suggested that lower-status technical work was involved. However, my survey
suggests that these types of ambiguities were increasingly rare in subsequent years.

www.manaraa.com

 122

1960s period reveal two closely related trends. The first of these involves the various divisions of

labor that were emerging and expanding within the domain of computer engineering, especially

as computer development became increasingly complex, commercialized, and even routinized. A

second relevant trend centers on the ongoing demarcation of computer engineering, design, and

related activities from other domains of knowledge and practice. In addition to documenting and

analyzing these trends in the context of various worksites, in subsequent sections I follow these

themes into other contexts, including the sphere of technology and the domain of education.

As indicated above, 1950s era personnel advertisements for “computer engineers” were

frequently accompanied by more detailed lists of subject areas, job responsibilities, and

occupational titles. These ads hinted at the extent to which the development of computer systems

and related equipment during this time period involved expanding “hierarchies of design,” to use

terminology developed by Vincenti (1990). One early discussion of these divisions of labor can

be found in a 1955 talk by Charles W. Adams, who identified component design, logical design,

system design, and the “development of automatic coding techniques” as some of the main areas

that fell under the larger umbrella of computer design (Adams, 1957, pp. 139-140).

Figure 4.1 – Functions and Responsibilities of Computer Design Groups
(Phister, 1958, p. 3)

In his 1958 textbook titled Logical Design of Digital Computers, electrical engineer

Montgomery Phister worked along similar lines.106 Early in the book, Phister outlined how

computer system design projects were frequently carried out through the cooperative efforts of

three major engineering groups, as shown in Figure 4.1. The “system analysis” or “system

design” group, to begin with, was largely responsible for developing system specifications in

106 Phister was well-qualified to write on these divisions of labor. In fact, this textbook grew out of his
experiences teaching graduate-level logic design courses to electrical engineers at UCLA in the mid-
1950s. Phister’s perspective was also enriched by his first-hand experiences as an engineer in the 1950s,
including at Hughes Aircraft and Ramo-Woolridge (Phister, 2005).

www.manaraa.com

 123

light of the intended applications of a particular machine (p. 2). The circuit design group, on the

other hand, was primarily concerned with using basic circuit elements – such as resistors and

vacuum tubes, diodes and wires – to develop various sub-components that could perform specific

operations (p. 2-3). And finally, the logical design group was positioned between the other two

groups, and was charged with assembling sub-components into larger subsystems and systems in

order to realize desired machine specifications and functionality.

While Adams and Phister provide us with a glimpse of the design hierarchies that were

emerging within computer design groups in the mid and late 1950s, additional support for these

depictions can be found in personnel ads from this same time period. The aforementioned 1957

ad from IBM’s Military Products division, for example, showcased the activities of five different

types of engineers that roughly fit into Phister’s categories. More specifically, these job

classifications included: Computer Circuit Design Engineers, Computer Logical Design

Engineers, System Evaluation Engineers, Systems Engineers, and Systems Analysts (IBM,

1957). And while this particular ad tended to emphasize the importance of systems analysts and

designers, by the early 1960s other companies were framing logical designers as a pivotal part

the commercial computer development equation. In fact, Phister explained that “the experienced

logical designer is a Jack-of-all-trades,” whose expected knowledge often spanned from machine

operation, maintenance, and application to understanding different approaches to the design of

systems, subsystems, and components (1958, p. 3).

A 1963 Honeywell advertisement, on the other hand, explained that “[c]omputers are

born in the mind of the Logic Design Engineer” (Honeywell, 1963). In addition to claiming that

logical design work was “engineering in the truest sense,” this same ad noted that the

responsibilities of the Logical Design Engineer cut across several disciplines.107 And a 1965

Honeywell employment posting added that “[s]ome of the most challenging engineering being

done at Honeywell is hidden behind the job title Logic Design Engineer” (Honeywell, 1965). Yet

by 1966, this same company was pandering to circuit and systems engineers in a similar manner.

“Computers are realized in the mind of the Circuit Design Engineer” (Honeywell, 1966a), one

107 It is also worth noting that this Honeywell ad appeared in an early issue of Computer Design.
Established in 1962, this trade publication was oriented toward both industry generally and digital circuit
and system designers specifically. Clearly aimed at practicing engineers, an editorial in the first issued
indicated that the magazine would publish articles and reports that would help “bridge the gap between
textbook theory and the practical rule-of-thumb principles that guided designers to a successful product”
(“Editorial Prospectus,” 1962, p. 3).

www.manaraa.com

 124

advertisement proclaimed, while another explained that “[c]omputers are conceived in the mind

of the system design engineer” (Honeywell, 1966b). While these statements may initially appear

contradictory, each holds a grain of truth. That is, circuit, logic, and system design engineers all

played important roles in a design hierarchy that had emerged and coalesced through roughly the

first decade of commercial computer development. Further, the evidence presented above

suggests that all of these positions were located within the domain of computer design or

computer engineering, with each claiming a jurisdictional sub-segment of the larger field.

On the other hand, there were clearly other types of actors who were to some extent

involved in computer design, such as programmers, applications specialists, and even end users.

This issue points to a second major theme that is evident in many of the advertisements

published during this time period, namely the growing divide between two major professional

jurisdictions, one focused on design and the other on applications. This tendency was nicely

summarized by mathematician Franz Alt in his 1958 textbook: “At least two such fields of

specialization have come into prominence: computer machine engineers, concerned with the

design, construction, and maintenance of these machines, and the programmers and numerical

analysts, who prepare problems for them” (1958, p. v). In fact, by the late 1950s many

companies were more frequently making employment pitches that were exclusively aimed at

“computer programmers.” As a result, ambiguous terms such as “computing engineers” and

“computations engineers” were displaced, and “programmers” were increasingly associated with

a partially distinct assortment of work locations, skill sets, bodies of knowledge, educational

backgrounds, and technologies.

Evidence for this theme can be found in a number of advertisements. A 1959 posting

from System Development Corporation (SDC), for example, was explicitly and exclusively

aimed at “Computer Programmers.” And by 1962, IBM was running a series of appealing

advertisements for “Programmers.” One of the first ads in this series described programmers as

part of a “young but rapidly growing profession,” and it went on to note that “programmers are

creating new concepts in software, and contributing to the design of new systems” (IBM, 1962).

Such advertisements described and prescribed the emergent occupational niche of the computer

programmer, just as prior ads had contributed to the establishment of the dominant image and

jurisdiction of the computer engineer. However, ads for programmers were often comparatively

www.manaraa.com

 125

vague about educational prerequisites, as evidenced by one IBM ad that simply sought

applications from those with “experience in computer programming” (IBM, 1962).

A 1962 Honeywell advertisement provided further evidence for the divides that were

growing up between programmers and engineers. A tall vertical pane on the left side of a split-

page spread carried the headline “Engineers,” and it provided an overview of both the system

specifications and performance benchmarks of the company’s new H1800 computer system

(Honeywell, 1962c, p. 10). The same vertical pane also listed professional opportunities at

Honeywell for circuit designers, logical designers, electrical engineers, and product designers. A

similar box on the far left of this layout – which was separated from the rest of the ad by two

columns of unrelated magazine content – was headlined “Programmers” (p. 11). This panel listed

job openings in areas such as automatic programming, operational programming, compiler

development, and systems analysis (p. 11). This advertisement provided a potent visual metaphor

for the computer field’s major sociotechnical boundaries. That is, engineers and programmers

were framed as being interested in different aspects of computer technology, and they were

sought for distinct types of professional positions.108

A further canvas of ads reveals that the major divisions of labor and hierarchies of design

outlined above were firmly established by the mid-1960s. Advertisements for computer

engineers frequently required electrical engineering or physics degrees, and were often focused

on circuit design, logic design, and systems engineering. Programmer positions, on the other

hand, often stipulated an education in mathematics or science, and involved work in areas such

as numerical and systems analysis, systems and applications programming, and software

development. Of course, questions remained about the extent to which existing educational

programs provided adequate preparation for these and other types of computer-oriented

professional work, a point to which I return below. But before doing so, it is necessary to analyze

how the negotiation of these professional and disciplinary boundaries became deeply intertwined

with another emergent dichotomy, namely that of “hardware” and “software.”

108 In 1962, the personnel consulting firm Dataman Associates similarly split out its listing for engineers
and programmers, each of which appeared in separate advertisements on separate pages (Dataman, 1962a;
1962b).

www.manaraa.com

 126

The Hardware/Software Ensemble: Constructing and Questioning the Dichotomy

On the surface, one might presume that the distinction between computer hardware and

software is largely or even wholly a technical matter, especially in light of contemporary,

popular uses of these two terms. Yet in this section, I use a discourse-oriented approach to assert

that ongoing efforts to both define the meaning of these two terms and delineate their relation

was – and remains – a multi-dimensional and sociotechnical process. Drawing on concepts and

terminology developed by Paul Edwards, the body of discourse surrounding hardware and

software can usefully be viewed as a “heterogeneous ensemble” that melds technologies, social

identities, practices, and bodies of knowledge (1996, p. 40). Further, framing hardware and

software in this manner helps shed light on their dichotomous yet relational character.

It is first worth briefly reviewing some important background details that were introduced

in preceding chapters and sections. While the term “hardware” was first used in reference to

computing machinery in the 1940s, the term gained momentum through the 1950s as convenient

shorthand for the “physical components of which computers are made” (“Editorial,” 1953, p.

1).109 And as noted above, the jurisdiction and identities of computer designers and engineers

became closely linked to the physical machinery of computing, especially in the 1950s. On the

one hand, these developments reveal the extent to which the emergence of new professional and

disciplinary identities is often sociotechnical, in that can involve intertwined social markers,

bodies of knowledge, and domains of technology. Yet this process was also significantly

relational, in that it involved the definition and negotiation of interrelated terminology and

concepts. Through much of the 1950s, for example, the term “hardware” was frequently

juxtaposed with other terms that described the more ethereal “internal” aspects of computers,

such as the digital bits and bytes that ultimately comprised all programs and routines.

By the late 1950s, however, commentators such as Paul Armer were complaining that the

term “program” and its many variations were overused. As Armer explained, “[O]ur field is

badly in need of a new set of generic terms. In particular, we need replacements for all forms of

the word ‘program’” (1959, p. 3). Snidely adding that “it’s even possible these days to discuss

‘the Dynamic Programming programming program,’” Armer suggested that this issue might be

109 According to the Oxford English Dictionary Online, the term “hardware” was first used in the context
of computing machinery in Douglas Hartree’s 1947 book, Calculating Machines (“Hardware,” 2006;
Hartree, 1947).

www.manaraa.com

 127

addressed via a contest or committee. Yet such measures were ultimately unnecessary, as the

term “software” surfaced with increasing frequency in the early 1960s. Credit for coining this

term often goes to scientist John W. Tukey, who in a 1958 journal article explained:

Today the ‘software’ comprising the carefully planned interpretive routines,

compilers, and other aspects of automative programming are at least as important

to the modern electronic calculator as its ‘hardware’ of tubes, transistors, wires,

tapes and the like (quoted in Shapiro, 2000, p. 69).

While Tukey followed prior commentators by juxtaposing “programming” and “hardware,” he

attached the former to an appealing new term. “Software” was a clever catch-all expression that

captured an increasingly expansive sub-domain of computing, and its general meaning was

easily discerned by those already familiar with the term “hardware.”

By the early 1960s it was clear that the definition and use of this new term often varied

significantly from author to author and text to text. In a 1962 letter, for example, mathematician

Bernard Galler noted that the meanings associated with the term “software” were proliferating.

He also tried to clarify matters by explaining that “[t]o each user of a computer, the total

computing facility provided for his use, other than the hardware, is the software” (1962).110 As

suggested by Tukey’s definition, the precise definition of the term was perhaps not as important

as its relation to “hardware.” Around this same time, still others were predicting the demise of

the amorphous term. In an interview published in Datamation, for example, IBM executive

Warren C. Hume suggested that “the term software – as a catchall word – is going to become

less and less meaningful as time goes on” (Bergstein, 1962, p. 35).

Commentators such as Hume clearly underestimated the valuable discursive niche that

this term filled. In fact, many other computer companies were eagerly embracing the dualistic

discourse of software and hardware. IBM rival Honeywell, for instance, provided prospective

customers with a basic definition for software in a 1962 advertisement: “Software is a new and

important addition to the jargon of computer users and builders. It refers to the automatic

110 Further hinting at the flexibility of the term, Galler noted that its meaning could shift as a function of
both time and user. He more specifically explained that “[t]o the systems programmers of an installation
just receiving a computer, software means that which the manufacturer supplies which is not actual
hardware. … to a user of that same computer one year later, software means the system available to him,
including all of the additions to the library, new translators, utility programs, etc., which his systems
group has added to the delivered software” (p. 6). As this passage reveals, the meaning of a given
technical term can be highly dependent on context, especially when the term tends toward generality.

www.manaraa.com

 128

programming aids that simplify the task of telling the computer ‘hardware’ how to do its job”

(Honeywell, 1962a, p. 46).111 And in another advertisement published the same year, Honeywell

emphasized that “Good software makes good hardware better – and vice versa” (Honeywell,

1962b, p. 2-3).112 This was a timely pitch, as a growing roster of pundits was pointing out that

hardware development had largely settled into stable patterns of ongoing, incremental

improvements in reliability and speed, while major advances in the realm of programming were

comparatively sparse. Further, proclamations about the so-called “complimentarity” of software

and hardware were surfacing more frequently, although they often appeared in tandem with

critiques of the software-hardware relationship. I revisit this theme in more detail below.

Other formal definitions for “hardware” and “software” appeared in print in subsequent

years, revealing the extent to which these terms had quickly become a widely recognized part of

the computing lexicon. For instance, a glossary that was originally developed by an ACM

committee and published in abbreviated form in the CACM put forward these definitions:

hardware

The physical equipment such as the mechanical, magnetic, electrical and

electronic devices from which a computer is fabricated; the material forming

a computer, as distinct from the routines. Contrast with: software (Fritz, 1963,

p. 155)

software

The totality of programs and routines used to extend the capabilities of

computers, such as generators, compilers, and operating systems. Contrast

with: hardware (Fritz, 1963, p. 157).

Once again, hardware and software were defined as counterparts, with the former referring to the

“material” or “physical” aspects of the machine, and the latter representing the associated

“internal” programs and routines.

In the early 1960s, the trade magazine Datamation also picked up this new terminology

and ran with it. The always provocative Herb Grosch, for instance, authored a 1961 editorial

titled “Software in Sickness and Health.” And a 1961 survey article on computer components

111 This same ad also identified three sub-categories of software, namely assembly systems, compiler
systems, and operating systems (pp. 46-47).
112 The ad went on to explain that “Honeywell software is designed to capitalize on, and complement the
advanced capabilities of Honeywell hardware. Each extends the power of the other” (p. 3).

www.manaraa.com

 129

suggestively juxtapositioned the terms “software” and “hardware” in order to comment on the

computer field’s major boundaries, which were framed as neither simply nor merely technical:

Although there is considerable mutuality of concern in their ultimate objects, ‘the

advancement of computer technology and application,’ hardware personnel and

their software peers have long been widely separated by geography, education and

interest, and all that is written and said has not as yet made one head out of

Humpty and Dumpty. … Perhaps, when the seemingly insurmountable hurdles

are charged for the last time, it may suddenly appear that Humpty Dumpty is after

all, a single entity and must be fitted properly together to continue sitting high on

the wall (p. 36).

While it is not clear whether the “Humpty Dumpty” analogy used in this passage referred to

computer systems, computer-oriented workers, or perhaps even the computer field as a whole,

the allusion was particularly effective because it hinted at the full range of “sociotechnical”

dynamics that were in play at the time. That is, this editorial remark linked two general spheres

of technology – denoted by the terms “hardware” and “software” – with two distinct classes of

computer professionals, who often worked in different locations and possessed different

educational backgrounds and interests. 113 Yet the editors also challenged these boundaries by

hinting at the benefits of somehow unifying or integrating these two sociotechnical spheres.

Many period advertisements from major computer companies similarly invoked the

software/hardware schism while simultaneously calling it into question. A 1962 ad from

Burroughs Corporation, for example, queried: “When will a computer manufacturer design a

system so that hardware and software – including operating system, programming languages and

compilers – are completely integrated?” (Datamation, August 1962, p. 14).114 The 1964

113 In a 1961 Datamation editorial, Grosch worked in similar directions when he noted that “a few miles
between software and hardware boys is healthy, but a hundred is too much” (1961, p. 33). While it was
clear that Grosch was referring to the increasing geographical distance between software and hardware
experts – who were increasingly segmented in different corporate divisions and even different companies
– it also suggested a more general schism between the domains of software and hardware.
114 On a closely related note, a 1959 advertisement from System Development Corporation (SDC) carried
a large headline that queried: “Computer Programmers: Seen any new horizons lately?” (System
Development Corporation, 1959). The ad copy outlined a number of major SDC research projects, one of
which centered on the “investigation of computer design from a standpoint of programmability rather than
engineering.” In addition to revealing the ongoing expansion of a divide between the perspectives of
computer programmers and computer programmers, this ad once more suggested that the computer
industry was trying to design computers that were more responsive to end-user needs and applications.

www.manaraa.com

 130

advertisement from Mesa Scientific Corporation shown in Figure 4.2, on the other hand, even

more suggestively declared that “Mesa Men now come in two convenient types: Software… and

Hardware!” (Mesa Scientific Corporation, 1964). In addition to calling attention to a perceived

gulf between these two domains, the ad emphasized the ability of Mesa’s “integrated

software/hardware team” to “reduce software/hardware interface problems” and “optimize

software/hardware trade-offs.” While this passage echoed other calls from around this time for

more “integrated” approaches to computer development, it also forcefully revealed the extent to

which the boundaries around software and hardware were as much about “men” as they were

about machines. In addition, the rhetoric presented in these ads revealed a fundamental tension,

namely that if software and hardware were truly integrated, the terms might not be needed.

“Software” and “hardware” also appeared with increasing frequency in conference

programs and in the remarks of leading figures in the computer field. At the FJCC in 1963, for

instance, separate panel sessions were dedicated to “Software for Hardware Types” and

“Hardware for Software Types.” These events, which were reportedly well-attended, hinted at

the extent to which the discourse of software and hardware were becoming closely linked to pre-

existing professional and disciplinary identities, worksites, bodies of knowledge, technologies,

and cultures of design.115 Along similar lines – and as noted in the previous chapter – in 1964

Willis Ware suggested that the IEEE largely represented the “hardware population” of the

computer field, and ACM the “software population.” Yet as suggested by many of the examples

cited above, others were questioning the apparent and ongoing tendency of the field to cleave

into two major parts. In the section that follows I take a closer look at some of these more critical

alternative perspectives.

115 A pre-published description of the “Software for Hardware Types” session was especially revealing. It
noted, for instance, that “[t]he role of programming and the programmer in the computer field is growing
rapidly in recognition and importance but is still widely or poorly misunderstood” (53). The same
overview noted the historical tendency for programmers to hold a “second class status” to hardware
people, and they emphasized that programmers were becoming more widely accepted as “partners” in the
planning and design of computers.

www.manaraa.com

 131

Figure 4.2 – “Mesa Men” (Mesa Scientific Corporation, 1964)

Advertisement Furnished Courtesy of Northrop Grumman Corporation

www.manaraa.com

 132

Artificial Barriers versus Integration: Carr and Gorn on the Boundaries

As noted in the preceding chapter, by at least the late 1940s a handful of commentators

were calling for improved approaches to the development of computing machines and systems.

In a 1949 conference presentation, for instance, Jay Forrester advocated additional research in

the area that he called computer “systems engineering.” Still other writers – such as Lehmer,

Mauchly, and Hopper – extolled the benefits of close cooperation and open communication

between computer designers and programmers. As these authors argued, increasing the cross-talk

between these two groups could lead to relatively small design changes that would greatly

improve the functionality and usability of computing machines. Yet these types of calls for

cooperation were largely confined to a small circle of thoughtful critics, many who happened to

lack engineering credentials. In the present section I focus on John W. Carr III and Saul Gorn as

two important actors who helped carry this tradition of critique through the 1950s and into the

1960s, especially as they discussed the justifications for – and implications of – the computer

field’s major sociotechnical divides.

I begin with Carr, who in the 1950s surfaced as an outspoken proponent for expanded

university involvement in computer-oriented research and education, especially in areas such as

computer design. After earning a Ph.D. in mathematics at MIT in 1951, Carr spent much of the

1950s as a professor and research mathematician at the University of Michigan (Lee, 2001).

From 1959 onward, he assumed a variety of academic posts at both the University of North

Carolina and the University of Pennsylvania’s Moore School of Engineering. On the surface,

Carr might appear a somewhat unlikely commentator on the topic of computer design, especially

given his background in mathematics and computer applications. However, Carr’s research

interests and experiences provided him with a nuanced understanding of the computer field’s

evolving social and technical landscape. In fact, he stands in a longer line of mathematicians and

programmers whose in-depth familiarity with the first generations of computing machines

provided them with the ability to insightfully comment on and critique the contemporary state of

computer design and engineering.

Early evidence for Carr’s engagement with these types of issues can be found in the

Proceedings of the first JCC, which included a summary report by Carr on a series of hastily-

convened conference sessions that were focused on various “problems of programming” (Carr,

1952, p. 113). These short reports suggest that the meeting sessions provided opportunities for

www.manaraa.com

 133

Carr and other participants to discuss the evolving relation of machine design and operation at an

event that was ostensibly and more narrowly focused on the “engineering aspects” of computer

design and construction. Carr went on to engage with many related issues at the EJCC 1956,

where he took advantage of his role as “conference summarizer” to develop a rather forthright

commentary on the contemporary state of education, research, and employment in the computer

field. More specifically, he highlighted three intertwined problems. The first of these centered on

“the problem of manpower” (Carr, 1956, p. 147). In light of impressive growth in both the total

population of computers and the number of different system models, Carr asked: “Where are the

people to come from who will develop, maintain, and use these new monsters, devourers of both

information and personnel?” (p. 147). This issue was receiving a great deal of attention around

this time from a growing roster of commentators, and I discuss some of their proposed solutions

in more detail below.

A second and closely related problem discussed by Carr centered on the “preservation

and rehabilitation of the universities in the area of computer circuits, design, and logic” (p. 147).

On the one hand, Carr acknowledged that a handful of schools remained active in computer

design research, yet he described these as “isolated cases with tenuous futures” (p. 147).116 As

further evidence for this claim, Carr noted that the EJCC at which he was speaking featured few

presentations from university researchers, which was a marked change from prior joint

conferences. And at another point in his talk, Carr complained that high salaries in industry were

luring many professors and graduate students into the commercial sector, and he suggested that

government funding for university research in computer design and development was being

neglected, especially in areas such as “over-all systems design” (pp. 147-148). In light of these

challenges and trends, Carr suggestively asked, “In the area of computer design, are we letting

the wells run dry at the source?” (p. 147). He also warned his audience: “When university

research in computers disappears, university teaching in that area crumbles” (p. 148).

The third major point of concern discussed by Carr centered on the so-called problem of

“intercommunication.” As the author explained, various “artificial barriers” were isolating

computer users from designers, as well as “logical program designers” from the “logical

hardware designers” (pp. 147-148). Carr claimed that this problem was more serious than ever,

116 More specifically, Carr identified computer design and development activities that were being carried
out at Purdue, the University of Michigan, the University of Pennsylvania, and the University of Illinois.

www.manaraa.com

 134

as evidenced by the weak coverage of programming topics at the very EJCC at which he was

speaking (pp. 147-148). And while these types of concerns clearly echoed the prior comments of

Muachly and Hopper, Carr pushed into new territory when he asked: “How is a discipline

organized so that it can intercommunicate?” (p. 148). In response, Carr framed the computer

field as a single discipline, and he emphasized potential commonalities and possible points of

contact between hardware designers and programmers.

Such comments might make it look like Carr was out of touch with existing commercial

and professional realities. Yet he went on to argue that universities and their associated personnel

and students could play a pivotal role in ameliorating all three of the major problems identified in

his talk. He noted that university professors, for example, tended to approach the task of

intercommunication as a “labor of love,” and he explained that they frequently “pass the

discipline on” through various activities, including through the development of various

textbooks, glossaries, and “treatises” (p. 148). Carr also suggested that university professors and

researchers were uniquely positioned to act as both critics of existing computers and sources of

imaginative new machine designs, even if they lacked the resources to build their own

components, much less entire systems (pp. 147-148). And finally, he argued that establishing

new “professional” graduate programs could provide the types of employees that the marketplace

was demanding.

Toward the end of his talk, Carr discussed some of the specific ways in which the

computer field’s extant social and technical boundaries might be blurred. In the technical sphere,

he described how cutting-edge computers such as the Univac-Larc and IBM STRETCH were

being designed as “integrated systems,” from the “outside in” (p. 149). As Carr explained, this

“integrated systems approach” took “the external language of communication as the starting

point,” and used “automatic programming techniques in carrying the language into the middle of

the machine” (p. 149). This alternative model of computer design – which was driven by

applications and higher-level programming languages – was quite unlike the mode of computer

development that had become dominant in the commercial sector, where manufacturers were

increasingly adept at building faster and more reliable general-purpose, stored-program

computers, while failing to realize more significant or imaginative changes in overall machine

design and functionality.

www.manaraa.com

 135

With regard to the social aspects of the field, Carr revisited the issue of

intercommunication. He more specifically recommended the organization of small meetings that

brought together diverse types of computer-oriented workers. As Carr explained, events

composed of roughly ten to thirty persons might be scheduled as complements to larger meetings

such as the JCCs. Further, he suggested that these small meetings could potentially transcend

extant organizational and occupational boundaries by bringing together “logical designers with

programmers, circuitry personnel with automation specialists, language specialists with

programmers, and so on” (p. 150). It is no stretch to describe Carr’s remarks as an argument for

the “integration” of the field’s social and professional spheres, just as he had described and

championed “integrated” approaches to computer system design.

When Carr took over at the President of the ACM in 1956, he used his inaugural address

to hint once more at the theme of intercommunication. As Carr explained:

The A.C.M. stands as a common meeting ground for a variety of interests. … We

must continue to interpret our many interests one to another – administrators to

mathematicians, programmers to logical designers, educators to members of

industry – all linked by this common use of a remarkable set of machines of

which we have not yet seen the final limitations (Carr, 1957, p. 7).

While Carr’s rhetoric was rather optimistic, the preceding chapter revealed that the ACM

continued to tilt toward the needs and interests of only some of these factions – namely

mathematicians, programmers, and educators – through much of the 1950s and into the 1960s.

The IRE and AIEE, on the other hand, already key centers of activity for large numbers of

computer engineers and “logical designers,” as well as many members of industry.

Through this same time period mathematician Saul Gorn of the University of

Pennsylvania’s Moore School of Electrical Engineering also called into question the computer

field’s major boundaries, although he placed particular emphasis on the relation of “machines”

and “programs.” In a 1958 letter that appeared in the newly-established CACM, for example,

Gorn noted the “equivalence of hardware and programming” (p. 2). And in a 1959 conference

paper pre-print, he similarly explained:

The point of view expressed in this paper makes more tangible two principles

accepted intuitively by many programmers and logical designers. They are a) the

www.manaraa.com

 136

equivalence of formal languages and machines, b) the equivalence of

programming and hardware (Gorn, 1959, p. 25-1).

Yet despite this hypothetical equivalence, Gorn acknowledged an important associated design

question, namely: “how much [structure] should be in the hardware and how much the job of

programs?” (1958, p. 3).117 Indicating his preference for more flexible machine structures, Gorn

provocatively added:

Since it is a user’s world, the combination of machine and compiler is the

“machine” we are really interested in. The designers of automatic coding systems

must therefore be considered among the machine designers, and should be

involved before the hardware designers have finished their plans. The pioneers in

automatic coding were well aware of the identity of compilers and machines.

Others need constant reminding (1958, pp. 3-4).

Gorn’s argument for explicitly including the development of compilers within the province of

the “machine” clearly challenged the dominant position of engineers as vanguards of computer

design. Further, his remarks suggested that shifting from a “machine-oriented” to “user-oriented”

perspective might demand accompanying revisions in the computer field’s major social and

technical boundaries.

As I discuss in the following chapter, Gorn’s views on machine-program equivalence

clearly informed his early efforts to champion a new discipline that he dubbed the “Computer

and Information Sciences.” But for the present analysis it is worth returning to Carr, who

resurfaced in the 1960s with an updated critique of the computer field and its technological state

of the art. In a 1962 article titled “Better Computers” – which appeared in both in an early issue

of International Science and Technology and in the German journal Elektronische

Rechenanlagen (“Electronic Computers”) – Carr started with a pointed assertion: “Today’s

mass-produced general-purpose digital computers are being designed and used almost wholly

without imagination” (1962b, p. 157).118

117 As noted in Chapter 2, this particular line of questioning had already been in play for at least a decade.
As Mauchly noted in 1948, for example, “A decision must be made as to which operations shall be built
in and which are to be coded into the instructions” (p. 205).
118 It is worth noting that Carr’s critique appeared in two publication outlets that were relatively obscure
and marginal at the time, at least for U.S. readers. However, it is not clear whether Carr ever tried to
publish his this article in a more mainstream professional publication.

www.manaraa.com

 137

Yet Carr also acknowledged the efforts of the early computer pioneers, whose “early

daring” helped lay the foundations for the field. In fact, he credited “electrical engineers and

physicists” such as Aiken, Wilkes, Eckert, and Forrester for successfully “modeling in hardware”

the theoretical concepts that had been developed by various “mathematicians and philosophers,”

including Turing, Mauchly, von Neumann, Goldstine, and Burks (p. 157). While this type of

historical framing was certainly oversimplified, it framed computer development in hierarchical

terms, where engineers and scientists realized the ideas of mathematicians and philosophers.

Further, this type of characterization was strategic in that it implicitly bolstered Carr’s legitimacy

as a critic of computer design, given his own background as a mathematician.

Much of the remainder of the article was dedicated to critiquing the computer field for

failing to move beyond a general framework of machine design and application that originally

developed in the 1940s. More specifically pointing to the problem of “designer conservatism,”

Carr complained that computer users were “restricted almost completely to the original limited

concepts of problem-solving capabilities bestowed on the machines by their designers, rather

than a more global view of the problem” (p. 158). Suggesting that this problem was exacerbated

by the tendency for computer designers and programmers to be working in very different

physical locations, Carr added:

Hardware specialists often propose solutions to important technical problems

which involve a relatively small effort by the logical designer, but leave the bulk

of actual implementation to the programmer. These men [sic] may never have

met, and probably don’t even belong to the same organization (p. 159).

Such complaints strongly echoed many of Carr’s earlier remarks. Yet in this particular paper, the

author also stepped forward with a critique of programmers. He argued, for example, that the

“vested interests” of programmers often led them to oppose changes in machine configuration

that might threaten their job security. In other words, making machines easier to use might

eliminate much of the detailed analysis and coding work that was at the heart of the

programmer’s occupational niche. Once again, the problems identified by Carr clearly involved

intertwined social and technical factors, ranging from the dominant model of computer design to

the differing interests and worksites of various computer professionals.

In a 1965 article published in Computers and Automation, Carr revisited and extended

many of these same themes. Gorn’s influence on Carr is also evident in this piece. In addition to

www.manaraa.com

 138

referencing a 1961 article by Gorn on the topic of “Mechanical Languages,” Carr repeatedly

trotted out phrases such as “machine-programmed systems” (p. 15) and even the “man-machine

computer combination” (p. 15). And later in this same article he critiqued both computer

programmers and designers for failing to recognize that “programming is equivalent to (not

‘analogous to’ or ‘similar to’) building a machine, and not only that, to building a machine in a

certain orderly fashion” (p. 16, my emphasis). Invoking a rather suggestive metaphor, Carr

echoed his prior writings when he noted that future research and development was needed to

meet the challenge of combining “stored algorithms (programs) and equipment algorithms

(machines)” into a more “organic” whole (p. 17). He also issued complaints about problems of

“intercommunication,” although he placed particular emphasis on the gulf that often separated

theories of computer programming from its actual practice.

In the early and mid 1960s, other commentators were raising related issues about the

expanding gulf between programmers and machines. In a 1961 editorial, for example, Robert L.

Patrick noted ongoing and dramatic improvements in the reliability and speed of computer

hardware (Patrick, 1961). However, he complained that “it appears as though the hardware types

are outstripping the programming types,” and he added: “[W]e have no new senior, machine

oriented, programmers coming along (due to the emphasis on higher level languages).” For

Patrick, this trend was especially problematic for computer installations, where diagnosing and

troubleshooting machine faults and “bugs” required types of expertise that were in short supply.

And five years later, this same writer trotted out a similar complaint:

In the last few years we have begotten a whole new generation of programmers

who have never come into intimate contact with a machine. They have

programmed in a higher order language and have been insulated from the

hardware by a solid phalanx of operations managers, machine operators and

monitor programs (Patrick, 1966).

In the remainder of this editorial, Patrick expressed further concerns that many programmers

were developing software that was simply not in tune with the characteristics and capabilities of

particular machines, and he claimed that performance often suffered as a result. And in the same

year, a short and humorous Datamation piece further hinted at the extent to which good

programming practice remained wedded to an in-depth understanding of various facets of

www.manaraa.com

 139

machine design. In his list of “Thirteen Programming Paradoxes,” writer Peter D. Jones quipped:

“The world’s best programmer is also the world’s top computer engineer” (Jones, 1966).

In 1962, Christopher J. Shaw came at this issue from a somewhat different angle in a

short editorial that was aptly titled “Programming Schisms” (1962). After somewhat

nostalgically noting that computer programmers and designers had often been one and the same

in the early days of computing, Shaw went on to note the long trend toward specialization in the

field. He placed particular emphasis on the growing schism between “the system programmers –

who must tame the beast the computer designers build – and the applications programmers –

who must then train the tamed beast to perform for the user.” The author also predicted that

computer designers and systems programmers “will probably amalgamate into one, fairly

homogeneous professional group,” while more user-friendly computers would contribute to the

replacement of applications programmers with domain-experts working as so-called “problem

specialists.” The author explained that such changes would “bring the computing profession back

almost to its pristine beginnings, back when there was only one professional type: the all-around,

computer specialist.”

While reforms advocated by commentators such as Shaw and Carr may appear overly

romantic and idealized, they clearly tapped into widespread concerns about the computer field’s

major sociotechnical schisms. Cultivating more “integrated” or “organic” approaches to

developing computer systems, applications, and even experts was therefore an increasingly

appealing prospect in the early and mid-1960s. Still others were calling more specifically for

radical innovations in computer structure, especially in terms of moving beyond the decades-old

“von Neummann” style of the stored-program machine design. Engineer Lowell Amdahl, for

example, used the phrase “gothic computer architecture” to describe the state of the art circa

1965, while Franz Alt complained: “What revolutionary changes in computer design are ahead?

Unorthodox answer” (Amdahl, 1965; Alt, 1965, p. 11).

Yet the barriers that stood in the way of realizing such visions were formidable. Amdahl,

for example, noted tendencies in the field toward “security and complacency.” And while neither

he nor Alt clearly identified the underlying reasons for these trends, there were certainly

commercial and competitive reasons for maintaining the historical status quo, especially given

the dominance of a few big computer makers such as IBM. In fact, Alt noted that innovative

machines such as the Univac LARC and IBM Stretch were not commercially successful, leading

www.manaraa.com

 140

manufacturers to retreat back to more conventional designs. Other pressures were also likely

afoot. Major computer users in the military and business sectors, for example, have at times

tended to preference reliable, standardized designs over more radical and potentially

destabilizing innovations. In fact, Steven Usselman nicely summarizes that the history of

American computing has been regularly punctuated by periods of relative stability, where “[t]he

potential for more rapid and more radical change at the technical frontiers of the industry has

been sacrificed in exchange for the perceived benefits of standardization” (1996, p. 30). As

Usselman further elaborates, these tendencies were historically enabled by a distinct American

political economy, as well as through the intersecting actions and policies of computer

manufacturers, the government, and end-use consumers of both the commercial and military

stripe.119

Returning to the subject at hand, the rise of both the “hardware/software ensemble” and

the designer-programmer schism from the mid-1950s to mid-1960s also revealed the extent to

which the computer field was increasingly pervaded by major sociotechnical dichotomies that

reached deeply into worksites, professional societies, and even technology itself. Yet many of the

aforementioned commentators hailed from the academy, where the social and technical

boundaries of computing were not quite so sharp, and perhaps easier to call into question. In

addition, many writers such as Carr argued that universities in general and computer-oriented

faculties and departments in particular could help stimulate the development of a new generation

of computer professionals who possessed a less myopic outlook, and who could produce more

innovative technologies.

In his 1965 article, for example, Carr discussed how various curricular developments and

reforms might provide students with a more in-depth understanding of the inter-relationship of

computer programs, machines, and even the so-called “man-machine interface” (pp. 17, 54). As I

discuss below, Gorn emerged in the 1960s as a champion for the emergent computer-oriented

discipline that he called the “Computer and Information Sciences.” Yet these and many other

reformers likely underestimated the extent to which both the dominant structure of the computer

market and other types of sociotechnical dichotomies – such as engineering versus science or

119 As evidence for these themes, Usselman places particular emphasis on the initial emergence and
growing dominance of IBM in the commercial computer market, including through the 1950s and 1960s.

www.manaraa.com

 141

even profession versus discipline – stood as formidable barriers on the way to realizing a more

integrated or unified field of computing.

Part II – Education and Discipline: (Re)Negotiating the Boundaries of Computing

In order to frame the emergence of a variety of discipline-building projects in the

computer field, the second part of this chapter takes another step back to analyze the historical

development of computer-oriented educational programs, especially from the early 1950s to

early 1960s. I place particular emphasis on the role of electrical engineering departments, which

were a major source of formal training for the first generations of computer designers and

engineers. My analysis helps set the stage for tracing out the efforts of a growing cadre of actors

to establish a variety of computer-oriented departments and degree programs at various

universities, especially from the late 1950s forward. And as suggested by my discussion of

historical trends in other contexts of activity, the outcome of these efforts were largely suspended

between two poles of possibility. On the one hand, the educational sphere was potentially a site

where the sociotechnical dichotomies that had come to pervade the workplace and the

professional societies would be reproduced. In fact, the bifurcated jurisdictional claims and

expanding divisions of labor that increasingly came to characterize the commercial computer

field in the 1950s suggested that this type of reproduction was an altogether likely scenario.

On the other hand, the prospect of developing a more “integrated” or “organic” approach

to the training of computer-oriented professionals was an appealing alternative vision for many

actors, especially as they pondered how this might stimulate more imaginative computer designs

or new types of applications. Might the educational arena emerge as a setting where the Humpty

and Dumpty of hardware and software could be put back together again? While this question

clearly transcends the bounds of this chapter, the analysis that follows begins to reveal the

pivotal importance of the educational arena in ongoing efforts to (re)negotiate the computer

field’s major social and technical boundaries.

Computer Education: An Inchoate Early Assortment of Courses and Curricula

The development of computer-oriented courses and curricula can be traced back to the

earliest days of the field. As documented by Aspray (2000) and noted in the preceding chapter,

by the mid-1940s five major universities were significantly involved in computer development

www.manaraa.com

 142

and research, namly Columbia, Harvard, MIT, the University of Pennsylvania, and Princeton. By

the early 1950s, research and educational activities at these and other schools were frequently

focused on topics related to computer design and construction, although there were also a

number of pockets of interest in application-oriented subjects such as numerical analysis. Yet

from the mid-1950s and into the 1960s, questions about how to train or otherwise educate a wide

range of experts in computer applications, programming, and related areas emerged as a pressing

concern. In fact, this period was marked by the rapid expansion, diversification, and

commercialization of the computer field, and few could ignore the rising demand for workers

with many different types of computer-related expertise.

The aforementioned John W. Carr III authored one of the earliest commentaries on the

computer field’s looming employment and educational challenges. Titled “Who Will Man the

New Digital Computers?” and published in the upstart trade magazine Computers and

Automation in 1953, Carr started his brief article by explaining that the computer field was

entering a stage of “runaway growth,” and he noted an “immediate and pressing need for people

to man the machines” (Carr, 1953, p. 1). As suggested by these remarks and the article title, the

author’s primary focus was on both the demand for and education of the various “engineers,

mathematicians, and associated trained technical personnel” who were needed to operate and

maintain a rapidly growing number of computer systems and installations (p. 1). Carr also noted

rising demand for trained professionals in the area of machine design and construction, yet this

was clearly a secondary issue for the author.

In addressing the paper’s central topic, Carr identified some of the major types of

computer training that were either in use or in development, including short courses offered by

computer manufacturers, on-the-job training at computer installations, and intensive summer

courses offered at universities (pp. 1-2). But Carr ultimately emphasized the value and

importance of a fourth type of training, namely “regularly scheduled graduate and undergraduate

courses and programs in universities” (p. 2). He added that such programs could produce “a

steady stream of mathematicians, computer engineers, assorted scientists, accountants and

business school graduates, all trained in several or many aspects of automatic digital computers”

(p. 2). On a closely related note, this same article reveals Carr as one of earliest advocates for the

establishment of graduate-level programs that would “give specific degrees in computation or

else to give degrees in older fields with specialization in the use or design of computers” (p. 3),

www.manaraa.com

 143

and the author added that mathematics and electrical engineering departments might play a

leading role in such programs. For Carr, the former were optimally positioned to teach subjects

such as numerical analysis, while the latter were best able to focus on “machine design, logic,

and construction” (p. 3). The topic of “machine programming,” on the other hand, was described

as an area that frequently involved several different kinds of experts, including mathematicians

and engineers. Here we find an important early attempt to map some of the computer field’s

major domains of knowledge and work onto the pre-existing disciplinary structure of the

academy. Further, the authors’ boundary-spanning depiction of programming revealed some of

the difficulties that came with such a project.

A host of closely related themes received considerable attention at the First Conference

on Training Personnel for the Computing Machine Field, held at Wayne University in June of

1954 (Jacobson, 1955a). With co-sponsors including the ACM and the Detroit chapter of the

IRE-PGEC, the event brought together an impressive array of individuals from the commercial,

governmental, and educational sectors.120 The chairman of the meeting, Wayne University

mathematician Arvid W. Jacobson, explained that the idea for the conference went back at least

three years, when it was first becoming apparent that developments in the computer field were

bringing about fundamental changes and challenges with regard to education and employment

(Jacobson, 1955b). He added that a major goal of the gathering was to “find out about the

manpower requirements of all areas relating to automatic computing and data processing”

(Jacobson, 1955c, p. 3). In addition to assessing prerequisite skill levels and overall demand in

this new employment sector, Jacobson stated that the participants at the event were charged with

reviewing existing training programs and probing the relationship between educational needs and

existing curricula (1955c, pp. 3-4).

As Jacobson explained, the computing machine field embraced “many basic sciences and

all manner of practical arts” (1955c, p. 3). Yet other attendees followed Carr by specifically

emphasized the role of electrical engineering and/or mathematics departments in computer

research and education. The aforementioned Harry Huskey, for example, based his conference

remarks on one of the first surveys of university computer education, which was conducted by

120 Attendees included many well-known computer pioneers and personalities, including Howard Aiken,
Franz Alt, John Brainerd, Grace Hopper, Alston Householder, Harry Huskey, and John Mauchley, to
name a few (101-104).

www.manaraa.com

 144

the IRE PGEC in 1953 and 1954 and first published in 1955.121 While the original survey

reported that at least ninety schools had some kind of computer facilities or associated courses,

Huskey summarized that roughly thirty of the responding universities were offering “regular”

training in analog and/or digital electronic computers, mostly at the graduate level (Huskey,

1955, p. 23). Further, he explained that electrical engineering departments were the principal site

for this activity, with a total of twenty-nine EE departments offering one or more classes, and

nine offering three or more classes (p. 24). Mathematics departments were a distant second in

this regard, offering one or more computer-related courses at a total of ten different schools.122

Huskey went on to note that a common pattern had emerged at many institutions, where

early classes in computer design and closely related subjects were followed by the development

of new courses in computer application and use. This trend allowed electrical engineering

departments to assume a prominent role in the early development of computer education. Yet

given that the interests of electrical engineering faculty and departments tended to skew toward

particular subjects, mathematics and other departments stepped in to both fill in gaps in coverage

and move into new areas. In fact, Huskey noted that math department offerings were largely

clustered around topics such as numerical analysis, logical design, programming, and

applications (p. 23). Hence, the educational sphere was beginning to look like another site where

the computer field’s emergent sociotechnical dichotomies were being reproduced, at least in part.

Further, much of the 1954 conference reflected these divides in that it was significantly

tilted toward the development of research activities and educational programs in rapid-growth

areas such as computer programming and applications. Throughout the event, discussions about

the training of machine programmers and operators frequently overshadowed relatively sparse

references to educating computer designers and engineers. Surveying the conference proceedings

reveals at least three major reasons for this orientation. First, presenters such as G. T. Hunter of

IBM claimed that there were relatively few employment slots in the initial planning and design

of computers and other electronic systems (Hunter, 1955, p. 17). He also noted that workers in

121 Huskey was closely affiliated with the IRE-PGEC at the time, especially through his position from
1953 to 1957 as the Review Editor for the IRE’s Transactions on Electronic Computers. The survey
results that Huskey referenced in his talk were also presented by Goode (1955) in the IRE Transactions
on Electronic Computers.
122 It is also worth noting that regular computer courses were being offered outside of the math and EE
departments at a total of eight schools (Huskey, 1955, p. 24). The original survey also indicated that eight
schools were offering advanced degrees in computing, and eleven had computer-oriented assistantships
(Goode, 155, pp. 50-51).

www.manaraa.com

 145

these areas were not coming from computer-oriented educational programs, but were rather

moving up through the ranks of industry (p. 17). As Hunter explained, the benefits of this career

pathway centered on the range of experiences that it provided for up-and-coming designers. This

line of reasoning implied that formal educational needs in the specific area of computer design

and engineering were minimal.

A second and closely related theme discussed by Hunter centered on the idea that existing

electrical engineering programs provided an adequate level of preparation for a wide range of

professional work in computer design, manufacturing, and maintenance (p. 17). Echoing this

argument, conference participant James L. McPherson of the U.S. Bureau of Census framed

computer design and maintenance as the “engineer’s side” of computer equipment, and he added

that “[e]ducation in electronic engineering has been, and will continue to be, the way men

capable of fulfilling this need are developed” (“Manpower Needs,” 1955, p. 33). And

mathematician Albert A. Bennett argued at the same conference that it was undesirable for

engineering students to focus too narrowly on electronic computers and associated technologies:

“The engineering of design, servicing, and testing an electronic machine is too specialized to be

a typical topic for the candidate for a degree of Bachelor of Science in Engineering” (Bennett,

1955, p. 41). Here we find noteworthy parallels with the historical development of other

engineering subfields and specialties such as “radio engineering,” where general types of training

in electrical or electronics engineering often prevailed over educational programs that were more

narrowly focused on a specific domain of technology.

Casting a wider net reveals that many engineering educators followed Bennett’s

conservatism with regard to engineering education. In a talk at the 1955 WJCC, for example, Cal

Tech engineer F. C. Lindvall spoke on the topic “Computers Challenge Engineering Education”

(1955). As Lindvall explained, many colleges of science and engineering were being “urged to

offer courses in computer fundamentals, logic, design, components, applications, and use, not to

speak of complete curricula leading to degrees in computer engineering” (p. 41). And while he

acknowledged that schools with particularly strong research agendas in various areas of

computing might be justified in developing such offerings, Lindvall’s larger message was far

more cautious. He actively argued against “detailed specialization” and “specialized training” in

new and emerging areas of interest such as computing, and he instead promoted an educational

agenda that was grounded in basics, fundamentals, and generalizations (p. 41).

www.manaraa.com

 146

At the EJCC in 1956, mathematician H. T. Engstrom’s keynote remarks suggested that

Lindvall’s position was widely held, including by many university administrators. Referring to

the development of early centers of computer research at schools such as Harvard, Princeton, and

the University of Pennsylvania, Engstrom explained that “[u]niversity management was not

convinced, and in some cases still remains unconvinced, that the field of logical structure design

of computing devices was one with proper academic stature” (Engstrom, 1956, p. 3). Such

concerns about the academic legitimacy of computer-oriented research and education clearly

stood as formidable barriers for those who favored the development of courses and programs in

the area of computer design and engineering.

And finally, the Wayne University conference revealed a third challenge to the ongoing

development of courses and programs in the area of computer design and engineering. In

summary, there was growing sentiment by the mid-1950s that improvements in computer design

and performance were largely outpacing progress in programming and applications. As

summarized by conference participant W. H. Frater of General Motors, “Our troubles, at the

moment at least, are not the mechanical or logical design of equipment. We already have

equipment which we cannot fully exploit” (Frater, 1955, p. 22). And Ralph E. Meager – who at

the time was serving as both chief engineer of the Digital Computer Laboratory at the University

of Illinois and editor of the IRE’s Transactions on Electronic Computers – worked in similar

directions in a paper given at a 1956 symposium that was organized by the IRE. As Meager

explained, “the computer engineers have a tendency to feel now that the main job in computer

design work has been completed, that the basic ideas are known” (quoted in “Symposium on the

Impact,” 1956, pp. 147-148).

As noted above, fundamental innovations in the area of computer design did seem to be

leveling off through the 1950s, especially as computer research and development activities

became increasingly commercialized and routinized. Further, the general challenges and

educational demands associated with computer programming and applications were clearly rising

in urgency and importance. Yet many commentators argued to the contrary that research and

development activities in the area of computer hardware and systems sorely needed fresh sources

of imagination and innovation. Meager, for instance, called on engineers to adopt a “far-reaching

attitude,” especially in ongoing efforts to develop “integrated systems” (p. 148). Such remarks

www.manaraa.com

 147

strongly echoed Carr’s aforementioned concerns about the state of computer design during this

period.

Valuable additional commentary on the state of computer-oriented research and

education also surfaced in a 1956 article by mathematician and ACM President Alston

Householder that was appropriately titled “The Position of the University in the Field of High

Speed Computation and Data Handling.” After summarizing the prominent early role of

universities in computer development and construction, the author noted that it was increasingly

feasible for universities to acquire computers rather than build them. “In some cases,”

Householder explained, “[computer] construction may be worthwhile as a research or a training

project. But it seems to me that in the future the universities can contribute the most in

applications and training” (Householder, 1956b, p. 8). Householder added that the shortage of

technical manpower was a problem that extended well beyond the boundaries of the computer

field, and he argued that the ability of universities to relieve the problem was limited. Further, he

followed in the footsteps of earlier speakers by warning against the dangers of “narrow

specialization” in technical training (p. 8).

However, Householder was willing to promote mathematics departments as a locus of

activity for university education and research in some phases of the computing field, even going

so far as to state that he was “virtually advocating that the entire mathematical curriculum be

oriented toward numerical analysis” (pp. 9-10). As further support for his recommendations,

Householder noted that the problems faced by the programmer or numerical analyst were

ultimately “mathematical in character” (p. 10). Yet Householder – like Carr before him – also

recognized the importance of collaboration across extisting disciplinary boundaries, especially

when dealing with the non-scientific applications of computers, such as in the business sphere.

The “most rapid progress,” he explained, would happen when

mathematicians, engineers and business experts can be persuaded to join together

in arriving at a common understanding by which to differentiate the primary

needs of business from the incidental byproducts of established procedures, and

then to devise the hardware and routines for achieving the real objectives (p. 10).

He concluded the article by asking, “Where could such teams form more readily than in a

university?” (p. 10). It is worth noting here that Householder was reiterating his own prior

www.manaraa.com

 148

remarks – as well as those of others – in pushing the idea that intended applications should be a

primary driver behind the development of both programming routines and hardware designs.

At a 1955 conference on “The Computing Laboratory in the University,” a number of

speakers offered candid remarks on the future role of the university in computer-oriented

education and research. And indeed, many of these individuals expressed further skepticism

about the ability of universities to the forefront of this domain. Jay Forrester, for example,

forecasted that the “[t]he university will no longer be the primary training ground for computer

experts” (Forrester, 1957, p. 18), and at another point he explained that on-the-job training was

the main mode of professional training for those entering the electronic data-processing fields (p.

17).123 Herb Grosch, on the other hand, noted at the same conference that “[l]eadership in

systems engineering and in programming techniques may have to continue with the manufacturer

and the industrial users of this equipment, and it may be difficult for the universities to continue

to contribute powerfully even in components” (1957, p. 90). Such remarks provide further

evidence for the rapidity with which computer research and development activities had shifted

from universities and government research labs to the private sector in the first half of the 1950s,

thereby impairing the ability of universities to develop and/or maintain their own research

centers and educational programs.

Grosch also outlined some of the moves that universities needed to make if they wanted

to assume a more prominent position in the computer field. In addition to encouraging “new

thinking” and “more adventurous thinking,” Grosch called on universities to “assemble their

talents, cross departmental lines, build a few fires under some of the more mulelike faculties, and

obtain financial support” (p. 90). Grosch’s comments hinted at an even wider range of

impediments – ranging from pre-existing departmental and disciplinary boundaries to faculty

conservativism and financial pressures – that were seriously hampering the development of

computer research and educational activities on many campuses.

Still other speakers at the conference discussed how engineering schools and departments

might make strategic moves into certain phases of computer-oriented education. Applied

mathematician and computer programming pioneer Forman S. Acton, for example, echoed many

123 It is worth noting that Forrester’s own research interests were beginning to moving away from
computer design and development by the mid-1950s. His arguments for the declining role of the
university in computer-oriented research and education may have therefore been skewed by his own
movement out of these areas.

www.manaraa.com

 149

of his colleagues when he described a looming shortage of problem analysts, programmers, and

coders. Explicitly noting that he was not interested in developing curriculum for “the small group

who would design better machines or even devise better general codes” (p. 123), he went on to

briefly describe a new “mathematical engineering” option that had been established in

Princeton’s School of Engineering (Acton, 1957, pp. 124-125). In addition to listing a series of

associated courses in computation and mathematics, Acton noted that the students in such

programs gained an understanding of the “the proper formulation and numerical solution of

engineering problems” (p. 125). And elsewhere, he referred to this type of work as

“computational engineering” (p. 122). As noted above, demand for this type of expertise was

rising around this time, especially in computationally-intense industries such as aeronautics.

On the other hand, electrical engineer and University of Wisconsin-Madison faculty

member Vincent C. Rideout was the only conference speaker to explicitly focus on the topic of

“computer engineering curriculums” (Rideout, 1957, p. 156). More specifically, he noted that

electronic engineering departments were a particularly appropriate location for training the

“‘triple-threat’ men so eagerly desired in industry today – men who are soundly versed in

mechanics, in electronics, and in computing” (p. 156). In contrast to Acton, Rideout emphasized

that engineering students specializing in this new field should be well-versed in both computers

and computing, and described a variety of computer-oriented courses that might be offered at the

undergraduate and graduate levels – many of which were pulled directly from his school’s

catalog. He also suggested that the power and communications specializations typically offered

to senior-level students might be supplemented by a computer option, and he listed a series of

required and elective course for a computer-oriented master’s degree program.

While Rideout’s recommendations were slightly skewed toward analog computing, his

published remarks stand as one of the first attempts to outline what a computer engineering

curriculum might look like at both the undergraduate and graduate levels. In fact, he was well

ahead of his time in proposing a computer-oriented degree option for undergraduate electrical

engineering students. On the other hand, computer-oriented courses and programs in electrical

engineering departments were being established rather slowly, and the developments that were

underway at the University of Wisconsin appeared more an exception than a rule. Program

reformers and developers such as Rideout clearly faced a host of challenges and barriers, such as

those described by Grosch. In addition, university research in computer design was in an overall

www.manaraa.com

 150

state of decline by the mid-1950s, and the demand for analysts and programmers was far

outpacing the need for computer designers. In summary, the field of computer design and

engineering remained closely wed to – and largely overshadowed by – other and more

historically dominant forms of research and education in electrical and electronics engineering.

Yet through the latter half of the 1950s, other developments were beginning to impinge

on the academic landscape of computing. For example, there seemed to be growing demand for

those with computer component or system design expertise in both the commercial realm

generally and the defense sector specifically. Membership surveys revealed, for example, that the

number of IRE-PGEC members affiliated with commercially-oriented firms in the private sector

increased from 1011 (or 40% of members) in 1956 to more than 1600 (or about 42% of

members) in 1960, while those affiliated with defense-oriented firms increased from 944 (or

37.5% of members) to more than 1700 (or about 44% of members) during this same period

(Martin and Olson, 1957, p. 49; Uncapher, 1961, p. 84). Other evidence for these trends can be

found in many of the aforementioned advertisements. IBM, for example, established a Military

Products division in 1955, and was aggressively seeking to fill it with new engineers by at least

1957 (IBM, 1957).

By the late 1950s a handful of outspoken commentators were also starting to discuss how

a new and more independent field or discipline of computing might be brought to fruition in the

academic context. Not only did many of these proposals call for the crossing of departmental

boundaries, they also recommended the establishment of entirely new computer-oriented

institutes, departments, programs, and even schools. It is worth discussing these discipline-

building projects in more detail, especially given the potential of this movement to impinge on

the evolving relation of electrical engineering, computers, and computing.

Toward a Scientific Discipline of Computing

In order to frame the initial emergence of new discipline-building movements in the

computer field, it is necessary to situate this story against a larger historical backdrop, especially

the post-war ascendancy of science and the concomitant tilt of the engineering fields toward the

so-called “engineering sciences.” While this general trend has been well-documented elsewhere,

here I use a series of advertisements from IBM to show how scientific rhetoric and imagery

www.manaraa.com

 151

started to pervade the computer field, especially in the latter half of the 1950s.124 In fact, IBM

ads from as early as 1955 started to frame the company’s work environment and employment

opportunities through the rhetoric of science and scientific progress. These ads stood in marked

contrast to many of the examples mentioned above, which had framed IBM’s cutting-edge work

in electronics and computer design as largely or even wholly within the province of engineers

and engineering.

Some of the earliest evidence for this shift can be found in a December 1955 employment

posting for electronic engineers that was dominated by a large banner that read: “The legacy of

the scientist is the highest achievement of his predecessors. Only if he has ideas and ability can

he reach greater heights” (IBM, 1955c). A 1956 IBM ad that sought engineers, on the other hand,

was headlined with a suggestive quote from nineteenth-century British journalist and economist

Walter Bagehot: “Nine-tenths of modern science is...the produce of men whom their

contemporaries thought dreamers!” (IBM, 1956). The imagery for this particular ad included

various busts and figureheads who were presumably famous scientists or intellectuals. Building

on these thematic elements, the ad copy went on to explain that “IBM … has always sought in

engineers and scientists that one source of all scientific achievement – the ability to think

fearlessly!” Prospective employees were also informed that an IBM engineer “has every

opportunity to make important and rewarding contributions to scientific progress.”

These ads revealed a major change in imagery and rhetoric, especially as compared to

IBM ads that had rung just a year or two before. Even more importantly, these ads suggested the

emergence of two competing conceptions of computer research and development, one based on

images of science and other on engineering. And while later IBM ads backed off on the scientific

gusto, the examples highlighted here were a harbinger of things to come, especially after terms

such as “communication science,” “information science,” and “computer science” entered

circulation in the late 1950s and came into more widespread usage in the 1960s.

In fact, MIT electrical engineer Jerome B. Wiesner can be credited with one of the

earliest attempts to identify and describe an emergent disciplinary domain that both encompassed

large swaths of the computer field and carried a scientific moniker. Per Wiesner, the

“communication sciences” were largely focused on the study of complex communication and

124 On the early rise of the engineering sciences, see Seely (1999). On the continued ascendancy of
science, scientists, and the engineering sciences in the in the post-Sputnik period, see Lucena (2005).

www.manaraa.com

 152

computing systems, with particular emphasis on “mathematical methods, computational

techniques, and general understanding of communications” (1958, p. 268).125 He also explained

that problems involving “the processing, storage, and transmission of information” were both at

the heart of this new science and centrally important in linking a wide range of existing

disciplines, ranging from mathematics and the sciences to engineering and beyond.

Yet in describing this new field, Wiesner argued that reaching an adequate understanding

of complex communication and information systems involved the development and use of

theoretical and mathematical tools that were largely beyond the reach of engineers. As he

cautiously explained:

I don’t want to underestimate the role of the engineer or the inventor in this field,

because I think it will always be true, especially in a field as complex as this, that

innovation and invention will probably outrun the theory, but they cannot outrun

the theory very far if one hopes to have continued growth and development (1958,

p. 270).

As suggested by this characterization, the dominant image of engineering around this time

framed the field as only tenuously based on theory, especially when compared to the sciences.

Wiesner also went on to counter a potential critique of the so-called “communication sciences”

by explaining that it would be different from other scientific disciplines. More specifically, he

clarified that this new area of research was largely focused on the “organizational” or

“structural” rather than “physical” properties of complex systems (p. 269). Following this line of

reasoning, he argued that work in the emergent field extended not only into the realm of

computing machines and communication networks, but also into the domain of biology, such as

in relation to the study of the nervous system. Perhaps not surprisingly, Wiesner supported this

argument by referring to theoretical pioneers such as Claude Shannon and Norbert Wiener, who

had laid important prior groundwork at the intersection of information theory, electronics, and

communications.126

125 Wiesner’s article, which was published in IBM’s Journal of Research and Development, also
discussed the activities of MIT’s newly established Communication Sciences Center.
126 Wiesner explicitly referenced Wiener’s Cybernetics (1948) as making important contributions in areas
such as feedback and control theory (p. 274). Further, Wiesner framed the study of error-correcting and
other types of feedback systems as an important component element in his larger vision for a field of
communication science.

www.manaraa.com

 153

While Wiesner described a rather broad and far-reaching disciplinary project, other

commentators placed more explicit emphasis on computers and computing. Louis Fein, for

instance, is often credited with coining and promoting the term “computer science.”127 With a

background that included stints as an engineer at both Raytheon and Computer Control Company

– where he gained extensive experience in the design and development of high-speed digital

computers and related devices – Fein launched a career as an independent consultant in 1955

(Fein, 1979). One of his early consulting jobs involved a study, commissioned by Stanford

University, on the role of universities in computers and data processing, with particular emphasis

on both the status of existing educational programs and the development of new curricula.

As recounted by Fein, his research led him to conclude that computing increasingly

looked like a collection of emergent disciplines and sub-disciplines, and by 1957 he was widely

using the term “computer sciences” to describe this federation of topics and activities (Fein,

1979). His earliest published remarks on the topic appeared in three papers, each bearing the

same title: “The Role of the University in Computers, Data Processing, and Related Fields.” The

first of these papers was Fein’s report for Stanford, the second was delivered at the Western Joint

Computer Conference in 1958, and the third was published in the CACM in 1959 (Fein, 1961a, p.

167). As suggested by this review of the literature, Fein’s ideas were widely distributed in the

computer field, especially via the latter two publications.

With regard to the 1959 Communications article – which was probably the most widely

read of these three pieces – the author’s evaluation of existing university research and education

in computing was almost wholly negative. After noting that some 150 universities and colleges

were “engaged in some kind of activity in the fields of our concern,” he nonetheless argued that

there was a profound lack of “distinguished academic centers of computers,” and a dire need for

“integrated” approaches to computer research and education (Fein, 1959, p. 9). Fein also

provided a laundry list of topics and courses in computer design and applications that were

receiving some attention at colleges and universities, although he simultaneously bemoaned the

field’s rather meager theoretical foundations. Echoing Wiesner’s concerns, Fein explained that

127 Historian Paul Ceruzzi, for instance, points to Fein’s 1959 article in the CACM as the origin of the
term “computer science” (Ceruzzi, 1989, pp. 266-267). In this particular piece, Fein repeatedly places
“computer sciences” in quotes, suggesting some uncertainty over the phrase. At various points he also
refers to both the plural “computer sciences” and the singular “computer science.” Fein has more recently
claimed that he first adopted the term in the middle of 1956 (Fein, 1979, p. 7).

www.manaraa.com

 154

“the fields of computer theory, application theory, model theory do not yet appear to have been

successfully attacked” (p. 10, author’s emphasis).

Fein responded with a series of recommendations aimed at moving universities into a

more prominent position with regard to computer research and education. In most general terms

– and as noted by commentators such as Ceruzzi (1989) – Fein argued that the development of

the “computer sciences” first and foremost demanded sound organizational and administrative

footing. Fein’s rather imprecise and tentative outline of the new field suggested that its definition

and scope would become more clear over time, especially once the appropriate support structures

were in place. Following this line of reasoning, he promoted the creation of a graduate school of

computer science, composed of five new academic departments and a computation center.128

Fein added that these new schools would likely enter into collaborative relationships with a range

of existing departments, while also working to “develop the new disciplines” (p. 12) and to

establish “integrated” programs for students pursuing advanced degrees.

As suggested by this overview, Fein described the computer sciences as a kind of

theoretical “supra-discipline,” somewhat akin to mathematics, which was similarly linked to

various offshoots and fields of application. On the other hand, he made it clear that this new field

would both draw from and inform work in other domains, such as engineering, business, and the

sciences. However, engineers and engineering received little in the way of special mention in

Fein’s analysis. In fact, he echoed other commentators when he argued that there was “little

reason” for universities to build their own computers, especially given the ready availability of

commercial equipment. And as he emphasized the importance of the more mathematical and

theoretical dimensions of computing, he went so far as to note that “an excellent integrated

program in some selected fields of the computer sciences should be possible without any

computing equipment at all” (p. 11).

In the early 1960s, some of Fein’s vision was on its way to being realized, including

through the increased use of terms such as “computer science,” as well as via ongoing moves to

establish new computer-oriented university departments and programs. Yet by this time Fein was

128 Fein described a rather general “Computer Department,” as well as departments dedicated to
Operations Research, Information and Communication, Systems, and Philosophy of Organization (1959,
pp. 12-13). And while the overall description of the five departments tilted toward theory, applications,
and programming, Fein associated a number of “hardware” topics – including computer organization,
component and circuit research, and systems research – with the proposed “Computer Department.”

www.manaraa.com

 155

promoting an even more ambitious disciplinary vision. In a 1961 article that was published in

both American Scientist and Datamation, Fein creatively imagined and described the emergence

of a new science, circa 1975, that he dubbed “synnoetics” (Fein, 1961a; 1961b).129 While the

details of Fein’s article are largely beyond the scope of my analysis, the author’s explicit

reference to the “Communication Sciences” continued themes discussed by prior commentators

such as Wiesner. More specifically, Fein described synnoetics as a “supradiscipline,” and he

noted that the “computer sciences” were a branch of synnoetics that focused on “the theory and

practice of the design, programming, and application of computers” (p. 151). The author also

borrowed Simon Ramo’s term “intellectronics” to describe another sub-branch of synnoetics that

was closely associated with engineering schools and focused on the “the implementation of

synnoetic systems by electronics” (p. 151).130 Fein’s proposal also anticipated tensions regarding

the academic status of the computer sciences. Forecasting what the academic landscape might

look like in 1975, he explained: “The academic community did not acknowledge that the study

of the design, programming and applications of computers constituted a discipline in the classical

sense” (p. 160). Reiterating his earlier remarks, Fein also spoke out against programs that were

centered on and dominated by computing equipment, rather than higher-level theoretical and

“supra-disciplinary” foundations.

While commentators such as Wiesner and Fein put forward ambitious disciplinary

agendas that framed computers and computing as important elements in a much large

disciplinary framework, significant barriers stood in the way of realizing their vision. For

instance, both of these reformers likely underestimated the challenges that came with shifting the

dominant, unifying image of the computer field away from the boundary object of the computer

and toward a milieu of theory that remained substantially ill-defined and inchoate. Further, Fein

129 As explained by Fein, “Synnoetics is the science treating of the properties of composite systems –
consisting of configurations of people, mechanisms, plant or animal organisms, or automata – whose
main attribute is that its ability to invent, to create, and to reason – its ‘mental’ power – is usually greater
than the ‘mental’ power of its components” (150).
130 Simon Ramo, the originator of the term “intellectronics,” described the field as “[t]he science of
extending man’s Intellect by Electronics” (1960, p. 6). He outlined his views on this new “science” at the
5th National Communications Symposium in 1959, and a brief excerpt from the talk was reprinted in
Computers and Automation. (Ramo, 1960). In subsequent years he promoted the concept and field of
intellectronics in a various ways, including via lectures and through his leadership position at aerospace
company Thompson-Ramo-Woolridge Corp. (later TRW). It is also worth noting that both Wiesner and
Ramo were scheduled to speak in a 1958 AIEE conference session dedicated to “Computing Devices and
Research – Thinking Machines of the Future” (“AIEE Winter General Meeting,” 1958, p. 78).

www.manaraa.com

 156

apparently received many negative responses when he started presenting his discipline-building

ideas to larger audiences in the mid and late 1950s.

At a small seminar at Berkeley, for instance, Fein made one of his first calls for the

establishment of separate university departments of “computer science” (Fein, 1979). A number

of well-known mathematicians and computer pioneers were present, including Derek Lehmer,

Edward Feigenbaum, and Julian Feldman (Fein, 1979, p. 10). As recounted by Fein, the reaction

of the attendees was almost wholly negative, with most viewing the proposal as unrealistic at

best, and “crazy” at worst (pp. 10-11). Subsequent encounters were similarly fraught with

tension and resistance. Fein has retrospectively indicated that Jack Herriot, a Stanford

mathematician and early head of the Stanford Computation Center, was particularly hostile to the

idea. At one meeting, Herriot apparently made a comment along the lines of: “What you want it

[sic] pie in the sky and you can't have pie in the sky!” (p. 11).

Tracing out the details of this story reveals two additional actors of note. The first was

Harry Huskey, the aforementioned Berkeley Professor of Mathematics and Electrical

Engineering who attended Fein’s seminar at Berkeley. According to Fein, Huskey was another

early naysayer who “saw no need whatever for having a separate department. He was doing

computing in engineering” (Fein, 1979, p. 10). Another important actor was George Forsythe, a

Stanford mathematician who was one of only a handful of individuals who had mixed feelings

about the merits of Fein’s ideas, especially as applied to Stanford. According to Fein, the

Stanford mathematics department was strongly opposed to a new computer-oriented department,

yet Forsythe was “equivocal; he could go for it or not go for it” (p. 11). The reactions of Huskey

and Forsythe are particularly significant in light of subsequent events. First, Berkeley and

Stanford were two important sites where the development of computer-oriented curricula

proceeded along two very different pathways. And second, both Huskey and Forsythe served

terms as ACM Presidents. I revisit these themes below.

As I discuss in the following chapter, calls for the establishment of new university

computing departments gained significant momentum in the early 1960s, often in tandem with

the increasing use of the “computer science” moniker. Yet the appeal of this new terminology

was also soon reflected in various commercial employment ads. Both Philco and MITRE, for

example, indicated employment opportunities for “computer engineers and scientists” in the

early 1960s (Philco, 1960b; MITRE, 1961). And around the same time, a series of

www.manaraa.com

 157

advertisements from the General Motors Research Laboratories described exciting career

possibilities for mathematicians, engineers, and physicists “at the edge of computer science”

(General Motors, 1960; 1961a). A similar 1961 ad from General Motors, on the other hand,

dropped all reference to engineering, and was aimed instead at “applied mathematicians” and

“programmers” (General Motors, 1961b). The associated ad copy also indicated a need for

“Research Mathematicians” and “Senior Programmers” to work on “advanced computer

applications.”

Once again, these advertisements reveal the segmentation of the computer field into two

major spheres of activity, the first focused on mathematics, programming, and “computer

science,” and the second on engineering and design. By the early 1960s, however, questions

remained about the extent to which it was desirable or even possible for electrical engineering

departments and faculties to claim various areas of computer-oriented education and research. In

the following sections, I review some of the 1950s-era discussions about the role of computers,

computing, and related topics in the realm of electrical engineering education. My analysis is

organized around two major sections, the first focused on educating computer-using engineers,

and the second on educating computer engineers and designers.

Educating Computer-Using Engineers

As noted above, through much of the 1950s computer-oriented topics and courses were

filtering rather slowly into the electrical engineering curriculum at the majority of schools,

despite the rapid growth of the computer industry and widespread use of computers in diverse

organizational settings in both the public and private sectors. Yet by the late 1950s and early

1960s it was increasingly apparent that those university engineering departments that chose to

ignore or downplay new computer technologies and computing techniques did so at their own

peril. Further, electrical engineers were doubly challenged by these trends given their unique

position as potential computer users and designers. On the other hand, this section demonstrates

that general discussions about familiarizing engineers and engineering educators with computer-

based problem-solving methods at times tended to overshadow the ongoing development of

courses and programs in more specialized areas such as computer design and engineering.

In fact, discussions about teaching computing skills to engineers surfaced with increasing

frequency in outlets such as the Journal of Engineering Education (JEE). In a 1959 article, for

www.manaraa.com

 158

example, Bruce Gilchrist – who was serving at the time as Director of Syracuse University’s

Computer Center – discussed the current and prospective position of universities with regard to

teaching the “use” of computers (or “computing”) to students, engineers included (Gilchrist,

1959). In addition to outlining existing computer programming courses at Syracuse, Gilchrist

proposed a new undergraduate major in “mathematics-computing” that was largely focused on

numerical analysis skills and designed to produce the “expert programmer and coder” (p. 344).

Yet in contrast to other commentators, the author argued against the creation of new departments

for computer-related instruction, and he instead claimed that programming courses should be

offered by existing units, such as mathematics departments. As Gilchrist explained:

While computers are not solely mathematical, there is so much about them, both

in respect to design as well as to use, which is essentially mathematical, that it

would seem difficult to find a more appropriate department to offer the

fundamental programming and coding courses (p. 345).

Yet the author also acknowledged that it was appropriate for Electrical Engineering Departments

to offer courses in computer design and construction, and for Business Schools to develop

offerings in areas such as data processing.

Gilchrist’s remarks were followed over a year later by a special issue of the Journal of

Engineering Education (JEE) that was dedicated to the topic of “Computers in Engineering

Education.” In line with Gilchrist’s remarks, two of the articles in this issue were focused on

educating students in the area of computer “use” or “application.” Contributor Adolph Katz, to

begin with, suggestively titled his article “Do Computers Belong in the Engineering Curricula”

(1960). Answering in the affirmative, the author explained that extant “cut and try” approaches

to engineering design were quickly being replaced by more complex analytic and mathematical

methods, many of which depended on the use of analog and digital computing devices (p. 835).

By surveying college catalogs, Katz concluded that a majority of university courses in “computer

application” were being taught by electrical engineering departments, but he added that

mathematics departments offered many similar courses (pp. 835-836). Per Katz, this trend could

in part be explained by the fact that EE departments had a long housed and maintained many

different kinds of electronic equipment and related devices, including computers.

Katz went on to conclude that the universities were doing a good overall job of teaching

computing techniques, but he recommended that existing engineering courses needed to move

www.manaraa.com

 159

beyond the subjects of computer components and circuits to more thoroughly cover related

mathematical foundations and numerical techniques. As Katz argued, “It is the responsibility of

the university to teach the modern engineering student more of the fundamentals of the field, and

to present the scientific laws and mathematics required to enable the engineer to use the modern

tools available to him for the practical solution of engineering problems” (p. 838). Katz’s

comments clearly hinted at a long-standing challenge in engineering education that involved the

delicate balancing of disciplinary “fundamentals” with more “practical” types of tools, skills, and

knowledge. This challenge was exacerbated by post-war trends in engineering education that led

to an increasing emphasis on fundemantals, theory, and the “engineering sciences,” thereby

leaving little room in the crowded curriculum for more specialized topics.

In another article in the same special issue, mathematician William F. Atchison of the

Georgia Institute of Technology more specifically discussed the rising importance of numerical

analysis in engineering problem solving (Atchison, 1960). Pointing to the need for close

cooperation between existing mathematics and engineering departments in training students in

this area of expertise, Atchison also noted the “fairly strong chorus of voices calling for a new

department … devoted to coordinating all the various aspects of computing” (p. 857). And while

the author mentioned “Information Processing” as a likely choice for the name of such a

department, most of his remarks were limited to promoting the use of computers as problem-

solving tools among engineering faculty and students.

In a lengthy follow-up letter that was published in the wake of the special issue, William

F. Luebbert of the Department of Electrical Engineering at the United States Military Academy

added important insights regarding the manifold effects that computers and “information

processing techniques” were having on electrical engineering. For starters, he described the

historical “evolution” of electrical engineering education by outlining a gradual shift in emphasis

from electrical power to communications and electronics, especially in the core courses of the

discipline. Even more importantly, he noted that topics related computers and information

processing – which appeared at least as significant as earlier developments in the field – were

often relegated to special dedicated courses. As explained by the author, the rapid growth of the

computer field “has tended to set computers off as a distinct technical field or specialty”

(Luebbert, 1960, p. 134).

www.manaraa.com

 160

Luebbert went on to note that the suggestion of establishing “Information Processing

Departments” tended to come from “those educators with a less predominantly electrical

viewpoint,” and he concluded that such ideas were “startling,” “radical,” and “thought-

provoking” (p. 136). He also wrote them off as “neither feasible nor desirable,” especially when

“more evolutionary” approaches were possible (p. 136). As one such alternative, the author

argued for the extensive integration of computers and information processing topics throughout

the electrical engineering curriculum, and especially in the foundational core courses that

electrical engineers were required to take at most institutions.131 On the one hand, Luebbert’s

remarks reveal a rising anxiety among engineers as the idea of separate computer-oriented

departments and programs gained traction. On the other hand, his call for a thorough infusion of

computing in all phases of electrical engineering education foreshadowed various curriculum

reform efforts that gained traction beginning the mid and late 1960s. I discuss these movements

in more detail in the following chapter.

Another noteworthy article appeared that appeared in the JEE in 1961 was topically titled

“Engineering Students Must Learn Both Computing and Mathematics” (Forsythe, 1961).

Authored by Stanford mathematics professor George Forsythe, this piece paralleled many of the

aforementioned articles in that the author made a general call for improving the mathematical

and computer-related aspects of engineering education. Yet Forsythe also came out as a strong

advocate for the so-called “computer sciences.” At the very beginning of the article, for instance,

Forsythe noted with slight derision that “[computers] are developing so rapidly that even

computer scientists cannot keep up with them. It must be bewildering to most mathematicians

and engineers” (p. 177). In addition to downplaying the position of mathematicians and

engineering in the area of computing, the author’s rather matter-of-fact reference “computer

scientists” suggested that the identity of this group was well established. Yet at another point in

this same article, Forsythe was more cautious in describing the “computer sciences”:

131 Evidence suggests that the types of reforms suggested by Luebbert were being proposed and discussed
more widely. In 1959, for example, the Electrical Sciences Committee of the American Society for
Engineering Education (ASEE) published a “Report on the Engineering Sciences, 1956-1958” (American
Society for Engineering Education, 1958). In addition to revealing a continued emphasis on science in
engineering education, the report also, in Luebbert’s words, “advocated the complete reorganization of
electrical science curricula into an energy processing portion and an information processing portion”
(Luebbert, 1960, p. 136).

www.manaraa.com

 161

In spite of the diversity of the applications, the methods of attacking the different

problems with computers show a great unity, and the name of Computer Sciences

is being attached to the discipline as it emerges. It must be understood that this is

a very young field whose structure is still nebulous (p. 177).

Embellishing this depiction, the author described the “theory of computer programming” as a

key area of activity in the emergent field, and he also identified numerical analysis, the study of

data processing, and computer system design as “computer sciences” (p. 178). Framing computer

design as a branch of “computer science” revealed the wide range of topics – including many

that were traditionally connected with engineering – that many commentators claimed such a

field should encompass. And while Forsythe stopped short of explicitly calling for the founding

of new computer science departments in universities, he hinted in this direction when he

suggested that introductory computer courses should be taught by “computer scientists.” Further,

he noted that these types of courses might be developed more rapidly if the associated instructors

were “not judged primarily by the standards of any existing department” (p. 180). One might

infer that this could only be accomplished through the establishment of new departments that

were linked to a new discipline.

In the following chapter, I trace the historical trajectory of the “computer sciences”

thought the 1960s and beyond. And in order to round out the present discussion, it is necessary to

review a handful of developments beyond the pages of the JEE, including an ambitious and well-

known project that was launched at the University of Michigan in 1959 to more broadly

stimulate and accelerate “the use of computers in engineering education.” Sponsored by the Ford

Foundation and directed by Donald Katz – a Professor of Chemical Engineering at the University

of Michigan – the impact of the project extended to dozens of other universities through the

participation of over two hundred participating faculty (Katz et al., 1963, p. v).132 As explained

in one final report, one major original impetus for this project stemmed from the general

observation that “experiences with computers in research were filtering down very slowly into

undergraduate engineering education” (Katz et al.,1963, p. iii). Building on the premise that

132 In fact, evidence suggests that the overall impact of the Ford Foundation project was indeed quite
significant. As University of Michigan computer scientist Bernie Galler explained in a 1991 interview,
“Computers were really quite new, and it was recognized that they were very useful in engineering, but
they hadn’t really gotten into the curricula. I know people who told me that in their opinion, this project
advanced the use of computers by at least five years throughout this country” (Galler, 1991, p. 32).

www.manaraa.com

 162

“[a]ll graduating engineers of the future must have a knowledge of computers, just as they have a

knowledge of mathematics” (Katz and Organick, 1960, p. 184), the project aimed to “study the

feasibility of broad scale integration of electronic computer use into the educational process”

(Katz et al., 1963, p. iii). In working toward this goal of integration, much of the project was

dedicated to developing appropriate teaching materials, sample problems, and appropriately

trained faculty. It also covered a range of engineering disciplines, and much of the associated

work was accomplished via summer training programs and workshops.

While the Ford Foundation project may appear somewhat tangential to the mainline

development of computer engineering, the project reports provide important evidence about the

general position of computers in electrical engineering education, especially in the early and mid

1960s. In fact, a 1966 report on the role of computers in electrical engineering design education

explained that “[e]lectrical engineers have an interest in computers not only as devices for

performing computation but also as systems of interest in themselves” (McMahon et al., 1966, p.

IV-1). Yet somewhat paradoxically, this same report concluded that “the computer as an aid to

engineering design has not been emphasized in electrical engineering to the extent that it has in

other engineering disciplines” (p. IV-1). Far from conjecture, this tendency was widely

documented. A survey published in 1963, for instance, indicated that just over half (54%, or 22

of 41) of all responding electrical engineering departments were teaching computing courses,

while only 45% (or 21 of 47) of surveyed EE departments required its undergraduate students to

take one or more computer courses (Cook, 1963, pp. 5; 9).133 The authors of the 1966 Ford

Foundation report offered two explanations for these trends. First, they pointed to a general

neglect of design-oriented education in most engineering fields, which limited the extent to

which computer-based techniques could be incorporated into the curriculum. And on a second

and closely related note, they suggested that the use of computers among electrical engineers was

limited by the fact that “many of the problems with which electrical engineers deal are fairly

tractable mathematically” (McMahon et al., 1966, p. IV-1).

133 Interestingly, the report noted that industrial engineering departments were offering the most computer
courses for engineering students (58%), followed by electrical engineering (54%). In addition, 77% of
industrial engineering, 47% of aeronautical engineering, and 47% of chemical engineering departments
were requiring computer courses for graduation, as compared to 45% for electrical engineering
departments.

www.manaraa.com

 163

As I note below, groups such as the COSINE Committee emerged in the mid-1960s and

in part picked up where the Ford Foundation project left off, especially with regard to urging

electrical engineering educators to incorporate computers into all phases of the EE curriculum.

Yet unlike the participants in the Ford project, COSINE members also raised questions about the

extent to which it was desirable for electrical engineering departments to cultivate student and

faculty expertise in a wider array of subjects, ranging from computer design and systems

engineering to programming and even the so-called “computer sciences.” Yet well before the

COSINE effort got off the ground, a handful of commentators were both raising questions about

and making tentative recommendations for how electrical engineering departments might expand

their interests in computers and computing generally, as well as in the area of computer design

and engineering more specifically.

Educating Computer Engineers and Designers

As described above, by the mid-1960s a growing cadre of engineers and other interested

actors were increasingly focused on teaching future generations of engineers how to use

computers, albeit with mixed results. A somewhat smaller pool of individuals was approaching

questions about the appropriate role of computers and computing in engineering education from

other angles. As noted above, a 1957 article by Rideout was one of the first to discuss the

potential development of “computer engineering curriculums,” and within a few years a handful

of authors were pursuing related themes. In the 1960 JEE special issue on Computers in

Engineering Education, for example, MIT civil engineer C. L. Miller and electrical engineer W.

W. Seifert discussed the position of engineering schools with respect to a full range of “computer

know-how” (Miller and Seifert, 1960). In most general terms, these authors argued that “the

faculty-computer relationship must embrace the entire faculty – that the ideal ‘computer faculty’

includes the entire faculty of the engineering school” (p. 839). They also went on to identify four

constituent areas of expertise, namely design, communications, mathematics, and applications (p.

841).134

134 The authors used the term “communications” to refer to “man-machine communications.” This area of
activity included topics associated such computer programming and languages. With regard to
“applications,” the authors were principally referring to the use of computers as a “problem solving tool
of modern engineering” (p. 841).

www.manaraa.com

 164

With regard to computer design, Miller and Seifert framed engineering as a rather

obvious locus of activity and education for education and research. In fact, they supported this

claim by pointing to a long-standing affinity between engineering design and physical artifacts.

“Those concerned with computer design,” they explained, “pose no identification problem due to

their direct relationship with the development of computers as physical devices” (p. 841). For

these authors, computer designers were naturally machine-oriented engineers. And indeed, my

preceding analysis of job advertisements and employment statistics revealed the strength of this

relationship in the late 1950s and early 1960s.

Yet Miller and Seifert also promoted the development of a full range of computer know-

how among engineering faculty that extended well beyond the design of “physical devices” to

cover all four of the major constituent areas listed in their article. The authors even argued that

engineering schools and faculty needed to develop and sustain their own expertise in the more

mathematical areas of computing. “It should be made clear,” Seifert and Miller stated, “that in

identifying the mathematics group we are speaking of those professors within the engineering

school who are active in developing and enlarging mathematical methods and not of the staff of

the mathematics department” (p. 842). By arguing that all relevant phases of computing should

remain within the province of engineering schools, the authors promoted their own vision of

disciplinary independence and self-sufficiency. It is also likely that this position was developed

in response to the ongoing extension of mathematics departments and faculties into many areas

of computing, not to mention the tentative development of the “computer sciences.” Yet

regardless of their motivations, Miller and Seifert’s recommendations appeared particularly

synergistic with their home institution, where engineering had a long reputation for its prestige,

mathematical and theoretical intensity, and wide-ranging scope.

In another special issue article titled “Setting up a Computing Faculty in a School of

Engineering,” Moore School director John Brainerd worked in directions that largely paralleled

the comments of Miller and Seifert.135 Noting the existence of ongoing debates regarding

whether separate faculty and departments should be developed in areas such as the “Computer

and Information-Processing Sciences,” Brainerd downplayed the prospects for such departments

by describing the proponents of such a split as “relatively few though at times outspoken”

135 As noted in the preceding chapter, in as early as 1948 Brainerd had emphasized the major role of
electrical engineers in the historical development of large-scale computing devices.

www.manaraa.com

 165

(Brainerd, 1960, p. 846). Summarizing his own position on the matter, Brainerd argued that

existing departments were meeting most of the new field’s needs, and he added that “the

administrative need for a separate department or faculty is not evident despite the crossing of

lines of various disciplines which can be envisaged” (p. 846). He even followed a number of

earlier commentators by suggesting that computing could be viewed as a sub-field of

engineering. As Brainerd explained, “the creation or extension of a ‘computing faculty’ group is

much like that for any other new and important subdivision of engineering effort” (p. 851). Such

comments revealed a rising sense of anxiety among engineers as the establishment of new

computer-oriented disciplines and departments appeared an increasingly likely prospect at many

schools, including Brainerd’s own.

Brainerd’s comments also reflected a common rhetorical strategy, where computing was

framed as a partially or even wholly a province of engineering. In fact, preceding chapters show

that this type of strategy can be traced back to the early 1950s. Yet Brainerd was also forced to

admit that computer-related research and education involved other types of expertise. In fact, he

hinted at rising concerns about the role of mathematicians, philosophers, and other “non-

engineers” in the development of computer-related courses and programs, especially in

engineering schools and departments. “A computing faculty in a school of engineering,”

Brainerd warned, “must be prepared to open their arms to the qualified non-engineer” (p. 850).

As I discuss in more detail below, accommodating these “outsiders” was an important strategy –

as well as a demanding challenge – for Brainerd and other engineers as they struggled to

maintain control over new computer courses, programs, and faculty. Further, the possible

participation of “qualified non-engineers” in engineering schools and departments seemed to call

into question the identity of engineering as a distinct professional and disciplinary domain.

 Brainerd’s article raised yet another theme that has surfaced repeatedly in my analysis,

namely the extent to which computer design was related to computer application or use. As the

author explained, “Logic design should ideally be carried out with full knowledge of the ranges

which the equipment designer can achieve as well as knowledge of the basic logic of the

contemplated device; unfortunately logic design has fallen to a low state in some instances” (p.

849). The aforementioned article by Miller and Seifert also touched on this issue. After noting

that the interests of computer design groups tended to concentrate on circuitry and logic, the

authors added that “designers must have contact with those who are going to use the machines”

www.manaraa.com

 166

(Miller and Seifert, 1960, p. 841). Providing further insights regarding the budding divisions of

labor among computer experts, these same authors described how a “computer languages group”

could act as an essential link users and hardware of computing (p. 841). Of course, promoting

cooperation between such groups was quite different than the type of proposal that authors such

as Fein had bandied about, namely that the computer field writ large could somehow be unified

via some sort of common theoretical framework or even disciplinary structure.

And finally, Norman R. Scott, a professor of electrical engineering at the University of

Michigan, contributed the only article to the same JEE special issue that was primarily dedicated

to discussing the development of courses and degree programs in the area of computer design

and engineering (Scott, 1960). After emphasizing the general importance of computers in the

engineering curriculum, the author reviewed a series of challenges that were facing electrical

engineering faculties, with particular emphasis on the area that he called “computer

engineering.” Ultimately coming down in favor of devoting “many courses or even a degree

program to the engineering of the digital computer” (p. 852), Scott asked a series of related

questions about appropriate lab facilities, the relative coverage of analog versus digital topics,

and the extent of training in computer use among electrical engineers (pp. 852-853). But even

more importantly for the present analysis, the author queried: “What material is appropriate to

computer engineering courses at the undergraduate level and the graduate level?” (p. 853). He

also pondered the extent to which topics in the area of computer design and engineering should

be taught by electrical engineering faculty versus other academic units, such as mathematics or

philosophy departments (p. 853).

While leaving many of these questions open, the author described ongoing developments

at the University of Michigan, where “courses in the engineering of computers have been

presented since 1951” (p. 853). Scott also stressed that computer engineering courses often

required a “broad background in electrical engineering and a high level of mathematical

maturity,” and he promoted the idea that computer engineering was a more appropriate area of

specialization at the graduate level (p. 854). Building on these arguments, Scott listed some of

the key topics that would likely be included in graduate courses in computer design and

engineering. He further grouped these into a set of abstract topics that provided necessary

mathematical and theoretical grounding – namely symbolic logic, Boolean algebra, state

diagrams, switching, automata theory, and finite number systems – and Scott acknowledged that

www.manaraa.com

 167

philosophy or mathematics courses might help provide coverage in these areas. He also listed a

set of subjects more closely associated with existing technologies and techniques, including

arithmetic processes, command lists, the relation of “internal” and “external” languages, memory

systems, and computer circuits and logic. While little more than an outline, Scott’s article is

noteworthy in that it was one of the earliest published descriptions of graduate-level coursework

specifically dedicated to computer design and engineering. Further, Scott’s remarks hinted at a

growing sense among many electrical engineering educators that an emergent field of computer

design or computer engineering was starting to coalesce around some common core bodies of

knowledge and domains of technology, albeit largely as a specialization or branch of EE.

Many of the themes developed in the special issue of the JEE were echoed in a lengthy

summary article on the topic of “Computer Education,” which appeared in the 1963 edition of

Advances in Computers (Tompkins, 1963). After first reviewing computer education and training

programs in industry, author Howard E. Tompkins noted that universities lagged well behind

industry “in their ability to teach new concepts and methods that have arisen from industrial

research and development” (p. 139). Describing most university curricula in computing as

“experimental” or “in transition,” Tompkins outlined two major types of curriculum that were

being developed at the time, one focused on the “engineering design of computers” and the other

on the “utilization of computers” (p. 142).

Regarding the former, the author explained that most engineering curricula were not yet

explicitly addressing the topic computer design, although he admitted that many programs and

courses were grappling with a variety of closely associated topics. Tompkins also stated that a

range of new technological developments that were closely related to digital computers – such as

transistors and other types of solid-state devices – were not receiving adequate attention in most

undergraduate engineering curricula. He added that more could be done to provide up-and-

coming engineers with a synthetic view of computing, especially by cultivating expertise in areas

ranging from electronics and circuits to logic and systems. Reacting to the challenges that came

with developing such curricula, Tompkins emphasized that “[t]he two points of view, logical and

electrical, should be coordinate into a meaningful whole” (p. 142). While offering little in the

way of additional detail, he concluded his remarks on engineering design by referencing a series

of textbooks in “computer engineering, logic, and systems design” (p. 142).

www.manaraa.com

 168

In his survey of “courses and curricula aimed at the education of computer users,” on the

other hand, Tompkins described a wide range of trends and possibilities, ranging from short,

non-credit courses in programming to full degree programs with titles like “Computer and

Information Sciences” or “Communications Science.” Describing some of the developments that

were on the horizon, Tompkins offered summary descriptions of computer-oriented degree

programs at about a dozen universities, and he noted a variety of faculty training initiatives that

were underway, including the aforementioned Ford Foundation Project. Concluding his rather

wide-ranging discussion of computer education at the university level, Tompkins also pondered

the process of discipline formation: “Will a recognized and established discipline, complete with

traditions, established standards, and a few sacred cows, arise?” (p. 151). While a small but

growing cadre of commentators were confidently projecting the establishment of such a

discipline by this time, Tompkins took a somewhat more cautious – and perhaps more realistic –

view. “Not without pain and effort, and not in any thoroughgoing way, Tompkins declared, “the

dynamics of the situation are too dominant. The field is still developing and changing too rapidly

to admit of much immediate standardization” (p, 152).

Conclusion

On the surface, it may appear somewhat ironic that electrical engineering departments –

which had both reasonably strong and relatively early claims to many aspects of the design and

development of computing machinery – were slow to bring computers into their courses and

curricula. However, the direct influence of university-based electrical engineers in the computer

field peaked in the 1940s and early 1950s at a handful of high-profile hubs of activity, such as

MIT and the University of Pennsylvania. As the commercial computer industry took off in the

1950s, university computer design research declined accordingly, and by the mid-1950s it was

increasingly rare for even the largest and best-funded schools to undertake major computer

development projects or related research initiatives, albeit with a few notable exceptions. These

trends – coupled with a strong, post-war tendency for electrical engineering departments and

faculties to both embrace the engineering sciences and resist rapid curricular changes and

technical specialization – created a climate in which computer-related topics and technologies

filtered slowly into electrical engineering courses and curricula, even into the 1960s. In fact,

many private-sector employers were largely content with this status quo, even if they frequently

www.manaraa.com

 169

assumed the primary burden of transforming recent graduates who were well-schooled in

engineering fundamentals into effective engineering practitioners, such as via supplemental

training programs and on-the-job experiences.

And while electrical engineers continued to fill large numbers of private-sector

employment slots in areas ranging from electronics and circuit design to logical design and

systems engineering, the demand for numerical analysts, programmers, and other applications

experts rose rapidly through the 1950s and into the 1960s. With electrical engineering

departments reluctant to move into these areas, other academic units and programs filled in the

gaps. Mathematics departments, for example, started to produce large numbers of students who

would go on to become analysts and programmers. In addition, a growing raft of commentators

proposed the establishment of a new computer-oriented academic discipline that covered a wide

spectrum of activity in the field. On the one hand, this movement seemed to be the sort of reform

that commentators such as Carr and Gorn were looking for, as it suggested that it might be

possible to reconcile some of computer field’s major social and technical divides. On the other

hand, there remained the very real possibility that the emergence and rise of the “computer

sciences” might further fracture the field by driving a wedge between an emergent class of

“computer scientists” and a counterpart pool of computer designers and engineers. In fact, this

latter pattern appeared synergistic with the major sociotechnical boundaries that had come to

dominate other aspects of the field, including the major professional societies, various private-

sector worksites, and even the sphere of computer technology itself.

As Tompkins explained in 1963, many questions remained about whether a new

computer-oriented discipline could emerge and thrive, especially against the backdrop of rapid

technological change. Yet his focus on issues of “standardization” and “established traditions”

partially missed the mark, given that the academic context more often serves as a site where

disciplinary settlements are worked out and periodically renegotiated, with discipline-based

departments and graduate degree programs helping to reproduce various fields of interest, while

also preserving their internal and external stability. Tompkins also failed to ask an important

follow-up question: if a new discipline of computing was successfully established, would it be

sociotechnically integrated, thereby making one head out of the proverbial Humpty and Dumpty?

Or would it reflect and reinforce the kinds of dichotomies that had grown up in other contexts of

computing? Such questions help set the stage for the following chapter, which follows the

www.manaraa.com

 170

historical development of two major discipline-building movements in the computer field, the

first centered on the independent development of “computer science,” and the latter involving the

redoubled efforts of electrical engineering reformers and educators to promote the development

of their own brand of computer-oriented courses and curricula within existing engineering

schools and departments.

www.manaraa.com

 171

Chapter 5

Competing Images of Disciplinarity:

Computer Science, COSINE, and Computer Engineering

In prior chapters I documented the historical trajectory of computer engineers and

engineering by looking at various contexts of disciplinary and professional development,

including professional societies and industry worksites, as well as the domain of computer

technology itself. More specifically, my analysis highlighted how the computer field’s early

decades were significantly marked by the emergence of two distinct sociotechnical territories,

one focused on software and programming, the other centered on engineering, design, and

hardware. The preceding chapters also documented persistent uncertainty over the status of

computer engineering as a distinct field or discipline. In fact, terms such as “computer engineer”

and “computer engineering” were in wide circulation in the 1950s and 1960s, but primarily in

reference to various jurisdictions of professional work in the context of industry. My account

also revealed significant ambiguity in the use of “computer engineer” and related terms,

especially in the mid-1950s. Yet even as these terms became more narrowly associated with the

design of computer systems and associated devices, computer engineering was often couched as

a subfield or branch of electrical engineering, rather than as a discipline or profession unto itself.

By delving into the educational arena, the prior chapter presented early evidence for the

emergence of a discipline that over time came to be called “computer science.” It also outlined

the tentative efforts of electrical engineering faculties and departments to enter various areas of

computing, including through a handful of graduate-level courses and programs dedicated to

computer design and engineering. The present chapter carries this analysis of the educational

sphere through the remainder of the 1960s and into the early 1970s, with particular emphasis on

two related historical movements. The first of these involved ongoing efforts to define, position,

and institutionalize the budding field of computer science, especially through the efforts of the

ACM and its mathematically- and theoretically-oriented constituency. In addition to detailing a

www.manaraa.com

 172

series of early efforts to succinctly define this new field, I draw on the work of Abbott to suggest

that the success of computer science largely hinged on both the negotiation of the field’s

disciplinary “settlement” and the establishment of new computer science departments and

graduate degree programs. Hence, my analysis brings into further relief the importance of

“bottom-up” processes of discipline-building.

In a segue section in the middle of this chapter, I turn to handful of “insiders” who

critiqued the identity and direction of computer science education, and who questioned whether

the emergent field was moving too far away from engineering and technology. This line of

analysis provides an appropriate transition into the second major part of this chapter, which

details how a new cadre of electrical engineers called for a thorough reorientation of electrical

engineering education toward computers and computing. In fact, two Bell Labs researchers aptly

captured the underlying ethos of this movement when they framed engineering and computing as

a “holy alliance” in a 1960s-era memorandum. In order to realize this alliance, many of these

reformers initially worked to bring computer science “into the fold” of electrical engineering,

especially through the efforts of the COSINE Committee in the educational arena. Yet for a

variety of reasons, the goals of this movement gradually shifted toward the development of

courses, programs, and degree options in the area known as “computer engineering.”

On the one hand, my analysis once again highlight the tendency of the computer field to

cleave into hardware- and software-oriented spheres in a variety of contexts. But perhaps even

more importantly, this chapter reveals the crucial importance of the academic sphere in the

negotation and development of disciplines. In fact, ongoing efforts to attach the computer

engineering moniker to various facets of electrical engineering quite crucially set the stage for

the gradual and widespread emergence of computer science and computer engineering as distinct

domains, complete with their own partially unique social and professional identities, bodies of

knowledge, educational pathways, and spheres of technology. My analysis also reveals the extent

to which these processes involved competing images of disciplinarity, as well as the ongoing

negotiation of disciplinary settlements.

Part I – (The) Computer/Computing/Information Science(s): A Formative First Decade

Over roughly the span of a decade, the field that was growing up around terms such as

“computer science” gained an impressive momentum. As historian Paul Ceruzzi explains, the

www.manaraa.com

 173

origins of the field can be traced back to at least the late 1950s, when “it was recognized that

many topics that had much in common with each other (and all in common with the computer)

were being taught in various departments in around most universities” (Ceruzzi, 1989, p. 266).

This was also a time when rapid increases in the number of computer systems installed

nationwide (and worldwide) was accompanied by rising demand for computer-oriented workers

of all types. Recognizing and responding to these trends, a handful of forward looking

individuals proposed the establishment of a new field or discipline, which the aforementioned

Wienser dubbed the “communication sciences” and Fein called “computer science.”

In subsequent years, an expanding cadre of actors and groups – many with ties to the

mathematics community and the ACM – lent support to this discipline-building project, which

increasingly went by the name of “computer science.” In this section, I outline three different

aspects of this historical trajectory, in roughly increasing order of importance. The first such

aspect centers on early “top-down” efforts to define and name the proposed discipline. I then turn

to ongoing moves to position the emergent field in a larger milieu of disciplines, especially in

idealized terms. Third and finally, I discuss the establishment of computer science and related

departments and curricula in the 1960s in order to shed light on the “institutionalization” of the

field. This latter theme supports the argument that the rapid growth of computer science in the

academic context was a pivotal development, both for the proponents of the new discipline and

for other stakeholders, including electrical engineers.

Defining Computer Science as a Discipline136

Debates over the definition of “computer science” and closely related terms can be traced

throughout the history of the field, even to the present. In fact, the long-standing lack of

consensus on this matter suggests that the successful establishment and development of a

discipline does not necessarily require widespread consensus about its precise definition or

scope. Yet in order to gain a general sense for the evolving scope and orientation of computer

science, it is worth reviewing some of the major definitions in play, especially in the field’s

formative first decade. These definitional efforts frequently involved processes of abstraction,

136 The account presented in this section has some parallels with the prior efforts of Ceruzzi, who provides
one of the better reviews of ongoing efforts to define “computer science” (Ceruzzi, 1989, pp. 265-270).

www.manaraa.com

 174

where attempts were made to capture the commonalities that united the full array of subjects,

topics, and technologies that were at the heart of the proposed discipline.

As noted above, Wiesner made one of the earliest attempts at such a definition when he

described the “communication sciences” as providing the appropriate mathematical and

theoretical foundations for the study of complex computing, information processing, and

communication systems, of both the natural and artificial variety (Wiesner, 1958). Fein, on the

other hand, was likely the first author to proclaim the emergence of a new discipline called

“computer science.” And while his 1959 article hinted at the contours of the field via wide-

ranging lists of potentially relevant topics and subjects, in 1961 Fein more succinctly defined the

“computer sciences” as “the theory and practice of the design, programming, and application of

computers” (1961a, p. 151). With a nod to Wiesner, he also suggested that the computer sciences

were a branch of a proposed “supradiscipline” called the “computer-related sciences” or

“synnoetics,” which was more generally concerned with the properties and structure of

“composite systems” (1961a, pp. 150-151).137 Both Wiesner and Fein can be credited with

recognizing some of the synergies that were forming between a wide range of fields, ranging

from computing, cybernetics, and communication theory to parts of biology and even linguistics.

And while the ambitious visions presented by these authors were perhaps ahead of their time,

they helped set the stage for a larger movement that got underway in the 1960s.

Some of the first evidence for such a movement can be found in the CACM, which in

1960 featured a “Report on a Conference of University Computing Center Directors” (Morse,

1960). As the author of this report confidently explained, computer science was both a “new

scientific field” and “discipline in its own right” (p. 520; 521).138 Yet aside from listing a handful

of courses and subjects being taught by university staff, the report was mostly silent on the

definition and scope of the field. Mathematician George Forsythe, on the other hand, explained

in a 1961 article that a new discipline of “Computer Sciences” was emerging. Describing the

field in pluralistic terms, he indicated that the “theory of computer programming” was perhaps

the “most important of the computer sciences,” although he added that numerical analysis, data

137 As Fein explained, composite systems could consist of various configurations of people, mechanisms,
plants, animals, organisms, and/or “automata” (1961a, p. 150).
138 It is worth noting that the terms “computing science” and “computer science” were used
interchangeably in one section of the report. This flexibility of terminology closely parallels the use of
terms such as “computing engineering” and “computer engineering” in the 1950s, as documented in the
preceding chapter.

www.manaraa.com

 175

processing, and computer system design were also relevant to the “computer sciences” (Forsythe,

1961, pp. 177-178).

Definitional issues received further attention in 1963, when mathematician Saul Gorn

described the development of “a new basic discipline” that he called the “computer and

information sciences.” The author also explained that one of the field’s central concerns was the

“‘analysis’ and ‘synthesis’ of ‘mechanical languages’ and their ‘processors’” (Gorn, 1963, p.

150).139 In addition to reflecting Gorn’s research interests in the area of computer languages,

framing the field in this manner placed implicit emphasis on the orientation of the field toward

information and communication processes and systems. In a 1964 article, on the other hand,

Thomas Keenan of the University of Rochester discussed the prior writings of Wiesner, Fein,

and Gorn as he developed something of a “composite” definition for the new field. As Keenan

explained, “the study of the organizational and structural properties of systems, arrays of

symbols and mechanical languages which find their application in the processing and

communication of information is at the heart of computer science” (Keenan, 1964, p. 206).140

As noted in previous chapters, through the 1960s “information,” “information

processing,” and “information systems” were viewed as pivotal concerns for those working in

many different phases computer field. This trend was also reflected in a preliminary ACM

curriculum report published in 1965. In a section titled “Computer Science as a Discipline,” the

authors stated that “Computer science is concerned with information in much the same sense that

physics is concerned with energy; it is devoted to the representation, storage, manipulation and

presentation of information in an environment permitting automatic information systems” (ACM

C3S, 1965, p. 544). And in 1967, Forsythe similarly described computer science as “the art and

science of representing and processing information and, in particular, processing information

with the logical engines called automatic computers” (p. 3). Vladimir Slamecka of the George

Institute of Technology, on the other hand, argued at a 1967 conference that “Information

Science and Engineering” was a more accurate name for the field (Slamecka, 1968). Expressing

dissatisfaction with prior definitions, Slamecka argued that the structure of the discipline was

139 As Gorn explained, “The study of mechanical languages is concerned with the synthesis and analysis
of systems of arrangements of symbols, and with the synthesis and analysis of processors which generate,
recognize, translate, and generally interpret such systems in various ways” (Gorn, 1963, p. 151).
140 At the end of his article, Keenan suggestively added that “[p]rogressive faculties now understand that
computer science is more than FORTRAN programming” (Keenan, 1964, p. 209).

www.manaraa.com

 176

fundamentally based on theories of information, information processes, and information

systems.141

But even as it was increasingly common to frame the emergent field as information-

oriented, commentators such as Alan Perlis developed still other types of definitions. In a 1967

conference talk, Perlis echoed prior commentators when he explained that one principle goal of

computer science centered on understanding “the organization and administration of

information” (Perlis, 1968, p. 70). Yet he moved in somewhat different directions when he noted

that “computer science is the study of the design, analysis, representation, and applications of

algorithms on computers” (p. 70). And later in the same talk, Perlis echoed one of Forsythe’s

early comments when he suggested that “computer programming is at the root of computer

science” (p. 76). While this array of characterizations perpetuated the image of a rather inchoate

new field, they nonetheless informed ongoing efforts to map out and negotiate the disciplinary

settlement of computer science.

Perlis addressed the issue from still another angle in a 1967 letter that he co-authored

with Allen Newell and Herbert Simon, two of his colleagues at Carnegie Tech. Published in

Science and addressing the question of “What is Computer Science,” the letter started by with a

seemingly straightforward argument: “There are computers. Ergo, computer science is the study

of computers” (Newell, Perlis, and Simon, 1967, p. 1373). The authors went on to explain that

this included all phenomena surrounding computers, including programs, algorithms, and

hardware. On the one hand, Simon in part expanded on this line of argument in his suggestively

titled 1969 tome, The Sciences of the Artificial. On the other hand – and as noted by Ceruzzi –

the publication of texts such as Donald Knuth’s The Art of Computer Programming, Volume 1:

Fundamental Algorithms (1968) helped promote the notion that algorithms were a central topic

of concern for computer scientists and programmers.142

141 Still another definition along these lines was developed by the Department of Information Sciences at
the University of Chicago: “The Information Sciences deal with the body of knowledge that relates to the
structure, organization, transmission and transformation of information … This includes the investigation
of information representation, as in the generic code or in codes for efficient message transmission, and
the study of information processing devices, and techniques, such as computers and their programming
systems” (Beckman, 1968, p. 40).
142 The importance of the topic of algorithms admittedly has a longer history in the field. From about 1959
onward, for example, the CACM devoted an expanding number of pages to descriptions and discussions
of algorithms. But as evidenced by the publication of Knuth’s text and the remarks of commentators such

www.manaraa.com

 177

By the late 1960s, the definition of computer science and a series of closely related terms

remained the subject of much discussion and debate. Yet there was growing consensus that a

discipline had either formed or was well on its way to forming, and it was increasingly referred

to as “computer science.” Further, the dominant image of the field was largely based on a

disciplinary settlement that encompassed algorithms, programming, information processing, and

information systems, and that was grounded in theory and mathematics. In a sense, then, the term

“computer science” was something of a misnomer, and a long string of commentators maintained

that the emergent field was significantly independent from the actual machinery of computing.

Fein hinted at this theme in 1959 when he framed computing equipment as a

“supplement” to university educational programs in the “computer sciences” (p. 11). And in

1961, he noted that more expansive terms such as “Computer-Related Sciences” were misleading

because they overemphasized computer equipment (1961a, p. 161).143 Forsythe similarly argued

in 1961 that “the computer sciences are partly independent of actual automatic computers” (p.

178), while Atchison and Hamblen complained in 1964 that the term “computer science” was too

“machine-oriented” (1964, p. 227). As the 1960s wore on, the apparent distance between the

discipline and the machine only increased, leading Atchison to summarize in 1971 that “’[t]he

pure computer scientists will probably move further and further from the machine itself and more

and more into the theoretical aspects such as abstract structures of information and the theories

of representation and transformation” (1971, p. 131). In many ways, this distancing was

beneficial for computer science, as it insulated the field from rapid technological changes in

computer technology. As I note below, courses and curricula became an important pathway for

creating and maintaining space between the discipline of computer science and the rapidly

changing state of the technological art. On the other hand, this trend also tended to expand the

distance between the theoretical foundations of computer science and the more pragmatic

application of computers to real world-problems, thereby opening up new opportunities for other

actors and groups to assume leading positions in other spheres, including that of “hardware.”

as Perlis, the view that algorithms were a central, defining concern of computer science did not gain
significant traction until later in the 1960s.
143 As noted above, Fein addressed this problem by coining and promoting an alternate term, namely
“synnoetics.”

www.manaraa.com

 178

Positioning and Settling Computer Science

While the development of top-down definitions for computer science is an important

aspect of the present historical account, it is but one aspect of a larger discipline building

process. In fact, if we take seriously Abbott’s claim that “academic settlement involves a

complex structure of relations with other disciplines” (2001, p. 141) we might expect to find

extensive discussions about the position of computer science in a larger disciplinary milieu. As it

turns out, many other commentators have uncovered such discussions and recognized their

importance. As nicely summarized by engineer and historian Eric A. Weiss, for example:

[I]n the late 1950s and early 1960s, the academic world was struggling with the

question of where computing was to be fitted into its often hidebound structure.

Was it a subdivision of mathematics or electrical engineering? Would it last or

would it fade away? Did it have enough philosophical and intellectual content to

be considered in any way a science in its own right? (1992, p. 76).

In this section I document ongoing efforts to address these types of issues, especially from the

late 1950s to late 1960s. I place particular emphasis on how various actors and groups defined

computer science in relation to a variety of other disciplines specifically, as well as to

mathematics, the sciences, and engineering generally. In summary, my analysis brings into

further relief the establishment and negotiation of a disciplinary settlement for computer science.

I begin by looking at how these issues were addressed in rather abstract and idealized terms, and

then turn to more pragmatic discussions about the “institutionalization” of the field.

To begin with, early commentators such as Wiesner and Fein framed the emergence of a

new computer-related discipline as both drawing from and informing work in other fields.

Wiesner noted a “close kinship” among many researchers working in diverse domains, ranging

from engineering and the physical sciences to mathematics and even biology (1958). And while

he admitted that engineers and inventors played an important role in the field of “communication

sciences,” he emphasized the need for further theoretical developments, which engineers alone

could presumably not provide. Fein similarly noted the importance of establishing theoretical

foundations for the proposed discipline, and he explicitly described “computer science” as “inter-

www.manaraa.com

 179

disciplinary.” He added that fields such as computer science, mathematics, and library science

“are both disciplines in themselves as well as service tools to other disciplines” (1959, p. 11).144

However, commentators such as Gorn argued that distinguishing the field from its

neighbors required a more substantive rationale than simply suggesting that it was somehow

“interdisciplinary.” He therefore argued in 1963 that “essential differences in attitude and

essential differences in background requirements” (p. 153) set the so-called “computer and

information sciences” apart from other fields. Keenan worked in similar directions when he

noted that computer science was distinguished from other fields by its distinct “intellectual

orientation” (1964, p. 206). He more specifically explained that:

The physicist is interested in the basic thermal or electromagnetic properties of

the materials; the electrical engineer is interested in the behavior of these as

components in an electrical circuit; the computer scientists is interested in [the]

performance of these components in large arrays and their effect on the design of

information processing equipment to yield greater utility or improved economics

(p. 206).145

In summary, these authors were drawing very distinct boundaries between the engineers who

were interested in the electronic components of computers and the “computer and information

scientists” who grappled with higher-level matters such as logical design and machine

organization. To put it another way, they argued that engineers and computer scientists saw very

different things, even when they were looking at ostensibly the same technologies. Such

passages hint at the extent to which the establishment of a given disciplinary settlement may

extend beyond the drawing of epistemological boundaries to include claims about the desirable

attitudes, methods, and even “culture” of those associated with a given field. In fact, these latter

claims become particularly important when two or more disciplines maintain overlapping

interests in a common domain of technology – in this case, computers and information systems.

Yet even if those working in the new discipline possessed a unique outlook, it was clear

that much activity in this emergent domain was firmly situated at the intersection of

144 In his 1961 article on the “supradiscipline” that he called the “computer-related sciences” or
“synnoetics,” Fein once again emphasized that the proposed discipline was “a tool for practitioners in
other disciplines and … a discipline in itself” (1961a, p. 159). Such remarks hint at the author’s intended
analogy to other fields, such as mathematics.
145 Keenan’s example was likely influenced by Gorn’s 1963 article, which featured a very similar passage.

www.manaraa.com

 180

mathematics, science, and engineering. This posed various challenges as commentators worked

toward an appropriate name and disciplinary identity for the field. Forsythe, for example, stated

in 1963 that “Computer Science seems to be about halfway in spirit between Humanities and

Sciences, and Engineering” (p. 175). More specifically, he explained that concerns about design

pointed to a location for computer science within engineering, while “the abstract nature of

computing” suggested a close affiliation with the humanities and sciences in general, and

mathematics, physics, and philosophy, in particular. And in 1967, Forsythe summarized that

“computer science is in part a young deductive science, in part a young experimental science,

and in part a new field of engineering design” (p. 4). Yet despite his acknowledgment of the

field’s hybrid identity, Forsythe ultimately expressed sympathies with situating computer science

within university schools of arts and sciences, a point to which I will return.

Much discussion at the 1967 Stony Brook conference on University Education in

Computing Science similarly centered on the multifaceted character of “computer science” or

“computing science.” For instance, Perlis explained that much of the “dilemma” of computer

science centered on the field’s constitution as “part mathematical science and part mathematical

engineering” (1968, p. 71). Yet the suggestive title of his talk -- “Computer Science is Neither

Mathematics nor Electrical Engineering” – made it clear that Perlis viewed the emergent

discipline as sufficiently distinct and independent from other fields.

Slamecka offered additional insights on these issues in his presentation at the same

conference on the topic of “Information Science and Engineering” (1968). As Slamecka

explained, this field’s engagement with “theories of information” and “information processes”

aligned it with science, while its concern with information systems linked it to engineering. The

author therefore concluded that “[t]he structure of the discipline … straddles and units [sic,

unites] (rather than distinguishes) science and engineering” (p. 90). Slamecka went on to

describe Information Science and Engineering as the first “metascience” to “concern itself

actively with the synthesis of the various disciplines of science and engineering” (p. 90). While

Slamecka’s argument was substantially open to critique, it once more hinted at persistent

questions about whether such a discipline could find a secure place in the “hidebound” structure

of the university, where the boundaries between science and engineering were often deeply

inscribed in the organization of colleges, departments, and degrees. To put it another way, to

www.manaraa.com

 181

what extent was it possible to establish and maintain the disciplinary settlement of a field that to

some extent lived across the boundaries of science and engineering?

In their passionate defense of computer science published in Science, Newell, Perlis, and

Simon responded to other points of objection regarding the identity and position of the proposed

field. For instance, in addressing the critique that “computer science is a branch of electronics (or

mathematics, psychology, etc.),” the authors admitted that many of the “phenomena of

computers” were indeed relevant to other sciences. Yet they argued that “all of the phenomena of

computers are not subsumed under any one existing science” (Newell, Perlis, and Simon, 1967,

p. 1374). As suggested by such remarks, the authors viewed computer science as a unifying

discipline for the study of diverse phenomena. They also responded to the claim that “computers

belong to engineering, not science” by arguing that the computers “belong to both,” and they

added that “[t]ime will tell what professional specialization is desirable between analysis and

synthesis, and between the pure study of computers and their application” (p. 1374). However,

the authors’ preference for framing the emergent field in scientific rather than engineering terms

was clear, especially in light of both their choice of terminology and major points of argument.

As my analysis suggests, establishing convincing arguments for the identity and position

of computer science was viewed as an important factor in building the field’s legitimacy,

especially in the academic context. Further, many of these arguments spoke to pressing concerns

about what participants at the 1967 Stony Brook meeting referred to as the “intellectual

respectability” of the proposed discipline. In 1968, Forsythe quipped that “[i]n a purely

intellectual sense, such jurisdictional questions are sterile and a waste of time” (p. 455). He was

forced to admit, however, that these issues were of “great importance” when linked to more

pragmatic concerns, such as the organization of universities or the administration of research

grants. And indeed, the following section reveals that discussions about the ideal or preferred

position of computer science in the midst of science, mathematics, and engineering were

increasingly overshadowed by its actual location within various institutions, especially from the

mid-1960s onward. To put it another way, the problem of disciplinary settlement was ultimately

not addressed via top-down decree, but rather by bottom-up and context-specific processes.

www.manaraa.com

 182

Instituting Computer Science – Departments and Programs

In Slamecka’s view, realizing the new discipline that he called “information science and

engineering” demanded “a patient and imaginative examination of the fabric of science for the

purpose of structuring a utilitarian, logically consistent subset of knowledge which can be

transmitted” (1968, p. 92). As the preceding analysis suggests, many of the proponents of

computer science were exploring this idealized pathway as they worked to define and position

the emergent discipline, often in rather abstract terms. It was a task made even more challenging

by the persistent framing of computer science or information science as mathematical and

scientific, yet also closely linked to engineering, design, and technology.146

Slamecka also explained that carefully defining and positioning the discipline in a top-

down manner was crucial in setting the stage for the development of “goal-oriented” educational

programs. However, he admitted that “the structure of educational programs is not necessarily

identical with the structure of the discipline” (p. 91). As I document below, this potential schism

between the ideals and realities of discipline building was abundantly clear by the time of

Slamecka’s remarks. In fact, I contend that the ongoing proliferation of computer science

departments and programs through the 1960s lent crucial support to the momentum and

legitimacy of the discipline, in spite of persistent debates over its definition, position, and

“intellectual respectability.”

Tentative calls to institutionalize computer science – or some variation thereof – first

surfaced in the late 1950s. Wiesner (1958), for example, advocated the establishment of

university research centers, with his own Communication Sciences Center at MIT as a working

model. Fein (1959), on the other hand, soon thereafter called for the development of “graduate

schools of computer sciences,” which in ideal form consisted of multiple departments,

“integrated” instructional programs, and dedicated faculty members. While clearly ambitious, his

recommendation strategically placed computer science high in the university structure, thereby

sidestepping thorny questions about where computer science should be located with respect to

other, pre-existing schools or departments. As noted in the previous chapter, Fein also pitched

the idea of establishing departments of computer science to various schools in the early 1950s,

146 Using the language developed by Science and Technology Studies scholars, one might view the
emergence and development of computer science as an important chapter in the history of twentieth-
century “technoscience.”

www.manaraa.com

 183

although his proposals were initially met with much skepticism.147 Hence, other actors and

groups – many with backgrounds in mathematics, as well as close ties to the academy and the

ACM – largely picked up where Fein left off.

Saul Gorn stepped forward as another outspoken proponent of academic departments of

computer science. In his 1963 article on the “Computer and Information Sciences,” he framed

the issue in historical terms by acknowledging that many mathematics departments and schools

of engineering were important early sites for computer-oriented research and education. Yet he

went on to ask: “[C]an such a rapidly growing discipline with clearly different interests and

requirements continue indefinitely to be carried in an essentially different environment where

accident has caused it to gestate?” (p. 155). While Gorn’s use of the term “accident” was clearly

a strategic overstatement, the author used an even more dramatic maternal metaphor to describe

the discipline’s future prospects:

Would not the mother discipline of the particular environment eventually have to

limit the nourishment it can afford to provide to such a growing child if it is not to

limit its own growth and development? In such a case the new discipline would

have to be able to fend for itself (p. 155).148

The author’s message was clear: both mathematics and electrical engineering departments were

significantly at cross-purposes when it came to promoting computer-related research and

education. Gorn forecasted the continued expansion of the Computer and Information Sciences,

especially as the demand for computer-oriented courses and expertise spread into other

disciplines. He concluded by arguing that this process of growth and development “will, willy-

nilly, have to stabilize, and when it does there will be a completely new department responsible

for the new discipline” (p. 155).

Here we find an awareness of the close links between disciplines and departments, at

least in the American academic structure. And while Gorn faced significant challenges in

realizing such a department at the University of Pennsylvania – a point to which I will return –

147 Some of the difficulty that Fein faced as he worked to realize his vision was likely linked to his status
as an independent consultant whose background and interests crossed the boundaries of science and
engineering, the academy and industry, and even the ACM and the IRE.
148 In a 1963 article, Forsythe similarly described “the birth of a coherent body of technique, which I call
computer science” (p. 169). While feminist theorists of technology have suggested that creating
technologies can provide men with surrogate birthing or mothering experiences, the remarks of these
commentators suggest that this line of argument might be extended to the study of disciplines and
processes of disciplinary formation.

www.manaraa.com

 184

his colleague George Forsythe had better success at Stanford. In fact, Forsythe played a leading

role in the establishment of a Division of Computer Science within the Mathematics Department

in 1961, transformed in 1965 into an independent Department of Computer Science, one of the

first of its kind in the nation (Lee, 1995, p. 314; Knuth, 1972, p. 722). For Forsythe, establishing

such departments came with many advantages, such as allowing for faculty salary scales that

were more competitive with industry (Forsythe, 1963, p. 174).149 But even more importantly, he

explained that such departments provided the necessary freedom to experiment with new

curricula and degrees (p. 174).

And while Forsythe also expressed sympathies with situating computer science

departments within schools of arts of sciences, the aforementioned Stony Brook conference

revealed wide variations in how computer science was being instituted at different schools.

According to one workshop report, computer science was variously being realized as a:

• major within mathematics or electrical engineering;

• separate department within a college of liberal arts and sciences or a college of

engineering;

• separate department spanning colleges;

• separate department in the graduate school;

• separate school entirely; or,

• single unit combined with computer services and reporting to a vice-president or

provost (Atchison, 1968, p. 171).

The report went on to explain that the workshop participants largely agreed that computer

science “is now accepted as a separate academic discipline,” and they explained that this pointed

toward the establishment of a separate “organizational entity” of some kind (p. 175). And while

this group failed to reach consensus on what this entity should look like or where it should be

located, establishing computer science majors within other departments was clearly the least

desirable of these approaches. The workshop report also indicated that appropriate solutions

should be worked out on a school-by-school basis, with sensitivity to local conditions.

149 Still others suggested that the independence of computer science would allow work in the field to be
evaluated “on its own terms” (Morse, 1960, p. 521). Along similar lines – and as noted in the previous
chapter – Forsythe similarly argued around this same time that courses in certain areas of computing
might be developed more rapidly if the associated instructors were “not judged primarily by the standards
of any existing department” (1961, p. 180).

www.manaraa.com

 185

On the surface, it might seem that these diverse manifestations of computer science at

different institutions was not a particularly strong selling point for the proposed discipline, and

1960s-era statistics about the precise number of institutes, schools, or departments of computer

science are difficult to come by. However, through the 1960s an expanding assortment of

commentators and analysts were documenting impressive expansions in the number of computer

science degree programs and options. Forsythe pointed in this direction when he noted in 1963

that “integrated” programs in computer science had been established in at least a dozen

universities, although the structure and naming of these varied widely (p. 175).150 And as

mentioned in the previous chapter, around this same time Tompkins (1963) identified a roughly

similar number and range of programs.

A more comprehensive survey of university computing center directors conducted in

1963 revealed that 28 of 93 responding North American institutions offered some type of

computer-oriented degree programs, while another 18 were planning such programs (Atchison

and Hamblen, 1964, p. 226). This report also documented wide variations in the naming and

institutional location of these programs, and the authors even stated that the “profusion of degree

programs and names for programs makes it abundantly clear that a precise discipline has not yet

crystallized” (p. 227). Yet the authors also noted the widespread use of the phrase “computer

science,” and the survey data indicated that a large majority of respondents preferred this term as

a moniker for academic programs. Alternatives such as “Information Processing” and

“Information Science” were rated a distant second and third in popularity.151 A 1965 report

provided further evidence for these trends by indicating that more than 15 schools were offering

doctorate degrees in computer-science or related areas, a total of 30 or more schools offered

150 More specifically Forsythe pointed to a number of interdepartmental graduate degree programs,
including “Systems and Communication Sciences” at Carnegie Institute of Technology, the
aforementioned “Computer and Information Sciences” program at the University of Pennsylvania, and a
“Communication Science” option at the University of Michigan. Forsythe also indicated that separate
departments of Numerical Analysis were established at the Universities of Arizona and Wisconsin. At
still other schools, computer science was linked to divisions of applied mathematics (1963, p. 175).
151 Given that this particular survey polled university computer center directors – who tended to have both
closer ties to mathematics departments and stronger sympathies with the emergent field of “computer
science” – it is not entirely surprising that respondents preferred non-engineering program names. Yet in
spite of its popularity, the authors complained that the term “computer science” was not ideal: “It is
certainly true that this term has many shortcomings in appearing to be too machine-oriented but then too
so does the term Association for Computing Machinery fall far short of describing our professional
organization” (Atchison and Hamble, 1964, p. 227).

www.manaraa.com

 186

master’s degrees, and at least 17 had similar options at the baccalaureate level (ACM C3S, 1965,

pp. 544-545).

A report published in 1967 provides additional evidence regarding both the growing

number of computer-oriented degree programs and the increasing popularity of the “computer

science” moniker (Hamblen, 1967). For starters, the report estimated that for the 1964-1965

academic year, about 143 distinct degree programs and options in computer science and related

areas were offered nationwide at the baccalaureate and graduate levels.152 More than 40% (58 of

143) of these were specifically dedicated to Computer Science or Information Science, and many

of these were affiliated with departments of the same name (p. 66). These were impressive

statistics, especially since the first programs of this type were established just five or so years

prior. Computer Science options in Mathematics and Electrical Engineering claimed roughly

another one-third of all programs, with a further respective breakdown of 17% (24 of 143) and

13% (19 of 143). The remaining programs and options were offered in other departments or as

interdisciplinary programs, with titles ranging from “Business Data Processing” to “Systems and

Communication Sciences” (pp. 66-67).

This same report also offered forecasts for 1968-1969. First, the survey pointed to a rapid

potential for expansion in the total number of computer science and related programs, which

were expected to grow from 143 to 226 in the span of just four years (p. 66). Further, dedicated

Computer Science programs were expected to dominate this trend, with survey data suggesting

that as many as 166 new computer science degree programs at the undergraduate and graduate

levels were in active development. The number of computer science and related options in

electrical engineering, on the other hand, was expected to increase from a total of 19 to just 23,

while similar options in mathematics were expected to jump from 24 to 36 (p. 66). While these

data were based only on the planned actions of responding institutions, the trends were

unmistakable. In fact, these data clearly support the argument that much of the momentum of the

computer science movement was being driven not by “top-down” definitional efforts, but rather

by the “bottom-up” development of new academic departments and dedicated degree programs.

152 Note that these data represent the total number of separate degree options, not separate schools. Hence,
a school offering bachelor’s, master’s, and doctoral degrees in computer science would add three to this
total, not one. Unfortunately, the original report does not provide enough original data for a more fine-
grained analysis.

www.manaraa.com

 187

In addition to creating new patterns of disciplinary settlement for computer science, these

departments and programs helped nurture the field’s image as an independent discipline.

Instituting Computer Science – Courses and Curricula

While the growth of computer science departments and programs was a key trend in the

1960s, I have largely sidestepped the content of the associated curricula. Further, published

discussions of computer science and related courses and curricula were sparse, especially in the

late 1950s and early 1960s. This situation started to change rapidly, especially through the efforts

of the Curriculum Committee on Computer Science, or C3S. Originally established as a

subcommittee of the ACM’s Education Committee in 1962, the ACM recognized the C3S as an

independent committee in 1964 under the leadership of mathematician William Atchison

(Atchison, 1985, p. 328; ACM C3S, 1968, p. 152).153

While the early activities of the C3S were primarily centered on organizing panel sessions

at conferences and meetings, the growing prominence of this group was reflected in the April

1964 issue of the CACM, which featured a series of eight short articles on the topic of “Computer

Science Curriculum.” In addition to the aforementioned background piece by Keenan and survey

article by Atchison and Hamblin, six of the papers in the special issue presented detailed

descriptions of various courses that “could form a basis for a computer science curriculum”

(“Computer Science Curriculum,” 1964). And while a comprehensive review of this set of

papers is beyond the scope of my analysis, a brief juxtaposition of two of these pieces provides

important insights regarding the ways in which different actors approached the development of

computer-oriented educational programs.

The two papers in question were focused on the development of a series of courses in the

area of logic, which has long been viewed as a foundational topic for large swaths of work in the

computer field. In fact, it was clear by the 1960s that most computer-oriented educational

programs at the baccalaureate and graduate levels should provide students with some familiarity

with this subject. In outlining a series of logic courses for what he called “the computer

sciences,” Purdue mathematician Robert R. Korfhage took a mathematical and theoretical

153 Atchison held a Ph.D. in mathematics from the University of Illinois, and from 1955 to 1966 he was
affiliated with the Georgia Institute of Technology. His roles at Georgia included head of the school’s
computer center, acting director of the School of Information Science, and professor of Information
Science. In 1966 he became the director of the University of Maryland’s Computer Science Center (Lee,
1995, pp. 46-48).

www.manaraa.com

 188

approach to the topic (1964). His proposed four-course sequence started with Introduction to

Logic and Algorithms, followed by Logical Design, Mathematical Logic, and Computability and

Algorithms. As suggested by these titles, the author’s proposed content for three of the four

courses was primarily oriented toward mathematics and algorithms, while computer design

topics were bracketed off in the separate Logical Design course that the author largely failed to

describe. In fact, he even argued that teaching the “exact physical form” of computer logic

elements was best left to the departments that had the requisite expertise in electronics and

physics (p. 216).

By contrast, David E. Muller of the University of Illinois-Urbana wrote on “The Place of

Logical Design and Switching Theory in the Computer Curriculum” (1964). In his four-course

sequence, Muller emphasized topics such as computer organization, switching theory, logical

design, and system design. The author’s proposal also avoided the term “computer science,” and

it largely framed mathematical logic as a prerequisite topic that was applied and extended in the

proposed course series. As nicely summarized by reviewer Harvey L. Garner of the University of

Michigan, “[t]he courses presented by Prof. Muller form an excellent and well-organized

sequence which places logical design and switching theory in the context of digital computer

engineering” (Garner, 1964, p. 224, my emphasis). However, Garner complained that some of

the more important topics highlighted by Muller – such as switching theory and automata theory

– were too deeply buried in a program ostensibly dedicated to “digital computer engineering.”

While perhaps a fair critique, Garner’s comments hinted at the conflicts of “intellectual

orientation” that divided the more machine- and engineering-oriented proponents of computer

education from those who took mathematics, algorithms, or even information as the field’s

common denominator. This schism was also evident in a special panel presentation on

“Computer Science Curriculum.” Held at the ACM’s national conference in early 1964, the

panelists discussed programs that were proposed or getting underway at the University of

Maryland, Purdue, and Case Institute of Technology. The Computer Sciences program at Purdue

stood at one end of the spectrum of possibilities given that it was described as “heavily

mathematically oriented” – perhaps not surprising since that school’s newly formed Department

of Computer Science was located within a Division of Mathematical Sciences (Conte, 1964).154

154 As explained in the program description, “Computer Sciences as a discipline is more closely related in
methodology and philosophy to mathematics than to any other discipline. This belief is strengthened by

www.manaraa.com

 189

A group at Maryland, on the other hand, was developing a more middle-of-the-road “Computer

Sciences” program that was largely based on mathematical foundations and focused on

algorithms (Schweppe, 1964). However, this program did allow students to select distinct

mathematics, physics, or electronics tracks, and the authors noted that electrical engineers had

contributed to the development of the program (p. L1.1-2).

The program at Case, on the other hand, tilted strongly toward the engineering end of the

spectrum. As indicated in a summary description authored by mathematics professor Richard

Varga (1964), early efforts to develop computer-oriented courses and programs within the

school’s mathematics department were problematic because they demanded that students be

trained as mathematicians. The author therefore argued that “the activities of the computer

technologist at the undergraduate level are far more closely related to, and have more in common

with, the training of engineers” (p. L1.3-1). Emphasizing the value of taking a systems-oriented

approach to educating future computer experts, the report described a program that coupled an

engineering core curriculum with two program options, one dedicated to “computer engineering”

and the other to “numerical methods and programming” (p. L1.3-1). This was one of the first

programs of its type to offer an option that was explicitly termed “computer engineering.”155

As the development of computer science and related curricula gained momentum in

subsequent years, the engineering-oriented curricula presented by Muller and Varga increasingly

looked like an exception in an expanding sea of actual and proposed programs, many of which

were oriented toward mathematics and theory. In another article in the same issue of the CACM,

for example, Forsythe provided a partial sketch of an “An Undergraduate Curriculum in

Numerical Analysis” (1964a) that was largely focused on mathematics and programming. And in

1964, the Committee on the Undergraduate Program in Mathematics (CUPM) of the

Mathematical Association of America (MAA) published a short report titled “Recommendations

on the Undergraduate Mathematics Program for Work in Computing” (Committee on the

Undergraduate Program in Mathematics, 1964). Authored largely by mathematics professors –

including notable figures such as Berkeley’s A. H. Taub – the report insisted that “responsibility

for research and training in Computer Science should be closely linked to mathematics” (p. 2).

the clear evidence that the leaders in research and development in computing today were largely trained
as mathematicians” (Conte, 1964, p. L1.2-1).
155 As outlined in the report description, students pursuing the computer engineering pathway took
courses on electronic circuits, circuit analysis, and digital computer design (Varga, 1964, p. L1.3-1).

www.manaraa.com

 190

Perhaps not surprisingly, the courses and curriculum outlined in the report were mathematically

oriented, and the authors explicitly argued that computer science researchers “must think like

mathematicians” (p. 2).

The ongoing movement of computer science away from the domain of engineering and

“hardware” was also evident in a 1965 report by the ACM C3S titled “An Undergraduate

Program in Computer Science – Preliminary Recommendations” (ACM C3S, 1965). As noted

above, the authors of this report were significantly concerned with defining the field, yet they

also noted “the fact that computer science is now a distinct academic discipline is demonstrated

by the rapidly increasing number of colleges and universities which have established

departments of computer science” (p. 544). Much of the report was dedicated to describing

sixteen courses leading to a proposed undergraduate computer science degree. In most general

terms, the curriculum was oriented toward algorithms, programming, and mathematics, although

topics such as computer organization, logic design, and switching theory were included to

varying extents. The report also noted that an “electronics” option might be offered to students,

yet the authors bracketed off a course on electronics as one of many optional electives for

computer science majors. In an important sense, reports such as this one provided a partial

description of – and prescription for – the disciplinary settlement of computer science.

Another notable development in the educational arena was the aforementioned 1967

Stony Brook conference, where numerous presentations and workshops were focused on

discussing the development graduate-level degree programs in computer science and related

areas. But even more important was the subsequent publication of the C3S’s influential

Curriculum 68 report (ACM C3S, 1968). In contrast to both the committee’s earlier

recommendations and the dominant tone of the Stony Brook conference, the report explained

that debates over the existence of “computer science” were being replaced by discussions about

“what this discipline should be called and what it should include” (p. 153). And with regard to

implementing computer science degree programs, the authors stressed the importance of

establishing “independent academic units” and involving dedicated faculty “who consider

themselves computer scientists” (pp. 166-167). Such statements once again pointed to the

recognized strategic importance of establishing both a distinct identity for computer scientists

and an independent institutional niche for the new field.

www.manaraa.com

 191

Curriculum 68 also provided detailed recommendations for computer science programs

and curricula, and these were largely organized around three major subject areas, namely

information structures and processes, information processing and systems, and methodologies.

The “mathematical sciences” and “physical and information sciences” were also mentioned, but

only as subjects of potential relevance. The report included detailed descriptions and outlines for

22 specific courses, as well as overall curricular recommendations at the undergraduate and

graduate levels. And as Ceruzzi (1989) has noted, the report dispensed with “hardware” courses

almost completely, preferring instead “an algorithmic approach and an emphasis on language

and data structures” (p. 268).

And while perhaps the authors of the report probably did not fully realize it at the time,

the publication of Curriculum 68 was the outcome of a decade-long discipline-building project.

Setting aside questions about the preferred definition and position of computer science, the report

pointed the way toward the continued expansion of the field through ongoing, bottom-up efforts

to develop courses and curricula. The importance of this report for the development of computer

science has been widely recognized by commentators. Yet skeptics and critics continued to raise

potent questions about the discipline-building project of computer science through the 1960s and

beyond, even as the proliferation of computer science departments and programs served as a

potent demonstration of the field’s impressive institutional success. In fact, the following section

turns to the efforts of a growing band of electrical engineers, whose alternative vision for

computer science and its associated educational programs started to gain traction in the latter part

of the 1960s. Yet on the whole, engineering educators reacted rather slowly to the emergence of

computer science. And when they finally did respond, it was increasingly evident that their

agenda was based on a partially distinct image of disciplinarity.

www.manaraa.com

 192

Segue – On the Boundaries of Computer Science and Engineering

In the preceding section, I examined how various actors and groups coalesced around the

discipline building of project of “computer science.” But as IBM’s Frank Beckman noted at the

1967 Stony Brook conference, the “enormous range of intellectual activity in computing” tended

to raise skepticism about such an effort, especially among those who were unfamiliar with the

computer field (Beckman, 1968, p. 45). Yet even insiders expressed concerns about the identity

and position of computer science. Stanley Gill of Imperial College (UK), for instance, noted at

the same 1967 meeting that computer science remained somewhat short on theory (Gill, 1968).

He therefore indicated that “information engineering” was probably a more appropriate

descriptor for the field, and he explained that the appeal of the term “computer science” was

likely linked to both the “glamour” of the word “science” and the less desirable popular

association of engineering with “hardware” (p. 117). And while Gill implicitly lent support to the

science-engineering divide by framing information engineers as “practitioners” and computer

scientists as “theoreticians,” he echoed commentators such as Perlis when he argued that

computer science was neither a branch of electrical engineering nor mathematics.156 In fact, he

asserted that computer science should be viewed as a “new profession, based on a new

discipline” (p. 121). As I discuss in more detail below, this conception of the field clearly

bounded it off from other professions, most notably engineering.

Anthony Oettinger is another important actor in this story, and one might initially suspect

that he favored the development of an independent discipline of computer science. After all, he

followed Forsythe as the President of the ACM from 1966 to 1968, and he held the title of

Professor of Linguistics and Applied Mathematics at Harvard University. Yet in addition to

boasting a Ph.D. in Applied Mathematics from Harvard, Oettinger held an A.B. in Engineering

Sciences and Applied Physics from the same school, and he was a senior member of the IEEE

156 Gill even stated that the central importance of algorithms in computer science provided the field with
“more internal coherence than electrical engineering” (Gill, 1968, p. 120). He also emphasized that
computer science was no more of a “hotch-potch” than electrical engineering, and he snidely added:
“Well, if electrical engineering is looking for a place in the sun, I wish it luck. But don’t let it mess up
computer science in the process” (p. 120). These comments were largely a retort to a talk by electrical
engineering Lotfi Zadeh, who I discuss in substantial detail below.

www.manaraa.com

 193

(“Anthony Oettinger’s Home Page,” 1998).157 Like many before him, Oettinger’s status as a

“hybrid” actor provided him with a unique outlook that potentially put him at odds with some of

his peers. In fact, Oettinger acknowledged in a 1967 talk that “the views I hold personally and

some of the views that I feel that I ought to express, say in my official capacity as president of

the ACM, are not always the same” (1968a, p. 27). Given such tensions, many of Oettinger’s

views on the emergence of computer science were deeply ambivalent, yet also very insightful.

Oettinger’s concerns about the field of “computer science” were evident early in his

Presidential tenure. In a 1966 letter to the ACM membership, for example, he noted that there

were “weaknesses in the position of computer and information science as a new discipline”

(1966b, p. 838). He more specifically pointed to a lack of “reliable descriptive data concerning

the scope of computer science, education, and industry” (p. 838), and he identified a series of

criticisms about the perceived value and necessity of establishing associated departments and

educational programs. Paraphrasing what he described as a persistent “misconception,” Oettinger

added that “[c]omputer science is not a coherent intellectual discipline but rather a heterogeneous

collection of bits and pieces from other disciplines” (p. 839). He went on to urge those

sympathetic with the field to bolster its position by carefully identifying and describing its

unifying themes and core subject matter.

Yet it was increasingly clear that Oettinger was not willing to participate in such a

project. In fact, he delivered two talks in 1967 that revealed his ambivalence toward computer

science. To begin with, he complained that the term “computer science” was something of a

misnomer. “At the very least,” he explained, “the title should be Computer Scientist and

Engineer” (1968, p. 28, author’s emphasis). In line with this remark, Oettinger spent

considerable time discussing how “computing” was related to mathematics, science, and

engineering. For example, he argued in a 1967 talk that the field was a science only to the extent

that mathematics was a science (p. 604). And elsewhere, he noted that adopting a scientific

identity for a large segment of the computer field was often linked to concerns about

respectability and status, even though “much of what we do and a great deal more of what we

should be doing and encouraging our students to do is, in fact, the practice of a brand of

engineering” (1968, p. 28). As suggested by Oettinger’s remarks, the proponents of computer

157 In fact, a biographical sketch of Oettinger that was published in 1966 indicated that he was a member
of the IEEE since 1947, but it is not clear whether he was a member of the AIEE and/or the IRE before
the two groups merged (Oettinger, 1966a).

www.manaraa.com

 194

science generally preferred to adopt a scientific rather than engineering identity. This was not

entirely surprising, given that many of these actors had backgrounds or academic appointments

in mathematics or the physical sciences. Further, the cultural cachet of science was significantly

higher than that of engineering, especially by the 1960s, while the formative image of computer

science as an independent field made it look more like an aspiring scientific discipline rather

than a branch of the engineering profession.

However, Oettinger nonetheless insisted on framing the computing field as a broad

spectrum of activity, with mathematics and engineering largely defining its poles. “Whatever it

[computer science] is,” Oettinger explained, “on the one hand it has components of the purest of

mathematics and on the other hand of the dirtiest of engineering” (1967, p. 605). Touching on

similar themes in another talk, he worked to put a positive spin on this characterization:

We, as a profession, as a group, happen to have been born at the time when, in

many other areas, science and technology have just become fused. And so, rather

than bemoaning the view that somehow we are neither fish nor fowl and thereby

befoul the purities of science with the dirt of engineering and contaminate healthy

robust engineering with pallid theoretical considerations, we should think of

ourselves as the vanguard of the new outlook (1968, p. 34).

Such remarks paralleled the remarks of commentators such as Slamecka, who described

“information science and engineering” as a “metascience” that united science and engineering.

Yet as suggested by Oettinger’s clever characterization, significant social, intellectual, and even

cultural barriers stood in the way of realizing this ambitious vision for a combined field of

computer science and engineering.

Oettinger further parted ways with many of his colleagues by once again questioning the

value of establishing departments of computer science. In fact, he argued that the ongoing

proliferation of such departments was largely the result of disciplinary politics and “rebellion.”158

As Oettinger explained:

[I]n most universities computer people have had to rebel. They have had to rebel

against archaic engineering schools that have just barely forgotten rotating

158 Somewhat ironically, Finerman noted at the 1967 Stony Brook conference that many of the objections
put forward by skeptics of computer science resulted from “political rather than intellectual factors”
(1968, p. 196). As suggested by the remarks of Oettinger and Finerman, complaints about “political”
motivations came from all sides of this story.

www.manaraa.com

 195

machinery and maybe will tolerate a transistor or an integrated circuit but that

certainly do not see that a machine … needs software to run. They have also had

to get out of the clutches of mathematics departments that regard anything that is

not completely pure, rigorous, and formal as some form of depravity (1967, p.

606).

As suggested by such remarks, the rebellion described by Oettinger came with many potentially

negative consequences. More specifically, it was cutting off the field’s abstract roots in

mathematics, as well as its more pragmatic connections with physical machines, design methods,

and pragmatic engineering criteria.

Further, Oettinger suggested that engineering departments were losing a rapidly growing

sub-branch of engineering, while mathematics departments were losing the many students who

were forced to seek computer-oriented degrees elsewhere. The larger message was clear: the

secession of computer science was a negative development for all of the involved disciplines.

Further, Oettinger suggested that working to redress this fragmentation might point toward better

computer technologies, especially by both improving the “complementarity” of hardware and

software development and linking design with intended applications (1967). However, the author

placed particular emphasis on the value of an engineering outlook, and he enthusiastically

praised the emergence of the concept of “software engineering.”159 Oettinger also argued that

large, complex programming projects were best viewed as “major engineering problems” (1967,

p. 606), and elsewhere he noted that engineering should be making moves into the domain

known as computer science.

Oettinger’s views were bold, especially given that he was delivering them to audiences

that were primarily comprised of mathematicians and self-identified computer scientists. Yet

despite his numerous insights and artful presentation, Oettinger’s ambivalence limited his ability

– and probably also his inclination – to effect change. In pragmatic terms, he concluded: “I am

forced to split my mind and say that it is an intellectual mistake to have departments of computer

science, while I believe there is no real tactical alternative to having them” (1968, p. 28). Yet in

somewhat more idealistic terms, he argued that computer people should work to “infiltrate both

159 This was one of the first times that the term “software engineering” appeared in publication. Just a few
months prior, an employment ad from the Foxboro company sought “software engineers” (Foxboro,
1967). As I discuss in more detail below, software engineering emerged as an increasingly important site
of negotiation for the overlapping interests of computer scientists and engineers, especially in the 1970s.

www.manaraa.com

 196

departments [of mathematics and electrical engineering] and take them over. From a dreamy

missionary point of view, that’s the goal. Meanwhile, we are lucky if we survive in their

presence” (p. 35). In the end, however, it was clear that Oettinger – suspended as he was between

the ideal and the actual – was largely content to “watch from the sidelines” (p. 34).

In subsequent years, other prominent actors such as Richard W. Hamming raised similar

concerns. A mathematician, Bell Labs researchers, and former ACM President, Hamming was a

well-known figure in the computer field by the late 1960s. In fact, he received the ACM’s

prestigious Turing Award in 1968, and he devoted much of his award lecture to arguing that

“more than the usual engineering flavor be given to computer science” (1969, p. 3).160 Building

this argument, Hamming made an “arbitrary distinction” between science and engineering by

indicating that the former was focused on “what is possible,” while the latter was concerned with

“choosing, from among the many possible ways, one that meets a number of often poorly stated

economic and practical objectives” (p. 5, author’s emphasis). Following this line of reasoning, he

suggested that “computer engineering” was probably a more accurate label for the field than

“computer science,” although he cautioned that he was not advocating such a name change (p.

5). However, Hamming followed Oettinger by promoting the view that “training in software be

given a more practical, engineering flavor” (p. 10). He also critiqued computer science and its

educational program for being too strongly oriented toward mathematics.

In an important sense, commentators such as Oettinger and Hamming were developing

critiques of computer science that were primarily aimed at the field’s insiders. In fact, many of

their views were outlined in ACM publications, which was increasingly a de facto locus of

activity for the proponents of both computer science generally and computer science education

specifically. But in calling for the injection of more engineering flavor into computer science,

these authors were ultimately either ambivalent or undecided about the position of computer

science in a larger disciplinary milieu. Further, they seemed to lack an awareness of the partially

distinct images of disciplinarity that tended to prevail in science versus engineering.

A growing cadre of electrical engineers, on the other hand, entered this debate beginning

in the mid 1960s. And in contrast to Oettinger’s idealistic suggestion that computer people

should “infiltrate” electrical engineering and take it over, these engineers were working to

160 In the same year that he won the ACM’s Turing Award, Hamming was honored as an IEEE Fellow.
These honors hint at the extent to which Hamming’s work crossed the boundaries between mathematics,
science, and engineering.

www.manaraa.com

 197

transform their own field from the inside out. In fact, they initially asserted that they had both a

historical right and a contemporary responsibility to develop computer-oriented programs and

courses, including in the domain of “computer science.” And perhaps not surprisingly, the

contentious nature of these types of claims led these actors to make key adjustments in their

agendas and strategies.

www.manaraa.com

 198

Part II – Shifting Disciplinary Images: From Computer Science to Computer Engineering in

Electrical Engineering

Bringing Computer Science Into the Fold: Lotfi Zadeh at Berkeley and Beyond

As discussed in Chapter 2, in a 1950 article Lotfi Zadeh urged his electrical engineering

colleagues to develop the necessary mathematical and theoretical expertise so that they could

take leadership roles in the design of electronic computing devices, or “thinking machines.” Yet

for more than a decade after this piece was published, Zadeh offered little in the way of follow-

up commentary regarding the position of electrical engineers relative to computers and

computing. Indeed, he was likely occupied with his intense research and teaching activities at

Columbia University, which led to his rapid ascension to full professor in 1957. His career

trajectory took another important turn in 1959, when he was lured to UC Berkeley’s esteemed

Department of Electrical Engineering (McNeill and Freiberger, 1993, p. 22). After taking over as

chair of the department in 1963, Zadeh’s work started to move in a number of important

directions. In terms of research, his interests in decision analysis and system theory led him to

establish important foundations for the field now known as “fuzzy logic” or “fuzzy theory.”161 In

fact, this particular area of research remains one of Zadeh’s main claims to historical fame.

But as a department head, Zadeh also found himself surrounded by debates about both

the future of electrical engineering education and the rise of “the computer sciences.” Some of

the first evidence for Zadeh’s engagement with these issues can be traced to changes in his own

academic unit. In 1964, for example, a new electrical engineering curriculum was adopted at

Berkeley that offered undergraduate students four distinct program options: Computer Science;

Electronics, Fields, and Plasmas; Systems, Information, and Control; and General Electrical

Engineering (Zadeh, 1967, p. 9). By 1965 the name of the department was changed from

Electrical Engineering to Electrical Engineering and Computer Science (EECS), and in a 1967

161 A 1965 article by Zadeh titled “Fuzzy Sets” helped establish him as a “founder” in the emerging field
of fuzzy logic (Zadeh, 1965a). For a biography of Zadeh that is largely focused on this aspect of his
career, see McNeill and Freiberger (1993). Seising (2005), on the other hand, provides a nice overview of
the historical development of Zadeh’s work in area of fuzzy logic, emphasizing “that the genesis of fuzzy
sets is not a story of basic research in set theory or symbolic logic or philosophy of mathematics but it is a
story of fundamental research of a mathematical oriented electrical engineer and system theorist” (p. 5).
Seising’s characterization of Zadeh as a mathematicially-oriented engineer also helps explain Zadeh’s
strong feelings about the close relation of computing and engineering.

www.manaraa.com

 199

presentation Zadeh boasted that total student enrollment in the department’s computer science

courses had risen from 150 in 1963-64 to more than 1900 in 1966-67 (Karp, 2004, para. 3;

Zadeh, 1967, p. 10). While these developments suggested that Zadeh and his colleagues were

working to somehow meld computer science and electrical engineering at Berkeley, more details

regarding Zadeh’s agenda and outlook can be gleaned from his writings during this time period.

The first article of relevance was published in both the IEEE International Convention

Record and the IEEE Transactions on Education (Zadeh, 1965b; 1965c). Titled “Electrical

Engineering at the Crossroads,” it called on electrical engineers to stake out large swaths of the

computer field as their own. Zadeh started by explaining that the “health and vitality” of

electrical engineering was threatened by a number of pressing challenges. More specifically, he

indicated that “[b]y far the most serious of these problems centers on the relationship between

computer sciences and electrical engineering” (1965c, p. 30). After emphasizing the key role

played by electrical engineers in the history of computing, the author indicated that electrical

engineering departments were responding slowly to rapidly expanding computer use, rising

demand for computer scientists and engineers, and the rise of the “computer sciences” (pp. 30-

31).162 Given these trends, the article indicated that many campuses were facing strong pressure

to establish computer science programs and departments.163

In order to respond to such pressures, Zadeh proposed that the field of electrical

engineering should bring “the development of computer sciences within its fold” (p. 31). Shoring

up this argument, he added that electrical engineering both engaged with many topics relevant to

the computer sciences and also had valuable resources to offer, such as manpower and facilities.

162 In historical terms, Zadeh discussed how electrical engineers were pivotal in the early development of
machine computation, including at the University of Pennsylvania and MIT. He also noted that a number
of forward-looking electrical engineering departments at the University of Michigan, Carnegie Tech, and
the University of Pennsylvania had set up special interdisciplinary curricula in communication and
computer sciences. Putting forward a rather machine-centric view of the field, Zadeh added: “Historically,
the technology of machine computation has been and still is largely within the province of electrical
engineering, since large scale machine computers are primarily electronic devices” (1965cm p. 30). In
this same article, Zadeh also noted that electrical engineers far outnumbered mathematicians in both the
ACM and IEEE Computer Group (p. 31). The accuracy of this particular claim is not clear.
163 Zadeh pointed to the aforementioned 1964 CUPM report as evidence for these pressures, although he
steadfastly resisted the report’s assertion that the field of computer science should retain close academic
ties to mathematics. As Zadeh explained, many of the subjects typically associated with computer science
were frequently offered by electrical engineering rather than mathematics departments (1965c, pp. 30-31).
More specifically, he asserted that five of the eight elective areas identified in the CUPM report actually
fell within the province of electrical engineering.

www.manaraa.com

 200

Zadeh also expressed considerable anxiety regarding the possible failure of such an agenda, and

he explained that ongoing efforts to establish independent computer science departments “would

be disastrous for electrical engineering in the long run, and would not necessarily be in the best

interests of computer science” (p. 31). The author therefore concluded that “electrical

engineering departments can provide a home for computer sciences within their domain and thus

assume a leading role in the vital and rapidly growing field of engineering and scientific activity”

(p. 33). Per Zadeh, bringing computer science into electrical engineering was an advantageous

proposition for both fields.

Yet the article also acknowledged that this process would likely change the identity and

orientation of electrical engineering. In fact, Zadeh tentatively argued that it was time to abandon

the view of electrical engineering as a “single unified field of engineering,” and he supported this

claim by describing how Berkeley’s EE curriculum had been split into four distinct “programs”

(pp. 31-33).164 Zadeh went on to boldy suggest that the term “electrical engineering” might be

replaced by a new name that emphasized the orientation of the field toward electronics and

information processing (1965b, p. 50; 1965c, p. 33). Many of his suggestions also replaced the

term “engineering” with “science.” 165 In addition to arguing that an alternate name would more

accurately reflect the contemporary image and span of the field, he claimed that it would help

“retain the vitality which it still has but is in danger of losing through inaction and lack of

foresight” (1965c, p. 33). As suggested by this overview, Zadeh’s agenda potentially put him at

odds with many actors and groups, including both the proponents of separate computer science

departments and other factions of the electrical engineering field.

164 In the same journal issue, engineer Robert M. Saunders of the University of California Irvine followed
a similar line of reasoning when he indicated that “electrical engineering as a separate and distinct
discipline may not exist in 1975” (1965, p. 33). Yet in contrast to Zadeh – who emphasized the links
between electrical engineering, electronics, and the computer and information sciences – Saunders noted
that future electrical engineering faculties might be clustered in areas such as engineering science,
materials engineering, guidance and control, and applied physics (pp. 33-34). While perhaps overstated,
these authors’ remarks revealed that the ongoing transformation of electrical engineering was highly
probable, especially in the midst of ongoing changes in the technological and disciplinary landscape.
165 The names proposed by the author included: Electronic and Information Sciences; Electronic and
Information Engineering; Electronic Engineering and Information Sciences; Electronic, Systems, and
Communication Sciences; and Electronic, Control and Information Sciences (1965b, p. 50). These
suggestions reveal that Zadeh was unsure of whether to frame the field as linked to engineering, science,
or some combination of the two. It is also worth noting that the author favored terms such as
“information” over popular alternatives such as “computers” or “computing.”

www.manaraa.com

 201

In fact, Zadeh’s reputation clearly preceded him when he addressed these and other issues

at the aforementioned Stony Brook conference in 1967 (Zadeh, 1968a). In a talk titled “The

Dilemma of Computer Sciences,” Zadeh started by suggesting that one of the conference chairs

had introduced him to the audience as a “progressive conservative” (p. 61). He also went on to

acknowledge that “[p]robably most of you anticipate that I will take a militant stand in favor of

developing computer sciences within electrical engineering departments, rather than within

separate computer science departments” (p. 61). As suggested by these remarks, Zadeh was

viewed by many as progressive with respect to reforming electrical engineering education, yet

conservative because it was assumed that he opposed the establishment of independent

departments of computer science.

To be sure, Zadeh was in a difficult position. Yet the politically savvy Zadeh responded

to the conference chair’s characterization by indicating “there is no universal answer to the

question of what is the best organizational structure for instruction and research in computer

sciences in an academic environment” (p. 61). Yet Zadeh was willing to speak about the

disciplinary position of computer science in more abstract and generalized terms, and he placed

particular emphasis on discussing how the emergent field was related to both mathematics and

electrical engineering. With regard to the former, he followed prior commentators such as Gorn

and Keenan when he noted that the close relationship between mathematics and computer

science stemmed largely from “the intrinsically abstract nature of the mental attitudes of the

computer scientist and his lack of preoccupation with the physical aspects of signals and

systems” (p. 63).

Turning to the relation of computer science and electrical engineering, Zadeh reiterated

an important historical claim: “[E]lectrical engineering, by virtue of its long standing and deep

involvement in information processing technology, has vital concern not only with the use but,

more important, with the conception, design and construction of digital computers” (p. 64). He

went on to identify a number of specific subjects and topics that were related to both electrical

engineering and computer technology, and he noted that jurisdictional conflicts over computer

science were significantly linked to overlapping concerns in the area of “information processing”

(p. 64). And while he repeatedly emphasized that there was no “single formula” or “universal

answer” to such conflicts, he emphasized that electrical engineering departments had a

“responsibility” for providing their students with training in “digital information processing and

www.manaraa.com

 202

the computer sciences,” especially in light of growing industry demand for expert workers in

these areas (p. 66). This was an important line of argument, as it helped frame the efforts of

electrical engineers as motivated by historical precedent and professional responsibilities, rather

than by ill-defined or misguided “political” motivations.

Toward the end of his talk, Zadeh also delivered a concise summary of his agenda for

electrical engineering departments:

 [E]ither by themselves or in cooperation with computer science departments,

electrical engineering departments should be offering broad programs in computer

sciences and information systems, covering such areas as hardware, logical design

and machine organization, programming languages, automata theory, formal

languages and artificial intelligence (p. 66).

In essence, Zadeh was tentatively mapping out a disciplinary settlement for electrical

engineering departments in the domain of computing. He also went on to emphasize that

affiliated educational programs should be oriented toward the needs of “information systems

designers rather than users,” and he added that gaining competence in computer science should

be a ready possibility for electrical engineering students. Even more generally, Zadeh claimed

that it was essential for electrical engineering and computer science departments to “learn to live

with one another” and work as “partners” in the training of computer scientists and engineers (p.

66). He concluded his talk by noting that training for tens of thousands of computer scientists

and engineers was needed in subsequent years, which suggested that there was plenty of demand

to support a variety of computer-oriented educational programs, no matter their institutional or

disciplinary location. Hence, Zadeh’s claims suggested that computer science and electrical

engineering might successfully coexist in the context of the academy, even in the midst of their

overlapping and interpenetrating settlements in the domains of computing theory and computer

technology. And indeed, disciplinary theorists such as Abbott have convincingly argued that this

type of outcome is not only possible, but also quite common.

In summary, some of the earliest efforts to stake out large swaths of computing as a

province of engineering can be traced back to the early and mid-1950s. Zadeh’s remarks provide

evidence for a revitalization of this movement that was both prompted by the rise of computer

science and principally focused on the academic sphere. Below, I discuss how this movement

expanded from the mid 1960s onward. Before doing so, however, it is worth reviewing a 1968

www.manaraa.com

 203

paper by Zadeh that reveals some of the key challenges and tensions that came with trying to

bring computer science into electrical engineering. More specifically, my analysis suggests that

engineers such as Zadeh were working with an image of computer science that substantially

differed from how the discipline was viewed by mathematicians and computer scientists.

Table 5.1 – Containment Table for Computer Science
(Zadeh, 1968b, p. 913)

Subject

Degree of
Containment
in CS

Programming languages
Computer design and organization
Data Structures
Models of computation
Operating systems
Programming systems
Formal languages and grammars
Computational linguistics
Automata theory
Finite-state systems
Theory of algorithms
Discrete mathematics
Mathematical logic
Combinatorics and graph theory
Dynamic programming
Mathematical programming
Numerical methods
Switching theory
Analog and hybrid computers
Computer graphics
Digital devices and circuits
Artificial intelligence and heuristic programming
Information retrieval
Information theory and coding
Pattern recognition and learning systems

1
1
1
1
1
1
0.9
0.8
0.8
0.8
0.9
0.8
0.6
0.8
0.7
0.7
0.8
0.8
0.7
0.7
0.7
0.9
0.7
0.6
0.6

www.manaraa.com

 204

Engineering Images of Computer Science: Discipline, Department, and/or Program?

Zadeh authored a follow-up article in 1968 that revisited and expanded on many of the

issues raised in his prior writings (Zadeh, 1968b). Suggestively titled “Computer Science as a

Discipline” and published in the Journal of Engineering Education, this particular piece also

provides evidence for how Zadeh’s participation in the discipline-building project of computer

science was inflected by his own background and interests. Noting ongoing disagreements over

the definition of computer science, Zadeh explicitly agreed with the efforts of the ACM C3S to

frame the proposed discipline of computer science as largely concerned with “information” (p.

913). Yet he indicated that these types of generalizations failed to adequately delineate the field’s

boundaries. He therefore used his own concept of “fuzzy sets” to develop a “containment table”

for the major subjects of computer science, as shown in Table 5.1.166

The author’s unique approach leads us to a number of important insights. To begin with,

his list of major subject areas did not depart significantly from the courses and topics identified

and described in the ACM’s preliminary curricular recommendations, suggesting that Zadeh’s

understanding of the general scope of computer science was not all that radical or controversial.

Yet unlike many other commentators, Zadeh developed a more “bottom-up” characterization of

the field that was based on identifying a large number of more specific and well-established

constituent subject areas.167 Unlike many of the aforementioned attempts to define computer

science in a top-down manner, this “fuzzy” approach nicely resonates with a more settlement-

based model of discipline formation and development, where a given field may have associations

of varying strength with a wide-range of epistemological and technological domains.

Yet in addition to providing summary descriptions for each of the subject areas listed in

this containment table, Zadeh identified and discussed a related series of controversial questions:

Is computer science a discipline?

Is it a branch of science or engineering?

What is its relation to mathematics?

166 As Zadeh explained, “[L]et us regard computer science as a name for a fuzzy set of subjects and
attempt to concretize its meaning by associating with various subjects their respective degrees of
containment (ranging from 0 to 1) in the fuzzy set of computer science” (1968b, p. 913). He also noted
that the numerical values listed in the containment table were only “rough measures of inclusion, with no
claims to universality or long-term validity” (p. 914).
167 This approach also conveniently allowed Zadeh to introduce and promote his theoretical apparatus of
“fuzzy sets” to an audience comprised largely of engineers and engineering educators.

www.manaraa.com

 205

What is its relation to electrical engineering?

Should the instruction and research in computer science be centered in an independent

academic unit or should it be conducted within an established academic department?

(p. 915).

The author pragmatically waved off the first issue by claiming that the growth and popularity of

the field – especially in the educational arena – were ultimately more important long-term

measures of success for computer science. Like many before him, Zadeh clearly recognized that

achieving disciplinary legitimacy and recognition is often a grassroots process involving the

establishment of courses, departments, and degree programs. Zadeh also noted two possible

futures for computer science. On the one hand, he explained that the “core” subjects of the field

provided it with a distinct “flavor and identity,” and he noted that computer science might evolve

into “a big and influential field in its own right” (p. 915). This outcome was probably a source of

anxiety for engineers such as Zadeh, yet he also noted that the heterogeneity and rapid growth of

computer science might instead cause the field to splinter and fragment.

As in his previous writings, Zadeh also discussed the position of computer science in a

larger disciplinary milieu, and he noted ongoing efforts to link the field to mathematics generally

and mathematics departments specifically. Yet Zadeh placed considerable emphasis on how

electrical engineers were reacting to the expansion of computer science. In fact, he used an

undated and unpublished Bell Labs memorandum titled “Engineering and Computing – A Holy

Alliance” to speak for the many engineers who were highly skeptical of the emergent field. It is

worth reproducing the lengthy passage from this memo – which was originally authored by

engineers E. E. David, Jr. and Franklin F. Kuo – that Zadeh cited in his paper:

There is, in fact, very little classical science behind computation today. On one

hand there are the circuits, memories and systems which we call hardware which

we associate with electrical engineering. On the other, there is computer software

based upon linguistics, logic, and mathematics. There is “science” behind

computation only in the same sense that information and detection theory behind

communication can be called “science.” Regardless of terminology, there is a real

question of an appropriate philosophy for computing efforts in universities and

research institutions. We believe that this philosophy should be rooted in

engineering (quoted in Zadeh, pp. 915-916, author’s emphasis).

www.manaraa.com

 206

To begin with, this passage once more revealed the extent to which the dualistic discourse of

“hardware” and “software” had become a pervasive and convenient shorthand for the computer

field’s major sociotechnical boundaries. Further, this memo suggested that engineers were

willing to acknowledge the mathematical dimensions of computing, especially in the realm of

software. However, they steadfastly resisted the idea that work in the field should be primarily

framed as scientific. In fact, they likely viewed their own work as no less scientific than the

activities of the so-called computer scientists, especially given that these engineers hailed from

an organization well known for its cutting-edge research and development activities.

Zadeh provided little additional commentary on the preceding passage, and his own

views on “computer science as a discipline” suggest that he was somewhat more sympathetic

with a scientific view of the emergent field. However, in a subsequent passage Zadeh did add

that computer science had a “split personality” due to its relation to both mathematics and

engineering. And while he noted that a similar characterization had led authors such as Perlis to

insist that computer science was an independent field, Zadeh reiterated his view that there was a

place for computer science in electrical engineering. He also stressed the importance of

cooperation between competing departments, especially as electrical engineering education

shifted toward digital techniques and participated in the training of large numbers of “digital

system designers” and “computer scientists” (p. 916).

In even more general terms, participating in the discipline-building project of computer

science may look like a particularly bold move for Zadeh, as it implicitly challenged the control

that mathematicians and other non-engineers wielded over the emergent field. But Zadeh seemed

to have the right kind of background to lead such a charge, especially given that much of his own

work was highly mathematical, theoretical, and linked to the “engineering sciences.” In a more

recent interview, for instance, Zadeh’s ruminations on his time as a faculty member at Columbia

and Berkeley revealed the extent to which he was a long-time proponent of a mathematically

intense flavor of engineering. As Zadeh explained, “I felt that my mission was that of teaching

whatever subject I was teaching in a precise and rigorous fashion. In other words: to make

engineering as close to mathematics as possible” (Zadeh, 2001). In light of such remarks, it is not

entirely surprising that Zadeh saw electrical engineering as a natural home for computer science.

It is also worth highlighting Zadeh’s ties with MIT’s electrical engineering department,

which had a long reputation for its orientation toward mathematics and the engineering sciences.

www.manaraa.com

 207

In fact, Zadeh used this department as something of an exemplar in his 1967 talk at Stony Brook.

Noting the long and influential history of MIT electrical engineers in the “theory and practice of

information processing in all its forms” (1968a, p. 65), Zadeh queried, “Would it make sense to

set up a separate Department of Computer Sciences outside of Electrical Engineering in a case

like that?” (p. 65). Answering in the negative, Zadeh turned to a suggestive metaphor of the

physical body:

Clearly, this could be done only by amputating a major part of the Electrical

Engineering Department and combining it with parts of other departments. But

where then would the cut in the body of electrical engineering be made? What

professors in circuit theory, information theory, control systems, optimization

techniques, pattern recognition and related areas be moved out of electrical

engineering, or left behind? (p. 65)

While certainly dramatic, framing the issue in this matter revealed the stakes that were in play in

debates over the position of computer science. For actors such as Zadeh, electrical engineering,

computers, and computing were thoroughly intertwined, and driving a wedge between these

domains amounted to an unnecessary act of violence against a unitary disciplinary body. Yet

beginning in the mid 1960s and through the 1970s, even MIT was grappling with questions about

the appropriate disciplinary position of computer science, as well as its relation to electrical

engineering (Wildes and Lindgren, 1985, pp. 359-361; Aspray, 2000, pp. 49-51).

Further, it may seem that Zadeh’s efforts to define computer science as a discipline to

some extent undermined his argument that the field should remain a province of electrical

engineering. And indeed, the preceding analysis reveals that many of the actors who similarly

discussed the development of “computer science as a discipline” concluded that independent

departments were crucial for the field’s growth and success. However, I contend that engineers

such as Zadeh were working with an image of disciplinarity that was at least partially divergent

from the perspective held by many self-identified computer scientists. More specifically,

disciplines in the context of engineering education have historically provided a way of

organizing research and education, yet these divisions are rarely allowed to threaten the image of

engineering as a single professional domain. Hence, it was not difficult for engineers such as

Zadeh to conceptualize computer science as one engineering sub-discipline among many, but

only as long as the field maintained the subservient identity of an “engineering science.”

www.manaraa.com

 208

Yet there were many other actors who preferred to view computer science as a truly

independent scientific discipline, unfettered from the potentially competing or even contradictory

interests and commitments of other disciplines or professions. In fact, the influence of this latter

group was evident at Berkeley, where Zadeh and his colleagues in electrical engineering were

unable to block a partial secession of computer science faculty. As Zadeh was forced to admit in

a 1967 talk, a new Department of Computer Science was being established in Berkeley’s College

of Letters and Science (1968a, p. 62). Per Zadeh, such a schism might be appropriate at a school

such as Berkeley, which could “afford to have separate centers of activity in different colleges

with different orientations” (p. 62). The new department was officially established in 1968, yet

within a few years the situation was deemed unsustainable. Following much heated discussion

and debate, the Department was moved back to the College of Engineering in 1973, transformed

into a partially autonomous Computer Science Division within the EECS Department (“EECS

History,” n.d.). As many commentators have recognized, the events at Berkeley were watched

closely, especially by faculty and administrators at other institutions that were similarly

grappling with questions about both the identity of computer science as a discipline and its

preferred position in the structure of the academy.168

Zadeh also played an influential role behind the scenes as a parallel scenario played out at

the University of Pennsylvania. As the 1960s progressed, prominent faculty members such as the

aforementioned Gorn and Carr were pushing for the establishment of a Department of Computer

and Information Science at the school. According to Aspray, the realization of such a department

looked increasingly likely by 1966, but was stymied at the last minute by John Brainerd, who at

the time was serving as head of the Moore School of Electrical Engineering. As Aspray describes

it, “Brainerd was generally supportive of computer science, for example, having been in favor of

the hirings of Gorn and Carr – but only to the extent that computer science did not harm

electrical engineering” (2000, p. 64). Further, Aspray explains that it was Zadeh who was

instrumental in convincing Brainerd “of the benefits to electrical engineering of keeping

computer science within his domain” (p. 64). A separate department of CIS was finally

established at Penn in 1970, although it remained within the confines of the Moore School (p.

64). The compromises worked out at Berkeley and Penn were therefore quite similar in the end,

168 As COSINE member Edward J. McCluskey explained in recent correspondence, “there were all these
wars going on at universities for control of computer, quote computer science. … [T]he one that I think
had the highest visibility was Berkeley” (McCluskey, 2005).

www.manaraa.com

 209

even if reached by different pathways. And as these schisms played out at these and other

institutions, many were looking to the leaders of electrical engineering for further insight and

inspiration. As I discuss in the following sections, the activities of the COSINE Committee were

designed to provide some of this support and guidance.

An Introduction to the COSINE Committee: Historical Origins and Trajectory

While I have placed considerable emphasis on Zadeh’s role in this historical account, he

was but one important player in a larger movement that gained significant momentum in the mid

and late 1960s. In fact, Zadeh’s concerns about both the future of electrical engineering and its

relation to computer science were shared with many of his colleagues, including Mac Van

Valkenburg. Zadeh and Van Valkenburg’s relationship can be traced back to the 1940s at MIT,

with both men earning masters degrees in electrical engineering in 1946 (McNeill and

Freiberger, 1993, p. 21; Zadeh, 1998; VanValkenburg, 1972, p. 246). Van Valkenburg also

worked in the Radiation Laboratory and Research Laboratory of Electronics at MIT, and

following graduation in 1946 he assumed instructor and then faculty positions at the University

of Utah (Moone, 2002). He took leave to pursue a Ph.D. at Stanford, which he completed in

1952, and in 1955 he joined the Electrical Engineering faculty at the University of Illinois,

Urbana-Champaign (Moone, 2002). Through the 1960s Van Valkenburg was an increasingly

well-known engineering educator and textbook writer. And like Zadeh, he was also very active

in the field of system theory.169

169 In fact, Van Valkenburg helped organize the first Allerton Conference on Circuits and Systems in
1963. This event quickly grew to become one of the foremost conferences in the field of system theory
(Moone, 2002). In the context of electrical engineering, system theory is generally concerned with the
modeling and design of complex electrical or electronic systems, often with a strong theoretical and
mathematical bent. It is also worth noting that many actors framed system theory as an emergent field or
discipline. As Zadeh explained in 1963, “It is not sufficient, however, to put the label of ‘system theory’
on an aggregation of parts of several well-established disciplines. To acquire a distinct identity, system
theory must develop its own body of concepts, problems, and techniques” (Cruz, 1963, p. 154). Yet
despite such discipline-building rhetoric, there is little evidence that commentators such as Zadeh were
inclined to promote the establishment of independent departments or degree programs in system theory.
Hence, I claim that these authors conceptualized system theory as another sub-discipline of engineering,
in a manner that was similar to how they viewed the field of computer science.

www.manaraa.com

 210

In early 1965, Zadeh and Van Valkenburg invited a number of electrical engineering

department heads to a meeting at Berkeley.170 According to Martha Sloan – an electrical

engineering educator who both served on the COSINE Committee and evaluated the group’s

impact as a part of her dissertation research – “[t]he meeting was intended to reassess the

relationships between computer science and electrical engineering and to study the role of

electrical engineering departments in training computer scientists and engineers” (Sloan, 1973, p.

22). The participants, who included numerous department heads and various representatives of

industry and government agencies, concluded that electrical engineering departments should lead

this type of training. The principle outcome of this meeting was the formal establishment of the

“Computer Sciences in Electrical Engineering” or “COSINE” Committee. As suggested by its

name, the committee’s identity and early agenda closely followed Zadeh’s views on bringing the

computer sciences “within the fold” of electrical engineering.

Members of the newly formed committee met at the annual meeting of the American

Society for Engineering Education (ASEE) in June of 1965, and they received initial financial

support from the Commission on Engineering Education of the National Academy of

Engineering (NAE) (Sloan, 1973, p. 22). Later in 1965, the COSINE Committee – operating

under the auspices of the Committee on Engineering Education – submitted a proposal to the

National Science Foundation (NSF) for two additional years of funding for their activities

(Huggins, 1969, p. 61). As suggested by these developments, the committee was operating in

close coordination with the NAE, which itself was spun off from the National Academy of

Sciences in 1964 as a private, independent, non-profit advisory group. The initial proposal was

approved, and NSF support for the COSINE Committee officially commenced in July of 1966

(Committee on Computer Sciences in Electrical Engineering, 1968, p. 2). In 1968 and 1971, the

group submitted successful proposals for continuations of NSF support (Sloan, 1972, pp. 23-24).

The COSINE Committee was active from 1965 to 1972, or a span of about eight years.

The group spearheaded an array of activities during this time period, including on-site visits to

universities, the organization of ten workshops and summer conferences and five EE chairmen’s

meetings, and the publication of 11 major reports. The leaders of COSINE also published

bulletins, letters, and articles related to their efforts, and by 1970 the group was increasingly

170 As evidenced by one account that was published a few years after the establishment of the COSINE
Committee, Zadeh and Van Valkenburg were quickly recognized as the so-called “fathers” of the group
(Huggins, 1968, p. 60).

www.manaraa.com

 211

focused on assessing both its own impact and other relevant trends in electrical engineering.

According to Sloan, COSINE was composed of 14 core members, although only half of these

were involved through the entire life of the committee (1972, p. 23). A total of 11 committee

members held university appointments, and the remaining 3 were primarily affiliated with

industry. The credentials of the group were also impressive. As noted by Sloan in her 1974 report

on the impact of the group, “The committee included six current or former department chairmen,

three members of the National Academy of Engineering, several IEEE Fellows, and authors of

several texts” (p. 180). In addition, a total of more than 30 individuals – including, at one time or

another, all of the core members – served on the various “task forces” that developed most of the

COSINE reports.171

The group also maintained a working relationship with the ACM’s the Curriculum

Committee on Computer Science (C3S), especially in the late 1960s. Edward J. McCluskey, for

example, was a member of both COSINE and the ACM’s C3S, and he delivered a presentation

on “The ACM- C3S Curriculum” at the second COSINE-sponsored meeting of department

heads, held in 1967 at Princeton University. McCluskey started his talk with the wry observation

that “[i]t has been suggested that not everyone here is necessarily familiar with the C3S

abbreviation; perhaps even the ACM abbreviation may be strange” (1967, p. 6). In addition to

describing both the ACM and its efforts in the area of curriculum development, McCluskey

explained that the C3S was interested in the perspectives of engineers, and he indicated that the

ACM recommendations could provide useful inspiration for electrical engineering departments

as they developed of computer-oriented courses. C3S member William Viavant also acted a

liaison between the two groups. His assistance was recognized in the COSINE Committee’s

inaugural 1967 report, and he also served as the chair of the 1968 Park City conference on

Computers in Undergraduate Education, which was jointly sponsored by COSINE and the C3S

(COSINE Committee, 1967; Viavant, 1968).172

171 The membership of each COSINE task force varied significantly, revealing the relatively loose
structure of the committee. As I note below, this feature of COSINE contributed to an overall lack of
cohesiveness and consistency in the numerous reports and recommendations that the group issued.
172 While originally conceived as a follow-up to the 1967 Stony Brook conference, the agenda of this
meeting was reoriented in response to the NSF’s interest in sponsoring an event that was generally
focused on computers in undergraduate education, rather than on computer science more specifically. As
a result, only one of the five conference working groups was dedicated to “Curriculum and Programs in
Computer Science.” (Viavant, 1968).

www.manaraa.com

 212

Yet by 1968, a COSINE proposal for continued funding explained that there was “little

overlap in the interests of this Committee [the C3S] and COSINE, except at the beginning level”

(Committee on Computer Sciences, 1968, p. 7). And as I discuss below, from the late 1960s

onward the agenda of the COSINE Committee was reframed in ways that distanced the group

from the ACM’s educational efforts. This same 1968 proposal also indicated that the IEEE

Computer Group was not significantly involved in curriculum development or educational

programs, which further bolstered the argument that the COSINE activities filled an important

and unmet need. More recently, McCluskey proposed two additional reasons to explain the

distance between COSINE and the IEEE (McCluskey, 2005). First, the Computer Group and its

members were still recovering from a lengthy and laborious merger process that distracted them

from other activities. And second, there were likely concerns about the autonomy that the group

might lose – as well as the level of bureaucracy it might face – if closely affiliated with the

IEEE.173 As I discuss below, doubts were also raised in the mid-1970s regarding the ability of the

Computer Group’s Education Committee to carry forward some part of the COSINE

Committee’s agenda and activities.

In summary, the COSINE Committee addressed a wide variety of topics and issues

during its existence, as suggested by the report titles listed in Table 5.2. In the following section,

I place considerable emphasis on two of these reports as a window into the group’s historical

trajectory. The first of these was the group’s inaugural report, which was initially published in

1967 and appropriately titled Computer Science(s) in Electrical Engineering (COSINE

Committee, 1967b). An Undergraduate Computing Engineering Option for Electrical

Engineering, on the other hand, was first published in 1970 (COSINE Committee, 1970). These

reports are important for at least four major reasons. First, they presented reasonably

comprehensive and detailed curricular recommendations, while other COSINE publications

tended to focus on more specific topics, such as suggestions for the development of courses and

labs. Second, these were among the few COSINE reports that received wider distribution in

major professional publications. Third, those surveyed at a 1970 meeting of department heads

ranked these two reports as the most significant of the seven major COSINE publications that

had been published to date. Fourth, finally, and perhaps most importantly, these reports provide

173 Sloan has similarly pointed to the COSINE Committee’s probable desire for “independence” (Sloan,
2005).

www.manaraa.com

 213

evidence for key shifts in the committee’s larger agenda and orientation, including its movement

away from “computer science” and toward “computer engineering.”

Table 5.2 – COSINE Committee Reports

Publication Date Report Title

September 1967 Computer Science(s) in Electrical Engineering
(COSINE Committee, 1967b; 1968a)

September 1968 Some Specifications for a Computer-Oriented First
Course in Electrical Engineering (COSINE Committee,
1968b)

October 1968 An Undergraduate Electrical Engineering Course on
Computer Organization (COSINE Committee, 1968c)

1968 Proceedings of the Meeting on Computer Science in
Electrical Engineering of the Commission on
Engineering Education, October 24-25, 1968 (COSINE
Committee, 1968d)

November 1968 Some Specifications for an Undergraduate Course on
Digital Subsystems (COSINE Committee, 1968e)

September 1969 Impact of Computers in Electrical Engineering
Education – A View from Industry (COSINE Committee,
1969a)

December 1969 Computer-Oriented Electrical Engineering Experiments
1969-1970 (COSINE Committee, 1969b)

January 1970 An Undergraduate Computer Engineering Option for
Electrical Engineering (COSINE Committee, 1970;
Coates, et al., 1971)

March 1971 Digital Systems Laboratory Courses and Laboratory
Development (COSINE Committee, 1971a)

June 1971 An Undergraduate Course on Operating Systems
Principles (COSINE Committee, 1971b)

April 1972 Minicomputers in the Digital Laboratory Program
(COSINE Committee, 1972)

www.manaraa.com

 214

COSINE, The Early Years: Promoting “Computer Sciences in Electrical Engineering”

The COSINE Committee’s first report, Computer Sciences in Electrical Engineering, was

framed as a preliminary set of recommendations that grew out of the group’s early meetings and

workshops. In an introductory passage, the authors of this report followed prior commentators

such as Zadeh by pointing to the “long standing and deep involvement” of electrical engineers in

all phases of information processing technology, ranging from use and application to conception,

design, and construction (COSINE Committee, 1967b, p. 5).174 Yet the authors admitted that at

least three major developments were impacting this relationship (pp. 5-6). First, they noted a

shift in emphasis from “hardware” to “software” in the sphere of computer technology.175

Second, they explained that this shift was in part stimulating the emergence of the field known as

“computer sciences.” And third, the report indicated that information processing systems were

increasingly based on digital (or “discrete”) rather than analog (or “continuous”) electronics

technology.

The authors argued that these developments were “creating an urgent need for a major

reorganization of electrical engineering curricula” (p. 6), leading them to encourage greater

flexibility in the standard electrical engineering curriculum. They also presented three more

specific sets of recommendations. The first and most extensive of these was focused on the

development of computer science programs within electrical engineering, while a second

discussed how electrical engineering education could be reorganized to place greater emphasis

on digital systems and related topics (pp. 9-19; pp. 21-23). The third major section of the report

explored how computers might be incorporated into a wide range of existing electrical

engineering courses, especially for analysis, design, and related tasks (pp. 25-31). This topic, in

particular, had much in common with earlier efforts to incorporate computers into the

engineering curriculum, as exemplified by the previously mentioned Ford Foundation project.

Yet as documented in the previous chapter, the other areas of reform that the committee

addressed had received only scattered prior attention. And evidenced by both its title and content,

much of the 1967 report was dedicated to developing recommendations for computer science

174 In fact, one of the introductory passages in this report was identical to Zadeh’s talk at the 1967 Stony
Brook conference. Zadeh or one of his colleagues likely copied this passage into the COSINE report. This
clearly reflected the influence of Zadeh and his agenda on the group’s early activities.
175 More specifically, the authors equated “hardware” with “circuit and component design” and
“software” with “system organization and programming” (COSINE Committee, 1967b, p. 5).

www.manaraa.com

 215

programs within electrical engineering. The committee approached this matter in a rather

cautious and strategic manner:

Clearly, it would be unreasonable to equate computer sciences with electrical

engineering, or to regard it as a subset of the latter. Nevertheless, the close

relation between the two is presenting the electrical engineering departments with

a special responsibility for the training of the large number of computer scientists

who would be needed … in the years ahead (p. 5).

And later in the report, the authors indicated that those electrical engineering students who

pursued a computer science major should “acquire substantive competence in computer sciences

and related fields, comparable, but not necessarily similar in content, to that acquired by students

in a typical computer science department” (p. 9). In light of such remarks, one might question the

extent to which the committee was promoting the training of computer scientists, or perhaps

instead electrical engineers with some baseline level of expertise in computer science. The latter

appears quite likely, especially given my prior arguments about engineers viewing computer

science as one sub-discipline among many “engineering sciences.”

Nonetheless, these passages suggest that the committee remained somewhat at cross-

purposes with their adoption of the term “computer science.” They also seemed to maintain an

awareness of the political baggage that came with their recommendations. Their report provided

descriptions for four core and twelve recommended elective subjects for a computer science

program situated within an undergraduate electrical engineering curriculum. And in many ways,

the subjects outlined in the report overlapped significantly with the ACM’s preliminary

recommendations for the computer science curriculum, especially in areas such as programming,

machine languages, algorithms, and discrete mathematics. However, the dominant structure of

the electrical engineering curriculum placed significant limits on how much coursework could be

dedicated to computer science programs, in spite of the authors’ claim that such programs “may

or may not include a core of required electrical engineering courses in areas outside of computer

sciences” (p. 11).176

176 Engineering education has long had a reputation for being conservative and slow changing, and
electrical engineering is no exception. In fact, making changes to the “core curriculum” has been – and in
many cases remains – a sure fire way to trigger passionate debates among engineering faculty members. I
revisit this issue below.

www.manaraa.com

 216

In fact, the core subjects described in the report represented a relatively small amount of

coursework, making it clear that the recommendations were primarily designed for the

development of computer science majors or options within the confines of existing electrical

engineering programs. This was a politically expedient move, as recommending more radical

changes to the engineering curriculum would likely jeopardize the ability of schools to maintain

accreditation under the guidelines developed by the Engineers Council for Professional

Development (ECPD). To put it another way, moving too far away from the dominant model of

engineering education could endanger a school’s ability to produce “certified” graduates who

could go on to become recognized as professional engineers.

As further inspiration for how such programs might be realized within existing

departments, the report included three sample curricula in an attached appendix (COSINE

Committee, 1967b, Appendix B). The examples included Computer Science bachelor degree

programs situated within Colleges of Engineering at Berkeley and the University of Utah, as well

as a proposed “Computer Science Program” within the existing structure of MIT’s S.B. in

Electrical Engineering.177 Perhaps not surprisingly, all three of these programs retained a strong

engineering orientation, albeit with a number of computer-oriented classes inserted in the

curriculum. In many ways, this approach to revising the curriculum looked like a direct response

to a question that was discussed at a 1967 COSINE meeting, namely: “What might constitute the

minimal CS needs for all EE students; for a CS major within EE” (p. 34, my emphasis). This

minimalist approach to computer science education stood in marked contrast with the ACM’s

ambitious curricular recommendations, which were designed to be more structured, cohesive,

and comprehensive. In fact, the members of the ACM C3S had a distinct edge over COSINE in

this regard, because they could propose computer science degree programs that sidestepped the

pre-existing educational requirements and restrictions that were characteristic of other fields.

The authors of the 1967 COSINE report also detailed how their curricular

recommendations were related to computer technology. And unlike their ACM counterparts,

they placed more explicit emphasis on the sphere of “hardware.”178 For example, the report

177 According to the proceedings of a 1967 COSINE meeting, Syracuse University was also developing a
separate B.S. degree in computer science that was to be administered by the school’s electrical
engineering department (COSINE Committee, 1967a, p. 33).
178 As noted above, the curricula developed by the ACM C3S placed considerable emphasis on
programming, numerical analysis, algorithms, and related subject areas. However, this group clearly

www.manaraa.com

 217

indicated that student experiences in two of the four core subject areas should stress “computer

hardware as the means of realizing programming functions” (p. 11). And elsewhere, the report

indicated that the core subject of Computation Structures required “[c]onsiderable emphasis …

on the interrelation and trade-offs between hardware and software techniques” (pp. 12-13). And

for at least two major reasons, the authors added that the early stages of the curriculum should

emphasize programming features before turning to more machine-oriented topics. First, they

indicated that this approach could shed light on how “programming features” informed various

aspects of machine organization. And second, the authors noted that this sequence of instruction

could help students view conventional approaches to machine organization “in a less sacred

light” (p. 11), thereby allowing them to consider alternatives ways to implement programming

features in hardware. This looked like an important step toward recognizing – and perhaps even

working to reconcile – some of the schisms that had grown up around the software and hardware

phases of the field. However, this educational model continued historical precedent by framing

engineers as the ultimate arbiters of computer design decisions.

With regard to realizing their proposed curriculum, the authors refused to take a position

on jurisdictional issues, including questions about departmental responsibility for particular

courses. However, they did stress that electrical engineering departments should cultivate faculty

expertise in the computer sciences and related areas, and they encouraged close cooperation with

other relevant departments. And at a 1967 COSINE meeting, a discussion group addressed

closely related questions about why it was appropriate for electrical engineering departments to

offer computer science courses and/or programs, including at the graduate level. As explained in

one summary report, the focus of engineering education on “systems design” provided this

justification (COSINE Committee, 1967a, p. 46). This report also emphasized that it was the

recognized that computer science students should have some familiarity with the hardware aspects of
computers. Their 1965 report, for example, identified “Computer Organization and Programming” as a
required course and “Logic Design and Switching Theory” as a highly recommended elective (ACM C3S,
1965). “Curriculum 68” similarly recommended that students take a “Computer Organization” course
(ACM C3S, 1968). In addition, the 1965 report acknowledged that “[i]t has been suggested that the
educational needs of those who will plan and design the computing and communication equipment should
be given special consideration” (ACM C3S, 1965, p. 545). Responding to this need, Curriculum 68
identified a series of optional and elective courses that would allow students to specialize in the area of
“Computer Organization and Design.” However, there remain many open questions about how closely
these recommendations were followed by schools, and commentators such as Ceruzzi have noted that the
core of the 1968 curriculum almost entirely eschewed “hardware” courses and subjects, replacing them
instead with an emphasis on algorithms, programming languages, and data structures (1988, p. 268).

www.manaraa.com

 218

responsibility of electrical engineering education to provide an “integrated engineering

viewpoint” for those charged with designing digital systems (p. 46). Yet as I discuss below, it

was increasingly questionable whether the committee’s focus on the engineering and design

aspects of digital systems was compatible with its use of the “computer science” moniker.

Transitional COSINE: From Computer Science to Computer Engineering

In March of 1968, the first major set of COSINE recommendations reached a wider

audience through the publication of a condensed version of the group’s 1967 report in the IEEE

Spectrum magazine (COSINE Committee, 1968a). And in June of the same year, the COSINE

Committee submitted a request for continued NSF funding via a proposal titled “A Program to

Stimulate the Development of Electrical Engineering Courses and Curricula To Include the

Computer Sciences” (Committee on Computer Sciences, 1968). As in the 1967 report, this

document emphasized the goal of bringing the computer sciences into electrical engineering. At

least on the surface, the titles and contents of these documents suggested that the committee was

both united by a common purpose and headed in a consistent direction.

Yet a closer analysis of other early COSINE documents reveals important variations in

the group’s agenda. At the second COSINE sponsored meeting of department heads in 1967, for

example, Van Valkenburg explained that the main objective of the COSINE Committee was to

“assist Electrical Engineering Departments in reorienting their curricula to provide for a greater

emphasis on digital technology and the associated symbol manipulation techniques” (1967, p. 3).

A discussion group at the same conference, on the other hand, addressed the topic of “computer

design in the undergraduate education,” and participants identified a handful of courses that

might make up a “computer design option” for electrical engineering students (COSINE

Committee, 1967a, pp. 36-37).179 Even the group’s aforementioned 1968 proposal hinted at the

group’s wide-ranging objectives, which also included encouraging the use of computers for

design and analysis, as well as more generally reorienting electrical engineering courses and

curricula toward digital techniques. While these objectives were not necessarily at odds with

developing computer science in electrical engineering, realizing these diverse goals clearly

demanded a range of different strategies and approaches. It was therefore possible that the

179 The five courses included: Introductory Computer Concepts and Programming; Switching Theory and
Logic Design; Computer Organization and Digital Systems Design; Laboratory, Digital Devices and
Circuits; and Advanced Programming (COSINE Committee, 1967a, p. 37).

www.manaraa.com

 219

Committee’s agenda was too wide and its resources were stretched too thin, especially given the

many potential barriers and challenges they were facing.

By late 1968, the orientation of the committee was beginning to shift more markedly.

Evidence for this trend can be found in the published proceedings of a third COSINE-sponsored

meeting of electrical engineering department heads, held at Stanford in October of 1968. This

event included a paper by COSINE Committee member Clarence L. Coates, who joined the

group in 1967. Like many actors in this history, Coates’ career trajectory straddled the

boundaries of engineering, science, and computing. After receiving a Ph.D. in Electrical

Engineering from the University of Illinois in 1953, Coates worked as an assistant professor at

the same school, and then as a research scientist at General Electric (“1993 OECE Recipiants,”

1993). In 1963 he joined the faculty at the University of Texas at Austin, where he variously

served as Professor of Computer Sciences, supervisor of the graduate Information Sciences

program, and head of the Department of Electrical Engineering. He returned to the Electrical

Engineering department at the University of Illinois at Urbana in 1971, and in 1973 he took over

as the head of Purdue’s School of Electrical Engineering.180

As suggested by the title of his 1968 talk, Coates issued a passionate plea for the

development of “University Education in Computer Engineering” (Coates, 1968). More

specifically, he started by noting rapid growth in both graduate and undergraduate computer

science programs, and he explicitly emphasized that these were often “science oriented” (p. 5).

Coates also explained that “education in computer engineering is being neglected at most

institutions,” and he stressed that this type of education demanded an “engineering educational

environment,” which presumably only colleges and departments of engineering could provide (p.

5). He also presented data – which he drew from the aforementioned Stony Brook proceedings –

to highlight both the rapid growth of computer science education and the relative lack of

computer-oriented degree programs in electrical engineering.181 As noted above, such statistics

generated significant anxiety for many electrical engineering educators, Coates included.

180 According to this same source, Coates later spearheaded the development of a computer engineering
degree program at Purdue (“1993 OECE Recipients,” 1993).
181 More specifically, Coates noted that the total number of computer science degree programs was
forecasted to increase from 58 to 240 from 1964 to 1968, while the number of computer options in
electrical engineering was expected to rise from 19 to just 23 during this same period (1968, p. 5). While
Coates’ figures for computer science are based on a different interpretation of the data than what I
presented above, they highlight the same overall trends.

www.manaraa.com

 220

The author also admitted these trends were not necessarily a cause for alarm, especially if

computer science programs provided an adequate an appropriate type of education. However, he

complained that most computer science programs were largely focused on software and theory,

with particular emphasis on topics such as programming, numerical analysis, formal languages,

automata theory, and applications. He therefore argued that computer science education was

deficient in “the hardware aspects of computers, in the hardware-software interface area, and in

systems for which the computer is a component part” (p. 5). The author explained that a major

reason for such deficiencies centered on the links between computer science and the arts and

sciences, especially in terms of the background and interests of computer science faculty, as well

as the dominant institutional location of computer science departments and programs. He also

complained that the courses recommended by the ACM lacked an engineering orientation.

According to Coates, those responsible for developing Curriculum 68 simply had “no interest,

experience, or appreciation for engineering” (p. 7), and he concluded that the ACM’s

recommendations were ultimately “a computer science curriculum and not a curriculum for

computer engineering” (p. 7). Such remarks suggest that Coates was appealing to engineers who

maintained deep-seated feelings about how their work was distinguished from that of scientists.

Coates went on to argue against the idea that computer engineering was somehow “a part

of” computer science, and he instead framed computer science and computer engineering as

distinct domains that needed separate educational programs. “Where we have failed,” Coates

opined, “is to recognize that computer science education and computer engineering education are

not the same and that there is a need for both” (p. 10). And while the author failed to provide a

direct definition for computer engineering, he hinted at the meaning of the term when he noted

rising demand for “engineers who are trained in the analysis, organization, and design of systems

that perform one or more of the functions of control, communications, recognition, processing

and retrieval” (p. 7). As Coates explained, the most practical way to provide this type of training

involved the establishment of computer engineering options within electrical engineering

departments, and he indicated that such programs would place extensive emphasis on subject

areas such as control systems, information and communication theory, logic design and

switching theory, machine organization, and programming (p. 10). In addition to providing an

updated definition for the field, Coates’ remarks tentatively and partially outlined a disciplinary

settlement for “computer engineering.”

www.manaraa.com

 221

Responding to a potential point of criticism, Coates also argued that it was necessary for

computer engineering education to move away from some of the “fundamental” subjects that had

long been at the core of the standard electrical engineering curriculum. In fact, Coates indicated

that a computer engineering program would likely eschew any engagement with the subject area

of “power systems,” thereby completing a historical trend that had started many decades earlier

with the rise of electronics. He also noted that such a program would place relatively less

emphasis on electromagnetic theory, network theory, electron materials and devices, and

electronic circuits (p. 10). This was a major call for change, especially given that most 1960s-era

electrical engineering programs – oriented as they were toward both the engineering sciences and

electronics – tended to cover these subject areas rather extensively.

Comparing his proposal to the earlier shift in the field from power to electronics, Coates

also argued that electrical engineering education was entering a new period of transition. More

specifically, he described the growth of computer engineering as representing the emergence of

“a new epoch” in electrical engineering, and he even went so far as to state: “I am not now

suggesting that the electronics epoch is ending, although this may be true” (pp. 7, 10). He

concluded his talk by boldly declaring, “I would chide you as the leaders of electrical

engineering education, as well as we of COSINE, for failing to recognize long ago the need for

education in computer engineering” (p. 10). Of course, the previous chapter revealed that

scattered commentators were calling for the establishment of such programs by the late 1950s

and early 1960s, and commentators such as Vincent Rideout and Norman Scott even used the

phrase “computer engineering” to describe graduate electrical engineering programs that were

oriented toward computer system design and associated subjects. Yet these types of programs

had failed to gain significant momentum outside of a handful of institutions, such as Scott’s own

University of Michigan. In the meantime, computer science had emerged and grown

prodigiously, often beyond the purview of electrical engineering.

Coates’ concerns received additional attention at the same 1968 COSINE meeting

through a workshop that was aptly titled “Computer Engineering Rather than Computer Science”

(1968d, pp. 16-18). As indicated in one post-workshop summary report, “[t]here seems to be a

well defined separation of interest developing between the curricula of Computer Science

Departments and Computer Science programs offered within Electrical Engineering

Departments” (p. 16). The report then identified a series of topic areas in mathematics, electrical

www.manaraa.com

 222

engineering, and computer theory that were of particular interest “to an engineer working in the

area of computers and information systems” (p. 17). In fact, it was noted that four of the topics in

the electrical engineering category fell outside of the ACM’s curricular recommendations. 182

This piece of evidence provided additional support for the claim that computer-oriented

programs in electrical engineering were at least partially divergent from computer science. The

report even asserted that “[a] consensus was reached that the existence of a Computer Science

Department must not interfere with the development of a strong computer oriented program in

Electrical Engineering” (p. 17).

Three additional COSINE reports were published in 1968 and 1969, and each lent a

measure of support to the agenda outlined by Coates. In fact, Coates was the only member of the

COSINE Committee who participated in the development of all three of these documents. The

first such report provided recommendations for an undergraduate course dedicated to the subject

of “Computer Organization” (COSINE Committee, 1968c). Contextualizing their efforts, the

authors of this report acknowledged the ongoing establishment of Computer Science

departments, yet they argued that “there is an ever increasing need for electrical engineers whose

undergraduate program provided a familiarity with digital system design” (p. 2). They explained

that such programs required engagement with both the “hardware and software aspects of digital

systems,” such as via the course outlined in the report. In fact, they made it clear that “such a

course should be offered by the Electrical Engineering Department and should correlate the

design and organizational aspects of the subject” (p. 2). In light of the different philosophies of

course and program design to which these passages elude, electrical engineering and computer

science departments at many schools were developing and offering their own, separate versions

of courses in overlapping areas of interest, including computer organization.183

Another COSINE Task Force presented specifications in 1968 for a one-year

undergraduate elective course in the area of “Digital Subsystems” (COSINE Committee, 1968e).

The content for this course took a bottom-up and hardware-oriented approach, beginning with

182 These four topic areas included: Circuits and Systems; Electronics; Control, Communication, and
Information Theory; and Solid State Electronics (p. 17).
183 In a more recent conversation, McCluskey discussed how control over individual courses became an
important site of negotiation and competition for rival departments: “[O]ne of the ways in which this
battle [for control of computer science] was fought out was by control of which courses the students in
the department could take. And I'm sure there are many instances at universities where there were two
computer activities, in two different departments, where one of the departments wouldn't recognize the
courses in the other department” (McCluskey, 2005).

www.manaraa.com

 223

basic circuits and simple functional units, and proceeding to the design of complete “digital

subsystems.” And while this course partially overlapped with computer organization, the two

courses clearly complemented one another and covered many of the subject areas that were

historically associated with the domain of “computer engineering.”

A 1969 COSINE report, on the other hand, was more generally concerned with the

Impact of Computers on Electrical Engineering Education – A View From Industry (COSINE

Committee, 1969a).184 As the authors of the report indicated, one of the main goals of the

COSINE Committee was to “keep abreast of trends and developments in the area of computer

engineering and computer science and bring this information to the attention of electrical

engineering educators” (p. 1). In addition to summarizing how computers and digital systems

technology were impacting the actual practice of engineering in industry, the report discussed

how electrical engineering educators might respond to these trends. The task force lobbied for

more flexible curricula, and they emphasized the importance of student experiences in design-

oriented projects. And in terms of topical coverage, they complained that “electrical engineering

departments are not updating their curricula in this area as fast as the present and future practice

of engineering would warrant,” especially given the extent to which computers and “digital

systems concepts” had permeated engineering practice (p. 1). The report stressed that students

should have opportunities to use computers for engineering problem solving, while also gaining

experience with the design and simulation of digital circuits and systems.

It is also worth noting that the authors of this report did not specifically discuss computer

science or computer engineering programs, preferring instead to frame their discussion as more

generally relevant to the education of electrical engineering students. However, the COSINE

Committee’s next major report made it clear that the group’s agenda and activities were

increasingly being advanced under the banner of “computer engineering.” As a result, their work

pointed to the potential development of new alignments and synergies between the field’s

professional jurisdictions and its disciplinary settlements.

184 This report also indicated that one of the earliest formal activities of the committee was a late 1966
meeting with representatives of industry that was intended to “determine the impact that computer
technology was having upon industry” (p. 1). The close ties between COSINE and industry stood in
marked contrast with the ACM’s curricular efforts in computer science. In fact, evidence suggests that the
emergent field of “computer science” had very low visibility in industry, at least through much of the
1960s. As Eric Weiss of Sun Oil Company explained at the 1967 Stony Brook conference, “I made
inquiry of my colleagues in industry to get their views of computing science and its relevance to their
world. … Too often their reply was a question, ‘What is computing science?’” (1968, p. 105).

www.manaraa.com

 224

COSINE and Computer Engineering: Expanding EE From the Inside Out

The COSINE Committee’s An Undergraduate Computer Engineering Option for

Electrical Engineering (COSINE Committee, 1970) was developed by a seven-member task

force, which included only three of the authors listed in the group’s 1967 report. In fact, notable

individuals such as Van Valkenburg and Zadeh were not directly involved with this task force,

while Coates acted as chair. The document therefore represented another unique set of interests,

agendas, and stakeholders, and in most general terms it cemented the COSINE Committee’s

movement away from “computer science” and toward “computer engineering.” And perhaps

more than any other document, this report can be credited with stimulating the widespread

development of computer engineering education. Yet by framing computer engineering as a

branch or sub-discipline of electrical engineering, this set of recommendations also hinted at

potentially disruptive shifts in the identity and disciplinary settlement of the parent field.

The authors started the report by indicating that their efforts were prompted by a

“growing demand for education in computer engineering and the limited opportunities for study

in this area” (p. 1). As additional background, they briefly outlined the history of electrical

engineering from the 1930s onward, with particular emphasis on the shifting orientation of the

field from power to electronics. The authors also followed prior commentators by noting that

digital technologies and systems were increasingly central topics in the field. Given this trend,

they explicitly described “computer engineering” as that part of electrical engineering concerned

with “the organization, design, and utilization of digital processing systems as general purpose

computers or as components of systems concerned with communication, control, measurement,

or signal processing” (p. 1). This definition was generally consistent with how commentators

such as Coates had used the term in the past, especially with regard to the field’s focus on the

design and organization of computer systems and the components thereof.

Yet this passage also hinted at another emergent area of technical expertise, where

engineers were being called upon to incorporate computers into even larger technological

systems. In fact, demand for this type of expertise was likely on the rise, especially given both

the increasing availability and falling costs of computers around this time. Hence, even if there

remained relatively few employment slots for those who were directly involved in the design of

computer systems and components, expanding the field’s settlement to include the design of

www.manaraa.com

 225

these larger types of computer-based systems looked like an appropriate move for those who

advocated the ongoing expansion of computer engineering education.

Adopting the computer engineering moniker was also a sound strategy for these authors,

especially given both its deeper historical roots and the difficulties that came with co-opting

atlernate terms such as “computer science.” This move also allowed the authors to frame

computer engineering as primarily or even wholly a branch of electrical engineering. In fact, the

1970 report even avoided the use of terms such as “field” or “discipline,” and it instead described

computer engineering as a “new dimension” of electrical engineering. The committee’s activities

were therefore reframed as a more natural expansion or extension of their own field, from the

inside out. This approach stood in marked contrast with prior efforts to bring the outside

discipline of computer science into electrical engineering, thereby leading to potential conflicts

between the dominant image of computer science as an independent discipline and electrical

engineering as a part of the engineering profession.

Yet the authors acknowledged that the subject of their report at least partially overlapped

with prior efforts to develop computer-oriented educational programs, and they responded

directly to questions about the necessity of their efforts. More specifically, the authors cleverly

argued that previous studies were inadequate because they were not directly concerned with

computer engineering. They also explained that the ACM’s Curriculum 68 was a “science-

oriented software program and not an engineering programming for education in digital

processing system design” (p. 2), and they added that existing computer science departments and

programs were turning out “software specialists.” The authors noted that the 1967 COSINE

report, on the other hand, was designed to “indicate a minimal set of courses that could be

included in the undergraduate electrical engineering curriculum … [to] introduce the student to

the basic techniques and theoretical concepts of computing” (p. 2).

This same report went on to argue that computer engineers required a different type of

education that covered “the design of software, hardware and systems” (p. 2). The authors also

stressed that programs in this area should provide students with an understanding of “the

important relationships and ‘trade-off’s’ between the hardware and software components of the

system and an understanding of how these functions should be partitioned in the system

organization in view of the intended applications” (pp. 2-3). With these objectives in mind, the

task force identified a total of seventeen subject areas for a computer engineering option, and

www.manaraa.com

 226

these were further split into background, basic, and elective categories.185 And in contrast to the

1967 COSINE report, this new set of recommendations provided more detailed information

about the subject matter, semester hours, and overall structure of such a program. The report also

included “possible” computer engineering curricula that were custom-tailored for

implementation at four different universities, namely Carnegie-Mellon, Hawaii, Princeton, and

University of Texas-Austin (pp. 7-10).186 Unlike the curricular samples presented in 1967, these

degree outlines were clearly identified as computer engineering programs within electrical

engineering. This was an important shift, as it suggested that computer engineering students

would receive degrees in electrical engineering rather than computer science. Electrical

engineering educators could therefore move into the domain of computing in ways preserved

their identity as electrical engineers who were training future engineering professionals. A

slightly revised version of the same report reached a larger audience in 1971 through its

publication in the Proceedings of the IEEE (Coates, et al., 1971). And in a new forward,

COSINE chairman Van Valkenburg stressed the importance of the group’s recommendations,

especially given the ongoing and rapid growth of computer engineering education within

electrical engineering departments (Coates, et al., 1971, p. 854).

The COSINE Committee also released three new reports in 1971 and 1972, and two of

these were focused on the development of laboratory work that was compatible with the group’s

larger set of curricular recommendations (COSINE Committee, 1971a; 1971b; 1972). In one of

these reports, the authors explained: “As digital system and computer engineering concepts have

been integrated into the undergraduate electrical engineering curriculum, many departments have

begun revising their laboratory programs to include more work with digital networks and mini-

computers” (1971a, p. 1). Such passages once again reveal the extent to which larger currents of

185 The six “background” subjects included physics, calculus and differential equations, linear and abstract
algebra, probability theory, electric and electronic circuits, and introductory computer programming. With
the exception of probability theory, most electrical engineering programs required that students take a
similar set of core coursework. The four basic subjects identified in the report were switching theory and
logical design, machine structure and machine language programming, computer organization, and
systems programming and operating systems. And finally, the seven elective areas recommended by the
committee were programming languages and translation, numerical analysis, logic and automata theory,
communication systems, operations research, simulation and modeling, and field analysis. As this
overview reveals, many of the topics that the ACM C3S identified and described as core requirements for
computer science were electives in the COSINE recommendations for computer engineering.
186 All four of the proposed curricula were developed for schools where members of the task force served
as faculty. These sample curricula also featured an entirely different group of schools as compared to the
1967 COSINE report.

www.manaraa.com

 227

change were finally beginning to move through electrical engineering education. The third of

these reports, on the other hand, proposed an undergraduate course on “Operating Systems

Principles.” As explained by the authors, such a course would likely be realized as an elective

“for students whose major interest is in the engineering of computer systems and software”

(1972, p. 1). This particular report hinted at the extent to which the domain of software was

becoming a more pivotal site for negotiating the boundaries between computer engineering and

computer science, a point to which I will return.

As the preceding review makes clear, from the late 1960s and into the 1970s the COSINE

Committee eagerly promoted its agenda under the banner of computer engineering. In fact, even

Zadeh came to temper his use of the term “computer science.” In a 1971 article on “Impact of

Computers on the Orientation of Electrical Engineering Curricula” that was published in the

IEEE Transactions on Education, Zadeh emphasized that “electrical engineering has a special

responsibility to train its students in both the basic and applied aspects of computer science and

engineering” (Zadeh, 1971, p. 153). Yet he admitted that the efforts of the COSINE Committee

represented “a rather belated response on the part of electrical engineering educators to the

challenge of the computer revolution” (p. 154). He went on to once more lobby for greater

flexibility and multi-option systems in the electrical engineering curriculum. He also argued that

required upper division core courses should be replaced by “a system of recommended

programs” (p. 154). As Zadeh explained, one of principal advantage of such a “free curriculum”

was that it “comes to grips with a basic fact of life, namely, that electrical engineering is no

longer a unified field of study with a clearly definable single core; rather, it is an aggregation of

subject areas” (p. 154). Per Zadeh, these included clusters of subjects in areas such as: systems,

information, and control; computers and digital systems; circuits and electron devices;

electromagnetics; bioelectrics; and urban and public systems (1971, p. 154).187

187 It is again worth noting that these types of reform discussions could trigger passionate debates about
whether various core courses or subjects should remain in the electrical engineering curriculum. In fact,
McCluskey more recently recounted one such debate: “I have to tell you, the biggest fight that I
remember, and you said tensions, and I'm talking about, there were not only tensions, but this was a fight,
was a COSINE meeting, and it was out here at Stanford. And there was one guy on the committee. What
the committee was discussing was whether there should be an E&M [electromagnetism] course in the EE
undergraduate curriculum, or in the computer engineering undergraduate curriculum. … [A]nd this one
guy was [whistles], he was very emotional about this. And he didn't think there ought to be one there. He
thought we were compromising, selling our souls. I can remember him pounding on the table and walking
out. But that's the only one I remember like that. And it turns out he was wrong” (McCluskey, 2005).

www.manaraa.com

 228

Comments such as these suggest that the concept of disciplinary settlement provides an

appropriate lens for understanding the historical development of electrical engineering through

this time period. More specifically, Zadeh’s remarks revealed that electrical engineering – like

computer science – was neither easily nor succinctly definable, as its domain ultimately

comprised a range of loosely connected subjects, and many of these were shared with other

fields. Hence, both Zadeh’s article and the COSINE Committee reports from the early 1970s

pointed to the persistent challenges that electrical engineering educators faced as they grappled

with how to reform and revise their curricula in ways that accommodated the field’s increasing

diversity and scope while simultaneously preserving its cohesion and unique identity. These

challenges were only compounded given that many of the proposed reforms could potentially

threaten the dominant image of electrical engineering and its various sub-disciplines – including

computer engineering – as unambiguous parts of the engineering profession.

Evaluating the “Impact” of COSINE and the Growth of Computer Engineering Education

From 1970 to 1972, the COSINE Committee conducted a series of surveys that were

designed to both evaluate the impact of the group and document other relevant trends in

electrical engineering education (Sloan, 1973, p. 27). Members of the group also used the survey

data to support their agenda. In 1971, for example, Van Valkenburg noted that 87 of 203 (or 43%

of) electrical engineering departments that responded to one survey offered an undergraduate

option or program in computer engineering, while another 35 of the surveyed schools planned to

offer such an option in the coming year (Coates, et al., 1971, p. 854).188 As Van Valkenburg

explained, these data revealed the importance of the COSINE recommendations with regard to

the computer engineering curriculum. Yet it was the final COSINE survey – which was

completed in 1972, just before COSINE disbanded – that provided the most detailed data

regarding relevant educational trends in electrical engineering through the life of the Committee.

188 Van Valkenburg repeatedly deployed similar statistics to discuss the movement of computers and
computing into electrical engineering education. In another 1971 commentary, for example, he explained:
“A recent survey of department chairmen I conducted had responses from 201 universities. Of this
number, 86 indicated that they now offer an option or program in computer engineering at the
undergraduate level, and 34 more showed some indication that there might be such a program or option
within a year” (Dertouzos, et al., 1971). And while it is not clear why Van Valkenburg presented slightly
different statistics in this piece, the larger trends were clear.

www.manaraa.com

 229

These results were summarized in a 1973 article that was authored by Sloan, Coates, and

McCluskey (1973) and published in the IEEE’s widely-read Computer magazine.

To begin with, it is worth noting how the history of the committee was framed in this

document. In an introductory passage, the authors summarized that the COSINE Committee

“was organized in September, 1965 to help electrical engineering departments develop

educational programs in computer engineering and to design other courses to use digital

computers” (p. 30). This was a very strategic depiction, as it framed computer engineering as one

of the group’s primary, original concerns, even though the early efforts of the committee were

couched in terms of “computer science.” In fact, in the early 1970s the COSINE acronym was

often used without any reference to its original meaning, and the group’s 1971 request for

additional funding from the NSF was cleverly titled “Proposal for a Project in Computers in

Electrical Engineering (COSINE)” (Sloan, 1973, p. 97). This evidence suggests that the group

adjusted both its name and historical narrative to distance itself from the term computer science.

With regard to the survey data, the authors of the report summarized the results with a

mix of enthusiasm and anxiety. On the one hand, they indicated that just under half (49%) of the

responding schools had computer engineering options (p. 33). By comparison, 54% of these

schools had computer science departments (p. 32). They also indicated an increase in the number

of “digital faculty” in electrical engineering departments from one in 1965-66 to three or four in

1972-73, and with the total number of digital faculty at all schools more than doubling during

this same time period (p. 32).189 With regard to curricula, the authors noted that six of the basic

courses recommended by COSINE for a computer engineering option were taught at 80% or

more of all responding schools, and the majority of these schools offered six of the seven

recommended elective courses (p. 37). And while the survey indicated that a growing number of

these courses were taught by electrical engineering departments, a relatively large number of the

core and elective subjects – especially in the areas of programming and software – were often

taught outside of EE (p. 37). These conclusions once more pointed to a central tension that came

with the growth of computer engineering education, namely that these types of programs were

being established in ways that did not require electrical engineering departments to make large

189 While not explicitly defined, “digital faculty” likely referred to those faculty whose primary research
and teaching interests were in digital rather than analog technologies and techniques. Later in the report,
the authors also noted that the presence of a computer engineering option was strongly correlated with the
number of digital faculty at any given institution (p. 32).

www.manaraa.com

 230

teaching or research commitments in computer engineering, digital technology and techniques,

and related areas.

The authors concluded the report by boasting that the “[t]he dominant theme of this

report is the rapid growth of computer engineering in electrical engineering departments in the

past seven years” (p. 38).190 However, they cautioned that this rapid expansion was probably

coming to an end, and they issued a number of caveats. To begin with, they used the collected

survey data to conclude that the presence of computer science departments in colleges of

engineering tended to inhibit the development of computing engineering options in electrical

engineering departments.191 The authors also referenced a number of other surveys and studies to

suggest that computer science degree programs were still being established more rapidly than

computer engineering options, although they noted that the most rapid growth of computer

science departments was probably over.192

Through her dissertation research and a variety of derivative publications, Sloan

attempted an even more thorough evaluation of “The Impact of the COSINE Committee on the

Undergraduate Electrical Engineering Curriculum” (1973; 1974). Many of her conclusions are

worth summarizing here. To begin with, she echoed the last of the COSINE surveys when she

reported on the general expansion of computer engineering within electrical engineering

education. More specifically, her research revealed that computer engineering options had been

established in 16 of 46 (of 35% of) surveyed departments (1974, p. 185).193 Along similar lines,

she documented impressive growth in the number of computer engineering courses and faculty

during the COSINE years. As yet another indicator of these trends, she noted that the number of

190 In comparative terms, the authors added that “Computer engineering options did not start real growth
until after 1965 but then developed so rapidly that the mean and median years for establishment of
computer science departments and computer engineering options are the same, 1968” (p. 33). These were
certainly impressive statistics, especially given the relative lag between these two educational movements.
191 They also explained that the presence of computer science departments outside of schools or colleges
of engineering did not have a similar impact. Further, it is difficult to determine whether the survey data
showed causation or merely correlation with respect to these trends.
192 As explained by the authors, “82% of schools without computer science departments do not plan to
establish one within the next two years” (p. 32). The report also indicated that “the problem of the proper
place for computer science departments has not been uniformly solved” (p. 32). More specifically, their
data showed that 33% of computer science departments were in liberal arts colleges, 25% were in
engineering colleges, and 24% were in other colleges (p. 32).
193 The results of the larger 1972 survey – which indicated that just under 50% of schools had computer
engineering options – was probably more accurate than Sloan’s figure of 35%, which was based on a
much smaller sample.

www.manaraa.com

 231

electrical engineering departments teaching computer organization as a subject or course had

increased from 13% in 1965-66 to 69% in 1971-72 (1973, p. 64). Given these pieces of evidence,

Sloan summarized that “[t]here has been considerable growth of computer engineering in

electrical engineering departments along the lines recommended by the COSINE Committee”

(1974, p. 189).

But what role did the COSINE Committee play in triggering or shaping these

developments? The data presented by Sloan suggested that the COSINE reports played a

particularly important role in ongoing efforts to establish computer engineering courses and

options, especially as compared to the group’s other activities (Sloan, 1974, pp. 182-183). On the

other hand, she identified at least three major reasons why the ultimate impact of these

documents was limited (p. 188). First, she explained that the distribution of the reports was

relatively haphazard, and that the committee lacked sufficient resources to develop follow-up

publications, such as textbooks. Second, Sloan added that the reports appeared relatively late,

especially when compared to the ACM’s recommendations. Third and finally, she noted that the

COSINE reports featured “different and occasionally conflicting recommendations” (p. 188),

including guidelines for a total of 23 different courses (Sloan, 1973, p. 62). As Sloan concluded,

“When compared to the orderly curriculum of ACM 65 and ACM 68, the COSINE curriculum is

hard to identify” (1974, p. 188). However, she failed to comment on how this ambiguity was

linked to the group’s reorientation from computer science to computer engineering in the late

1960s. In fact, like many other “insiders” she retrospectively framed “computer engineering” as

the committee’s primary concern throughout its history.194

Sloan’s report also acknowledged some of the areas where the COSINE Committee had

largely failed to initiate significant change. For instance, she concluded that “COSINE did not

succeed in increasing computer-oriented material in traditional courses, except for circuits

courses” (1974, p. 188). As noted above, this was one of the three main goals originally

articulated by the committee, and the failure to make substantial headway in this area hints at the

formidable barriers faced by those who wished to make widespread reforms in electrical

194 For example, the abstract for Sloan’s 1974 article summarized: “The COSINE Committee, formed in
1965, recommended that electrical engineering departments develop computer engineering courses” (p.
179). Elsewhere, she spelled out the group’s original name, yet framed its activities as primarily focused
on computer engineering.

www.manaraa.com

 232

engineering education.195 The committee was also criticized for failing to involve smaller

schools in its agenda. In fact, the group originally planned to address this problem through site

visits to smaller and less prestigious schools, but few of these visits ever happened, and those

that did tended to involve larger institutions (Sloan, 1974, pp. 181-182). As one of Sloan’s

survey respondents explained, “The actual base of COSINE seems to be a very small fraternity –

as a result, it may be making recommendations that are inappropriate to many schools” (p. 182).

The failure of the group to reach out to a larger constituency also helps explain why the

expansion of computer engineering courses, options, and faculty seemed to be leveling off by the

early 1970s. On a closely related note, Sloan added that context-dependent considerations such

as department size and departmental policies against multi-option degree systems probably

placed an upper limits on the total number of computer engineering options that could be

established in electrical engineering departments nationwide, at least in the short term (1974, p.

185).

Sloan ultimately concluded that there were no clear causal relationships between the

activities of the COSINE Committee and a variety of larger trends in electrical engineering

education. Further, she indicated that she was unable to locate any department that had directly

patterned its curriculum on COSINE recommendations. Sloan was therefore left with the rather

simple conclusion that the group was visible and that it likely influenced or helped inspire the

expansion of computer engineering. In fact, her own survey data revealed that the top sources of

outside influence on the development of computer engineering courses in 46 electrical

engineering departments included industry (6 responses), graduate schools (6 responses), the

environment or “local interests” (5 responses), and COSINE (5 responses) (1974, p. 184). Along

similar lines, Sloan only found a handful of textbooks that closely followed COSINE

recommendations for course content. On the other hand, she noted that a number of COSINE

members felt that the group had a favorable impact, although such insider responses are naturally

highly subjective.196

195 In fact, Sloan’s evaluation indicated that the COSINE meetings and workshops had failed to attract
many faculty members who were not already department heads or self-identified “computer engineers”
(1974, p. 181).
196 As Sloan explained, one of the COSINE Committee members felt that the group had significantly
altered the course of many electrical engineering departments, especially with regard to their involvement
in computer science and computer engineering. Other members suggested that “the main effect of the

www.manaraa.com

 233

In the end, Sloan got to the crux of the problem of causality when she noted that “an

increase in courses recommended by a committee is creditable to the committee if only because

the committee were good educational prophets” (1974, p. 188). One is therefore left with a rather

simple conclusion, namely that the efforts of the COSINE Committee were significantly

correlated with growth in many areas of computer engineering education. However, addressing

questions of causality is not the central goal of my project. Instead, for the present analysis it is

worth emphasizing that the activities of the COSINE Committee and the growth of computer

engineering education were significantly co-produced, in that they reflected and reinforced one

another. As a result of this process, computer engineering became an increasingly important

marker for an expanding domain of electrical engineering education and a growing pool of

computer-oriented electrical engineers. And while computer engineering was by no means a new

term or even new domain of activity, from the early 1970s onward it was taking on important

new meanings and trajectories in the academic sphere.

Conclusion

As noted in preceding chapters, by the mid-1960s a “sociotechnical parity” had been

established in many areas of the computer field. For instance, the ACM and the IEEE Computer

Group boasted roughly equal numbers of members, and each organization had carved out a

partially distinct scope and constituency. In addition, hardware and software had emerged as

markers for two distinct – yet intimately related – domains of technology, knowledge, and

practice. The present chapter analyzed the historical development of two major spheres of

computer-oriented education, namely “computer science” and “computer engineering.” Here too

we find a notable parity. By the early 1970s approximately 54% of more than 200 major

universities had computer science departments, while only a slightly smaller percentage (49%)

offered computer engineering options in departments of electrical engineering. And while the

recommended courses and curricula for educational programs in both of these areas included

some overlapping subjects, computer science courses and programs clearly tended to tilt toward

software, applications, and programming, while the dominant mode of computer engineering

education placed greater emphasis on hardware, design, and digital systems.

committee was to hasten development of computer engineering and of computer-oriented traditional
courses by one or two years” (1973, p. 62).

www.manaraa.com

 234

In summary, the major social and technical schisms that had earlier emerged in the sphere

of industry and in the system of professional societies were largely reproduced in the educational

sphere, despite the efforts of many actors to challenge these boundaries. To put it more

succinctly, computer engineering emerged as a foil to computer science – just as software had

earlier emerged as a foil to hardware – and each of these two domains was linked to a partially

distinct disciplinary settlement. Yet as noted above, this process happened neither overnight nor

without significant struggle. The first phase of this historical trajectory centered on the objective

of bringing the computer sciences into the fold of electrical engineering education, such as via

new courses and degree programs. The early agenda and activities of Lotfi Zadeh and the

COSINE Committee exemplify this approach.

However, using this strategy to reclaim large swaths of computing as a territory of

electrical engineering was beset by difficulties. For example, Zadeh’s own efforts to outline the

contours of computer science “as a discipline” partially undermined his argument that the

emergent field – or at least large parts of it – should be brought into electrical engineering.

Further, this strategy suggested that such an amalgamation might challenge the respective

dominant image of computer science as an independent discipline and electrical engineering as

first and foremost a part of the engineering profession. In fact, Zadeh even went so far as to

suggest that the electrical engineering field be renamed, while the 1967 COSINE report added

that electrical engineering departments might grant dedicated degrees in computer science. Given

the potential for such changes to generate disciplinary and professional instabilities, these

proposals were surely a source of much anxiety, both for the proponents of computer science and

the conservative old guard of electrical engineering education. And indeed, the events that

unfolded at schools such as Berkeley and the University of Pennsylvania in the late 1960s and

early 1970s revealed what kinds of disruptions were possible when the competing agendas of

engineers and computer scientists came into direct contact and conflict.

In light of these challenges, we find that from the late 1960s onward the agenda and

activities of the COSINE Committee were reoriented. In fact, COSINE publications and other

sources reveal that the group’s identity and history were rather swiftly reframed under the guise

of “computer engineering.” In a sense this change was largely rhetorical, especially given that

relatively few electrical engineering departments were making concerted moves at the time to

bring large swaths of computer science within their purview. However, the expanding roster of

www.manaraa.com

 235

COSINE reports did provide useful guidance and inspiration for engineering educators. The

group’s 1970 curriculum recommendations, for example, emphasized the extent to which a

computer engineering “option” could be integrated into existing electrical engineering programs,

including through new courses and offerings from other departments. These adjustments made

moving into computer engineering a more tractable and appealing prospect for many

departments. Further, the emergence of computer engineering courses and options was a pivotal

development, as it seemed to bring the academic sphere into closer alignment with the scope and

orientation of the IEEE Computer Society, the various divisions of labor that were increasingly

prevalent in the private sector, and the sociotechnical boundaries of hardware and software.

Of course, one might question why the major goals outlined by the COSINE Committee

did not emerge and gain traction earlier. After all, the preceding chapter revealed that

commentators such as Rideout and Scott were describing computer-oriented programs in

electrical engineering by the late 1950s and early 1960s, and a handful of universities were

blazing important new trails in this area. Yet widespread change in engineering education is

often notoriously slow and difficult, and the field of electrical engineering is no exception. It was

increasingly evident from the late 1950s onward, for instance, that electrical engineering

educators were moving slowly with regard to both incorporating computer use into a broad range

of courses and providing students with a more balanced exposure to analog and digital

technology. Further, it did not appear highly problematic that computer-oriented research and

education was uneven from school to school, especially given that most electrical engineering

departments only faced modest competition for students and resources from other academic units

or colleges. In addition, resource restrictions meant that most departments could only move into

some limited number of sub-disciplines and specialties, and so it was quite natural that some

embraced and others avoided computer design and engineering. And finally, it is worth noting

that the aforementioned Carr alleged in the late 1960s that industry had actively blocked

university research and educational activities in some areas of “computer equipment and

engineering.197

197 At the 1967 Stony Brook conference, the aforementioned John W. Carr III argued that computer
science never willingly left the area of “computer equipment and engineering.” As Carr explained, “I
think that everyone knows that the large computer manufacturers have done everything possible to
abolish computer engineering within the universities. Anyone who has tried to get a grant for study of
computer hardware – as a colleague of mine did for $10,000 and then had a large computer corporation

www.manaraa.com

 236

To be sure, a variety of factors contributed to the overall lack of university education and

research in many areas of computing. However, the growth of computer science departments and

programs reconfigured the disciplinary and institutional landscape in ways that many electrical

engineering educators could no longer ignore. And despite the partial success of the COSINE

Committee in responding to the rise of computer science and challenging the status quo of

electrical engineering education, the future of computer engineering was by no means assured. It

was rarely referred to or defined as a distinct discipline or field, for example, which revealed that

it remained at least partially circumscribed and subservient to the electrical engineering

profession writ large.198 Further, there remained important points of contestation and overlap

between computer engineering and computer science, especially in the academic arena. And

whether these disciplinary settlements were sustainable in the long run remained an open

question, especially in light of ongoing and dramatic changes in the technology and knowledge

of computing.

After the COSINE Committee wrapped up its activities in 1972, a handful of

commentators commented on the future of computer engineering. Coates, McCluskey, and

Sloan, for example, insisted that the “expansion of computer engineering programs should still

occur” (1973, p. 38). However, these authors recognized that numerous barriers stood in the way

of realizing their vision. They explained, for instance, that “the reluctance of many electrical

engineering departments to move into software, even into software engineering, may handicap

their growth relative to computer science departments as the balance between hardware and

software activities continues to shift” (p. 38). Sloan similarly noted that “most electrical

engineering departments … had not been swayed by attempts of the COSINE to promote

software, or what they termed ‘software engineering’” (1974, p. 184). As I discuss in the

go to Washington and insist that this was now a function of the manufacturer – should make known this
fact. I disagree heartily with the statement that people have gone outside the area of computer engineering
voluntarily. We were forced, dragged kicking and screaming, away from computer equipment. If anyone
wants to support my organization with funds to create some really imaginative computer equipment, I
would certainly appreciate knowing of such sources” (quoted Oettinger, 1968, p. 38). Additional evidence
for Carr’s claim is difficult to find. However, the close collaboration between the COSINE Committee
and industry suggests that this type of resistance was likely fading by the late 1960s and early 1970s.
198 In fact, others had noticed the peculiar historical arc of “communication engineering.” As engineer S.
Seshu explained in a 1963 panel discussion, “The division of electrical engineering into branches thirty
years ago was effected to permit the communication engineers to develop. Later we abolished the division
when communication engineering matured, in order to pull up the others” (Cruz, 1963, p. 158). It was
entirely possible that computer engineering would meet a similar fate.

www.manaraa.com

 237

following chapter, emergent areas such as “software engineering” were increasingly important

domains of disciplinary negotiation at the intersection of computer science and computer

engineering. Yet this was not the one among many points of overlap between the two fields. In

the following chapter, I discuss how both the ACM and the IEEE made parallel moves into other

emergent domains, including “computer architecture” and microprogramming.

There also remained questions about who would carry forward the torch of the COSINE

Committee. Sloan, for example, noted in her 1974 evaluation of COSINE that the group had

disbanded without successfully transferring its functions to another organization, such as the

Education Committee of the IEEE’s Computer Society. In fact, she suggested that this alternate

group was largely ill-equipped for such a task, especially given that it lacked resources, met

infrequently, and was not working with a liaison from the COSINE Committee (Sloan, 1974, p.

182). Yet by 1974 the Computer Society’s Education Committee had launched its own efforts to

develop an undergraduate curriculum in “Computer Science and Engineering.” As one member

of the group explained, a major goal of this effort was to “bridge the tar pit” that existed at the

intersection of computer science and computer engineering education (Mulder, 1975).

One might find the committee’s use of the compound phrase “computer science and

engineering” somewhat surprising, especially given that many members of the COSINE

Committee had strenuously emphasized that there were important distinctions to be made

between computer science and computer engineering, especially in the educational context. In

subsequent chapters I follow this issue into 1970s and 1980s, with particular emphasis on the

competing forces of disciplinary integration and fragmentation that persistently swirled around

the sociotechnical milieu of “computer science and engineering.”

www.manaraa.com

 238

Figure 6.1 – Hardware vs. Software: The Two Faces of Computers

(Jensen, 1973, p. 14) © 1973 IEEE

www.manaraa.com

 239

Chapter 6

Janus-Faced Technology, Janus-Faced Field:

(Re)Negotiating the Sociotechnical Settlements

The November, 1973 issue of Computer was topically dedicated to “hardware vs.

software: the two faces of computers.” Building on rich metaphorical foundations, the issue

featured prominent graphical representations of Janus, the well-known Roman god of gates,

doorways, beginnings, and endings who is often depicted with two faces gazing in opposite

directions. In the suitable, high-technology revision of this mythology shown in Figure 6.1, an

image of Janus – holding his traditional key and staff – was placed against a backdrop of circuit-

boards, logic gates, and flow-chart symbols (Jensen, 1973, p. 14). The “two face” title and

associated graphics revealed the extent to which computer systems could be viewed as coherent

entities, albeit with distinct software and hardware “faces.” This metaphor had much in common

with the Humpty Dumpty analogy discussed in Chapter Four, which the editors of Datamation

had trotted out in the mid-1960s. Yet the Janus image was arguably even more apt, given that it

so effectively captured how the computer field was simultaneously – and perhaps paradoxically

– both united yet divided, integrated yet fragmented.199

An introductory article authored by guest editor E. Douglas Jensen further described how

the major themes of the special issue were related to the accompanying imagery. He started by

explaining that the “interface” between operating systems and “computer architecture” was

historically very “one-directional” and “unbalanced” (Jensen, 1973, p. 15).200 Claiming that rapid

199 Other historians of computing have found similar value in the Janus metaphor. Edwards, for example,
states that “[c]omputers display, Janus-like, a double aspect. They consist simultaneously of hardware,
whose heritage lies within the history of technology, and software, whose ancestry lies in mathematics
and formal logic” (1996, p. xii). According to Edwards, this insight also helps explain the existence of a
long divide in the history of computing between those accounts that focus on hardware and those that
look at software. And like Edwards’, I see my own analysis as challenging this historiographic divide.
200 As I discuss in more detail below, the term “computer architecture” generally refers to the fundamental
operational structure of a computer system.

www.manaraa.com

 240

technological developments – such as in the area of semiconductors – were tending to further

accentuate the divide between hardware and software, Jensen called for the establishment of a

more “symbiotic relationship between the operating system and the architecture, which requires

bidirectional interaction between the two disciplines from the outset of computer design” (p. 15).

The author’s conflation of technology and discipline in this passage is telling, as it once more

revealed the persistent intertwining of the social and technical, especially in discussions about

the evolving relation of software and hardware.

However, actually achieving this type of “bidirectional interaction” was a challenging

proposition. In fact, for almost two decades a variety of outspoken commentators had

complained about the barriers that stood between hardware and software, computer designers

and users. And despite both rapid technological change and ongoing discussions about how to

bridge or even overcome these boundaries, Jensen’s remarks suggest that the historical status quo

had largely prevailed, even into the 1970s. And indeed, preceding chapters provide substantial

support for this claim by documenting the evolving Janus-faced character of various worksites,

educational settings, discourses, and technologies, especially from the 1950s into the 1970s.

Yet in previous chapters I largely sidestepped the parallel historical evolution of the

major professional societies that maintained settlements in the computer field. The present

chapter fills in this gap by focusing on the activities of the IEEE Computer Group – renamed the

Computer Society in 1970 – from the mid-1960s into the 1980s. More specifically, I emphasize

how various structures and processes of sociotechnical mediation both emerged during this

period and helped maintain a modicum of stability, both within an expanding Computer Society

and between the Computer Society and other groups, such as the ACM. By selectively enabling

various flows of information, technical knowledge, people, and power, these structures and

processes helped enable the emergence of an increasingly Janus-faced system of professional

societies that consisted primarily of the Computer Society and ACM. Hence, the respective

sociotechnical settlements claimed by these two groups moved toward unprecedented levels of

overlap and interpenetration. In fact, I argue that the evolving relation of these two organizations

bore an increasingly striking resemblance to the evolving relation of hardware and software. To

put it another way, this chapter brings into further relief the coproduction of technologies and

professional societies.

www.manaraa.com

 241

From Computer Group in Crisis to a More Autonomous Computer Society

As discussed in Chapter 3, by the mid-1960s a kind of parity had been established

between the ACM and the IEEE Computer Group. Each society boasted more than 10,000

members, and they cooperated as peer organizations in AFIPS and the Joint Computer

Conferences. These groups also claimed sociotechnical settlements that were partially distinct,

yet also partially overlapping. As Willis Ware nicely summarized in 1963, “The IEEE is largely

the hardware population of the computing field, and the ACM, largely the software population

which has grown into information processing through scientific computing” (p. 42). Yet despite

the apparent balance and stability that had been achieved in this “system of professional

societies,” countervailing forces were omnipresent. As noted previously, the joint conferences

were increasingly dominated by ACM members and interests in the early and mid-1960s, and the

leaders of the ACM were working hard to expand the group’s membership, scope, and influence.

Much of the “hardware population” of the field, on the other hand, was distracted by formation

of the IEEE Computer Group out of the AIEE CDC and IRE-PGEC. And as the dust settled in

the wake of this merger, many commentators felt that the state of the emergent organization was

underwhelming, especially when compared to the ACM.

Anxiety about the position and future of the Computer Group was particularly evident in

a series of letters and position pieces that were published in early issues of the Computer Group

News. Established in 1966 and bearing a general resemblance in form and purpose to the

Communications of the ACM, this new periodical was intended as an outlet for news, tutorial

papers, summaries, and other material not suitable for publication in the more technical

Transactions on Electronic Computers. Computer Group chair Samuel Levine opened the first

issue with an appropriately anxious tone when he stated that “[t]he Computer Group faces a

basic challenge in maintaining its role as the leading professional computer engineering society.

Its membership has been relatively static in the past few years in spite of the continued rapid

growth of the industry” (Levine, 1966). Levine went on to explain that this challenge was being

met in a number of ways, including by publication of the News, broadening the technical

coverage of Transactions, and initiating an aggressive membership drive. He also stressed the

importance of the Computer Group’s technical committees, especially as the organization moved

into new areas of interest. As Levine explained in a subsequent letter, the “[a]ctivities of the

www.manaraa.com

 242

Technical Committees should reflect the changing scope of the theory and practices of computer

sciences” (Levine, 1967a). I return to this theme in more detail below.

The Group also organized and executed its First Annual IEEE Computer Conference in

1967. Officially described as “a forum to meet the specialized requirements of the Computer

Group Membership,” the conference featured 38 papers and attracted more than 450 attendees

(“First Annual,” 1967; “Report on the Chicago Gathering,” 1967). And according to a follow-up

report published in Datamation, the event “was planned to fill what was felt to be a void in

conferences for hardware specialists” (“Panels Feature,” 1967, pp. 109-110). As suggested by

this overview, the first Computer Group conference was a symbolically important development.

On the one hand, the leaders of the Computer Group likely viewed existing events – such as the

joint computer conferences – as neither fully in tune with their needs nor amenable to reform. On

the other hand, initiating a new annual conference created yet another point of parity between the

Computer Group and the ACM, the latter of which had been planning and holding its own annual

meetings since its formation in 1947.

The conference therefore stood as a renewed symbol of independence, both for the

Computer Group and its primary constituency of computer-oriented engineers. But the event also

revealed persistent undercurrents of anxiety, especially as the participants took stock of their

position in the computer field. Even before the event started, for example, a pre-conference

digest set an appropriately introspective tone: “Due to the rapid growth of computer technology

during the past decade, many people in the computer industry as well as academic institutions are

confused about the role a modern electrical engineer should play in the computer field” (“First

Annual,” 1967, p. 1). In light of such concerns, the schedule included a panel session on

“Computer Science in Electrical Engineering Curricula,” which drew an impressive 300

attendees (“Report on the Chicago Gathering,” 1967). According to one post-conference report,

the resulting discussion closely paralleled other 1960s-era debates about computer science

education, as documented in the preceding chapter. Well-known computer scientists like George

Forsythe and Alan Perlis, for example, lobbied for the independent development of computer

science as a discipline and in separate academic departments. Electrical engineering educator and

COSINE member Mac Van Valkenburg, on the other hand, used the panel to emphasize both the

www.manaraa.com

 243

historical and prospective role of electrical engineering departments in computer science and

associated areas.201

Related themes surfaced at a second, smaller panel discussion at the conference that was

topically dedicated to “The Role of Electrical Engineers in Computer Science” (“First Annual,”

1967, pp. 3-4). Reflecting the dominant image of the field’s major sociotechnical factions, one

report summarized that the panel was focused on “the touchy subject of the relationship between

hardware and software (and their human representatives)” (“Panels Feature,” 1967, p. 109).

Another post-conference session report made an even more suggestive claim, namely that “the

electrical engineer in computer science may be … a vanishing breed” (Fife, 1968, p. 20). This

same report indicated that the panelists discussed a number of possible future roles for engineers

in the computer field, while placing particular emphasis on increasing levels of specialization,

systems-oriented work, and cross-disciplinary collaboration. They also discussed the engineer’s

role in the “messy” area of software, and one panelist noted that developing “more hardware”

and enhancing the ability of engineers to deal with hardware/software trade-offs might provide

some relief in this area. A final topic of discussion centered on the future role of the Computer

Group, as well as its relationship with the ACM. And while the association of these two groups

was described as one of possible “rivalry” or “competition,” the panelists ultimately concluded

that “it was the responsibility of Group Members, by active participation, to make the Group into

whatever would serve them best” (Fife, 1968, p. 20).

Such remarks implied a bottom-up, democratic model for a professional society, where

the group’s larger scope and agenda ultimately reflected the will of its members. While this view

was perhaps valid to a point, the leaders of the Computer Group were also stepping forward

around this time with their own ambitious visions for the organization. One snapshot of this

movement can be found in a planning document that was authored by Levine and published in

1968 in the Computer Group News (Levine, 1968). The former chairman started by once more

noting that “the Computer Group has not advanced in pace with the rapid growth of the computer

industry,” and he added that “independent professional Societies in the computer field have been

201 One conference report credited Van Valkenburg with delivering an especially witty attack on the
proponents of computer science: “Van Valkenburg, who said he had been told in Russia that the drink
was ‘Vodka and’; Vodka alone, he was told, is colorless, odorless and tasteless. Taken with something
else – caviar, for instance – it becomes exciting. So it is with computer science, which, alone, is colorless,
odorless, tasteless. With EE it becomes palatable” (“Panels Feature,” 1967, p. 109).

www.manaraa.com

 244

progressive and effective, both in terms of growth and providing service to their membership” (p.

16). Levine went on to argue that the group needed to reach beyond the “computer designers and

systems engineers” who traditionally dominated the organization’s membership roster. And

indeed, a personnel survey conducted in 1968 and published in 1969 revealed that approximately

79% (or 7309 of 9310) of responding Computer Group members held engineering degrees

(Davis, 1969, p. 7), while another report indicated that around 46% of Computer Society

members were working in the hardware engineering area by the late 1960s (“Computer Society

Members,” 1972).202

 In order to stimulate additional growth, Levine claimed that the Group should be

concerned with “all facets of computer technology” (p. 17), and he noted that the organization

was beginning to make concerted moves into software and applications. He also explained that

the group’s prospective members should include “professionals in electrical engineering, related

engineering disciplines, computer science, programming and systems engineering” (p. 17). Such

statements revealed the extent to which the Computer Group’s ambitions increasingly extended

beyond the province of “computer design and engineering,” even to the point of including

various pools of computer professionals who were much less likely to hold engineering degrees.

Levine also argued that “the Group should strive to become a semi-autonomous Society

within the IEEE,” thereby increasing its prestige, enhancing its appeal to those from a variety of

disciplines, and providing the group with greater operational flexibility and better financial

resources (p. 18). He added that such a move “would provide a basis for attracting other

organizations to merge with the Group; for example one has indicated receptiveness to merge

with the Computer Group if it is established as a semi-autonomous organization within the

IEEE” (p. 18). While Levine refrained from identifying the organization in question, elsewhere

he noted that it was desirable for the Computer Group to explore various merger possibilities,

both within and beyond the IEEE.203

202 When asked about occupational specialties on this same survey, the “Circuit, Component, and Logical
Design” and “Systems Engineering Design” categories received the largest number of member responses.
However, reasonably large numbers of members expressed involvement in other relevant areas of
activity, such as “Systems Programming” and “Scientific and Engineering Applications.”
203 Evidence suggests that the organization in question was the Simulations Councils, Inc. In a short
interview with incoming IEEE President Albert Hoagland published in 1972, one question noted that
“[t]here has been some talk that the Simulations Councils, Inc. may merge with us” (Hoagland, 1972a).

www.manaraa.com

 245

Succeeding chairmen largely advanced Levine’s agenda. Electrical engineer and

consultant L. Charles (Charlie) Hobbs, for example, started his tenure as chairman with a letter

noting that Computer Group’s Administrative Committee (or “AdCom”) was continuing to

grapple with questions about the organization’s “proper purpose, identity, image, and course of

action” (Hobbs, 1968a). Further, he emphasized that the Group occupied a rather “unique

position,” sandwiched as it was between the IEEE and the rest of the computer field. And later

the same year, he noted that the Group was ramping up a number of new programs, including

expanded conference and publication activities, the establishment of new regional and technical

committees, and moves toward greater operational autonomy (Hobbs, 1968b). When Edward

McCluskey took over as chair in 1970, he placed particular emphasis on expanding Technical

Committee activities and attracting new members to the group. In fact, McCluskey declared in

his first letter in Computer Group News that 1970 was “The Year of the Opening,” and he

clarified by calling for “an opening of Group membership to a new type of colleague, an opening

of technical committees to new types of members and activities” (McCluskey, 1970a, p. 3).

Yet a number of stubborn barriers stood in the way of realizing these objectives. As

McCluskey was forced to acknowledge, there were persistent concerns that “the Computer

Group would fail to realize its full potential as THE professional society for computer engineers

as long as membership was restricted to those individuals willing and able to qualify as IEEE

members” (p. 2). In order to address this issue, he noted that plans were being formulated to

allow individuals to become members of the Computer Group without also having to join the

IEEE. One important step toward realizing this goal came later in the year, when McCluskey

announced that the IEEE had tentatively approved the Computer Group’s petition for Society

status (McCluskey, 1970b).

McCluskey also identified how this change was beneficial on at least two major levels.

On the one hand, he noted that the Society’s enduring affiliation with the IEEE provided

uninterrupted service to the group’s traditional constituency, namely “electrical engineers

specializing in computers.” On the other hand, he explained that associated changes would allow

the group to better serve “that newer type of professional who regards himself [sic] as a

computer engineer or scientist rather than an electrical engineer.” McCluskey concluded his

announcement by extending “an enthusiastic invitation to all who consider themselves computer

scientists or engineers to join the IEEE Computer Society” (1970b). Such remarks reveal the

www.manaraa.com

 246

ongoing emergence of a distinct disciplinary identity for computer engineers and computer

scientists, while also suggesting an ongoing differentiation of computer engineering and

electrical engineering. However, many questions remained about whether these boundaries

would deepen and expand, shift, or even fade away.

The transition from Group to Society status also led to changes in the organization’s

Constitution, and a number of these are worth highlighting here. To begin with, the 1965 version

of the constitution included a statement of objective which indicated that “[t]he Group shall

strive for the advancement of the theory and practice of the computer sciences” (“IEEE

Computer Group,” 1965, p. 2). The 1970 revision, on the other hand, stated that “[t]he Society

shall strive to advance the theory and practice of computer and information processing

technology” (“Provisional IEEE Computer Society,” 1970, p. 33). As suggested by these

passages, the leaders of the group were toning down their use of terms such as “computer

science,” which their predecessors had eagerly embraced in the mid-1960s. And by emphasizing

words such as “technology,” they returned to what had long been recognized as the

organization’s core focus.

The revisions also involved a significant adjustment to the Society’s statement of scope.

More specifically, the detailed five-part statement that appeared in the 1965 Constitution was

dramatically simplified: “The scope of the Society shall encompass … [a]ll aspects of design,

theory, and practice relating to digital and analog devices, computation and information

processing” (“Provisional IEEE Computer Society,” p. 33).204 This broad-brush declaration

strongly reflected ongoing efforts to expand the group’s settlement into diverse domains. One

final Constitutional change worth noting involved the rhetorical elevation of the group’s

“Chairman” and “Vice-Chairman” posts to “President” and “Vice-President.” While this may

appear a minor change in terminology, it was symbolically important because it created yet

another point of parity between the Computer Society and the ACM.205

204 This revision had much in common with the first section of the old statement, which declared that the
group’s scope covered “[a]ll aspects of design, theory, and practice relating to systems for digital and
analog computation and information processing” (“IEEE Computer Group,” 1965, p. 2).
205 I realized the importance of this point in a recent conversation with Ed McCluskey. When I referred to
him as a former chairman of the Computer Society, he quickly corrected me by noting that he had been a
President of the organization. As McCluskey explained, “This was a big deal! Because the ACM had a
President” (McCluskey, 2005).

www.manaraa.com

 247

In summary, the transition from Computer Group to Computer Society was an important

turning point for this organization. In fact, some of the earliest calls to elevate the status and

improve the autonomy of the group can be traced back to at least 1963 and 1964, when the AIEE

CDC and IRE PGEC were merged with one another. And a variety of subsequent leaders –

including Levine, Hobbs, and McCluskey – helped keep this reform movement alive through the

1960s and into the 1970s.206 In more forward-looking terms, realizing Society status was highly

synergistic with many of the other goals that had been set for the organization, such as attracting

new members, building up the technical committees, nurturing new conferences, and expanding

publications. Yet as one might suspect, the Computer Society’s enhanced autonomy and rising

aspirations raised new questions, both about its role in the computer field generally and its

relations with the IEEE and ACM more specifically. In the sections that follow, I document how

new processes and structures of sociotechnical mediation helped maintain stability in this system

of professional societies. In fact, this stability is all the more impressive given the many

destabilizing forces – ranging from frenetic growth to rapid technical change – that increasingly

pervaded all phases of the field.

Expansion and Identity, Merger Talks and Mediation (Part I)

By the late-1960s, ongoing efforts to expand the Computer Group’s membership started

to bear fruit. To begin with, the group claimed approximately 10,000 members at the beginning

of 1966, and more than 11,000 by 1967 (Levine, 1967b; Levine, 1968). In early 1968, chairman

Hobbs boasted that the group’s membership had passed the 12,000 mark, making it “the largest

group in the IEEE” (Hobbs, 1968a). And by March of 1969, membership chair Tom Lindsay

indicated that the membership had risen above 15,000, largely through ongoing efforts to recruit

new group members from the ranks of the IEEE writ large (Linday, 1969). Growing the

organization by 5,000 members in less than five years was an impressive feat. Yet as

commentators such as Levine and McCluskey argued, a much larger pool of prospective

206 In February of 1964, for example, chairman Walter Anderson suggested that the group be renamed the
“Society for Electronic Computers.” As Anderson explained, “We continue firm in our belief that a
change in the group designation should include the replacement of the word ‘Group’ with one which
signifies a larger organization” (Anderson, 1964a). And in April of the same year, Anderson noted that
the group’s proposed constitution and bylaws included the name “Society for Computer Sciences”
(Anderson, 1964b). At the end of the year, however, incoming chairman Keith Uncapher announced that
the “Computer Group” name was official, at least until the IEEE overhauled its nomenclature (Uncapher,
1964b).

www.manaraa.com

 248

members lay outside of the IEEE, and reaching out to them was an important long-term growth

strategy. An appropriate affiliate or joint membership plan was sorely needed, so that individuals

without engineering degrees or interests could join the Computer Group, but not the IEEE.

In the early 1970s, the Computer Society’s increased autonomy and improved relations

with the ACM helped set the stage for a new affiliate membership plan, while also triggering

discussions about the more radical possibility of a merger. As incoming Society President Albert

Hoagland explained in early 1972, “[W]e need to further explore the possible gains from closer

working relations with the ACM” (Hoagland, 1972a). And just a few months later, a brief

interview with Hoagland that appeared in Computer Group News more explicitly raised the

question: “Should we merge with the ACM and leave the IEEE?” (Hoagland, 1972b). As

Hoagland explained, survey data suggested that roughly one third of Computer Society members

were also affiliated with the ACM. However, he added that approximately 75% of Computer

Society members also belonged to other societies or groups within the IEEE. Once again, these

data hinted at the extent to which the Computer Society was situated in a rather unique and

perhaps even uncomfortable situation, sandwiched as it was between the IEEE and ACM, as well

as a handful of other groups and societies.

Acknowledging the overlapping settlements claimed by these two groups, Hoagland also

explained that the ACM and the Computer Society maintained “mutual areas of interest,” yet he

cautioned that “we don’t compete directly with the ACM, nor should we.” Hoagland added: “I

don’t believe a ‘conglomerate’ computer society would better serve the diverse interests of

professionals in the field, although the bureaucratic potential may appeal to some.” Perhaps not

surprisingly, these remarks helped generate substantial follow-up debate and discussion. In the

next issue of Computer Group News, for example, one letter to the editor argued that the

Computer Society should leave the IEEE, yet the author added that “going to the ACM seems to

be a cop-out” (Hettinger, 1972). Yet another letter similarly spoke out against a possible merger

of the Computer Group and the ACM (Macnaughton, 1972). However, the author called for

more interaction between the two groups, and he outlined some of the specific ways in which

this might be accomplished.

By early 1973 the ACM and the Computer Society were moving even closer, as reflected

in a swapping of Presidential messages. In his editorial that was published in the January 1973

issue of Computer (formerly the Computer Group News), ACM President Tony Ralston noted

www.manaraa.com

 249

the “current close relations” between the two groups, and he explained that around 5000

individuals were probably members of both societies (Ralston, 1973a). He suggestively added:

At one time it may have made sense to characterize the Computer Society as the

‘hardware’ society and ACM as the ‘software’ society but it is doubtful that this

makes sense any longer. Not only is the distinction between hardware and

software becoming increasingly blurred by things such as microprogramming but,

more significantly, it is becoming impossible for most ‘software’ people to do

their jobs properly in ignorance of hardware or vice versa (p. 1).

Such passages once more revealed the extent to which the boundaries around the Computer

Society and ACM remained deeply intertwined with both the contemporary state of computer

technology and the actual practice and identity of professionals in the field. In fact, the ultimate

justification for keeping the Computer Society and the ACM separate was in part called into

question by ongoing technological changes, which made it increasingly apparent that the

boundaries around hardware and software were neither obvious nor fixed.

In this same letter Ralston also explained that a special ACM committee had been formed

to explore the Association’s relationship with the Computer Society. Further, he discussed how

cooperation between the two groups might be improved on four different levels. The first of

these centered on a developing a range of specific activities, such as distributing publications to

the members of both groups, providing cross-over discounts for conference registrations and

publications, and expanding joint sponsorship of conferences and workshops. A second and

somewhat higher level of cooperation involved coordinating and possibly even merging various

Computer Society Technical Committees with counterpart Special Interest Groups in the ACM.

Third, Ralston spoke to the possibility of a joint or affiliate membership plan. And fourth, the

ACM President pointed to the prospects of a complete merger of the two organizations, although

he identified a series of prerequisite conditions that would need to precede such a development.

The following month, a message from the Computer Society’s President was published in

the Communications of the ACM. And like Ralston, Hoagland hinted at the extent to which

reevaluating the relationship between the two societies was significantly linked to larger currents

of sociotechnical change:

The growing interrelationship between hardware and software activities in the

computer field has made this relationship a subject of active interest recently –

www.manaraa.com

 250

since the Computer society is identified as primarily serving the engineering

community while ACM does the same for programming (1973, p. 67).

Hoagland went on to describe the relation of these two group as complementary rather than

competitive, and he once again spoke to the value of “bridge building” activities. In fact, he

announced that the Computer Society had approved its own affiliate membership plan, with the

ACM recognized as the first qualified affiliate society. For a discounted rate, ACM members

could joint the Computer Society while foregoing membership in the IEEE. Hoagland also noted

the possibility of a merger, and he explained that the required negotiations would necessarily

involve the ACM, the Computer Society, and the IEEE. He also cautioned that none of the

groups “at this time sees an imperative for merger in terms of its own self-understood roles and

goals” (1973, p. 68). Yet regardless of questions about the feasibility or desirability of such a

merger, Hoagland’s comments revealed the extent to which the more autonomous and

independent Computer Society was increasingly positioned between the IEEE and the ACM.

It is also worth underscoring the extent to which the identity of the Computer Society and

its members and activities remained significantly linked to computer system design and

engineering, especially through the mid-1970s. For example, Stephen Yau – who served as the

group’s President in 1974 and 1975 – frequently couched the identity and scope of the Computer

Society in the terms of “computer engineering.” And in one of his Presidential messages to the

membership, Yau noted that the Society should “aim at serving all computer engineering

professionals rather than only those with qualified backgrounds in electrical and electronic

engineering” (Yau, 1974a). While this comment may initially appear confusing, it suggests that

Yau was using the term “computer engineering” to cover a rather broad array of computer

professionals, including many programmers and computer scientists who did not happen to hold

engineering degrees. On the other hand, such remarks hinted at thorny questions about whether it

was appropriate to frame this array of professionals as falling within the province of engineering.

The shifting identity of the Society and its members was also evident in its publication

offerings and conferences. In late 1972, for example, the group’s Computer magazine was given

a new byline: “The Voice of the Computer Design Professional.” But as one reader complained

in a follow-up letter, the phrase was misleading given that “the majority of subscribers to

Computer are involved in software, not in design” (Viehman, 1973). In light of such concerns the

editors quickly adopted a new byline that read “The Voice of the Computer System Design

www.manaraa.com

 251

Professional,” and they explained that “The motto ... had been amended to more accurately

reflect the magazine's concerns in both the software and hardware areas” (Viehman, 1973).

The topical orientation of the Society’s conference series provides another window into

these themes. In 1971, for example, the fifth annual meeting was dedicated to the topic of

“Hardware/Software/Firmware Trade-offs” – a clear reflection of the group’s presence on the

major boundaries of the computer field. In 1972 this same conference was given the catchy new

“COMPCON” name, and was also topically dedicated to “Innovations in Computer Systems

Design.” As declared in a pre-conference report, this event was “THE conference on computer

system design and engineering, both in hardware and software development” (“COMPCON,”

1972). While other groups surely maintained overlapping interests with the Computer Society in

many areas of hardware and software, emphasizing terms such as design, engineering, and

development helped mark the group’s sociotechnical settlement as partially proprietary.

Around this same time, a committee was formed to evaluate the conference series and

establish a more consistent identity for the events. As committee member Rex Rice explained in

a 1973 report, the event should primarily serve “system designers,” and should not duplicate

ACM or AFIPS events. Further fleshing out the conference’s preferred “character,” he added:

On the one hand we can consider applications studies insofar as they affect

architecture, and on the other hand we can delve into components and their use so

long as we do not stray into the physics of device design. Between these extremes

is ample room for software subjects, hardware subjects, circuit considerations,

and many component subjects (Rice, 1973, p. 15).

Here we find yet another expression of the group’s settlement, in this case positioning it squarely

between end-user applications, on the one hand, and end-user applications, on the other. This

statement also continued a longer historical trend of excluding from the group’s purview those

topics that were neither directly nor obviously related to the design of computer systems or

components. In fact, and as noted above, such efforts can be traced back to the mid 1950s.

Yet despite these questions about the identity and orientation of the COMPCON series,

these conferences appeared effective in bringing together the Computer Society’s core

constituency, namely computer system designers and engineers. Further, the continued success

and vitality of the Computer Society’s conference series was reflected in the shift to a bi-annual

schedule beginning in 1974. Around this same time, the celebrated Joint Computer Conferences

www.manaraa.com

 252

were experiencing a sharp decline in attendance and revenue.207 In fact, the long tradition of

organizing two JCCs per year was ultimately deemed unsustainable, and beginning in 1974 the

event was rechristened the National Computer Conference (NCC) and held just once per year.

Indeed, the parallel rise of the COMPCON series and decline of the joint computer conference

series is no historical accident. These events were surely competing with one another, and groups

such as the Computer Society and ACM were ultimately committed to their own events.

It is further worth underscoring how the shifting landscape of computer conferences both

reflected and reinforced a more general reconfiguration and renegotiation of the Computer

Society’s relation with the ACM from the late-1960s through mid-1970s. As discussed in

Chapter Three, the Joint Computer Conferences, National Joint Computer Committee, and

AFIPS had served as important common points of contact and negotiation for a system of

professional societies that principally consisted of the ACM, IRE PGEC, and AIEE CDC. Yet as

the scope, membership, and aspirations of both the ACM and the IEEE Computer Group/Society

expanded from the mid 1960s onward, the joint conferences and AFIPS became less important in

this system. To put it another way, the importance of these groups and events as “sociotechnical

mediators” went into a period of decline.

The leaders and members of the Computer Society and ACM therefore increasingly

sidestepped these organizations and conferences, and instead started to rely on more direct

structures and processes of mediation. In fact, Ralston’s remarks in particular hinted at how this

mediation was being worked out on a number of different levels, ranging from joint publication

initiatives and conference registration deals to affiliate membership plans and the coordination of

committee activities. There also remained the possibility that the Computer Society might one

day split off from the IEEE or even merge with the ACM. In the sections that follow I trace

forward the Computer Society’s expanding sociotechnical settlement, as well as its evolving

relationship with other organizations.

Sociotechnical Expansion and Mediation: New Committees for Emergent Fields

By the late 1960s, the Computer Society was evolving through two distinct mechanisms.

The first of these involved the group’s expanding settlement, especially in terms of its

207 In 1972, for example, Computer Society President Albert Hoagland noted “[t]he present downturn in
the fortunes of the JCCs” (Hoagland, 1972a).

www.manaraa.com

 253

membership, scope, and activities. A second type of mechanism is more aptly captured by terms

such as mediation and negotiation. On the one hand, various processes and structures of

mediation maintained an overall balance within the Computer Society, even against the backdrop

of rapid sociotechnical change. On the other hand, many of these processes and structures also

helped create a modicum of stability between the Computer Society and other overlapping

organizations, such as the ACM. In the sections that follow I provide a more detailed analysis of

these processes by reviewing the Computer Society’s historical trajectory through the 1970s and

into the 1980s. I begin by taking a detailed look at the group’s movement into emergent

subdisciplines such as computer architecture, software engineering, and microprogramming, with

particular emphasis on the establishment of new technical committees in these areas.

As noted above, by the late 1960s the leaders of the Computer Group were placing

significant emphasis on the role and activities of technical committees. And indeed, the

establishment of new committees stood as a potent institutional expression of the group’s

settlement in various phases of the computer field. Many of these committees also assumed

important roles as “sociotechnical mediators.” Early evidence for these themes can be found in a

1967 news item, where Levine summarized that the Computer Group’s Technical Committee on

Programming was charged with

the important task of producing an interface with the more hardware oriented

activities of the Computer Group. In addition, it should be the focus for the

exposition of the development of software systems as an integral part of the

development of computer systems (“New Programming Committee Chairman,”

1967, my emphasis).

The use of the term “interface” in this passage is telling, as it revealed the extent to which the

Programming committee was internally mediating the relation of the Computer Group’s more

hardware- and software-oriented factions, just as microprogramming and operating systems were

viewed as key interfaces between physical computing machinery and its associated software and

ultimate application(s). Further, Levine’s remarks suggested that the programming committee’s

activities might actually improve the integration of software in the overall design of computer

systems, reflecting a key point of cross-over between the committee’s social and technical

functions. By the late 1960s and early 1970s, a variety of new sub-disciplines were gaining

www.manaraa.com

 254

recognition in the computer field, and they became increasingly important sites for similar types

of sociotechnical mediation.

Computer Architecture

The field of “computer architecture” is a particularly relevant example for the present

analysis. As background, terms such as “architecture” and “architectural” started to creep into

various computer publications in the mid and late 1960s, largely in the context of discussions

about the organization and structure of computer systems. In 1969, for example, an article titled

“Evolving Digital Computer System Architectures” appeared in Computer Group News (Joseph,

1969). As author Earl Joseph explained, the word architecture referred rather broadly to “a style

of design or construction of computer systems” (p. 4). The term received another important boost

in 1970 with the publication of Caxton Foster’s Computer Architecture (Foster, 1970a).

Describing computer architecture as both a “field” and an “art,” Foster explained that the

primary job of the computer architect was to “assemble the units turned out by the logical

designer into a useful, flexible tool that is called a computer” (p. xi).208 As suggested by this

description, the title of “computer architect” was in many ways synonymous with “system

designer,” especially given that the latter type of worker had long been responsible for turning a

variety of functional “building blocks” into working computer systems. In fact, the content of

Joseph’s 1969 article explicitly framed “computer system designers” as the main arbiters of

computer architecture design decisions.

Yet Foster’s broad use of the term placed somewhat greater emphasis on the “art” of

computer design, and he explicitly argued that computer architecture work demanded a thorough

familiarity with software. As Foster explained, the computer architect should be a “competent

machine language programmer, preferably with experience in software systems” (xi). Similar

themes surfaced in 1972, when Foster served as guest editor for a special issue of Computer that

was dedicated to the topic of computer architecture (Foster, 1972). Foster’s introductory remarks

described computer architecture as a “recently recognized discipline” and a “profession,” and he

emphasized that practitioners in the new field were working on the boundaries of software and

208 Foster also defined computer architecture as “the art of designing a machine that will be a pleasure to
work with” (Foster, 1970a, p. xi). While perhaps tongue-in-cheek, this characterization hints at the notion
that a computer architect is a special breed of computer designer who takes seriously the importance of
usability and applications.

www.manaraa.com

 255

hardware. “A computer architect,” Foster explained, “should be aware of the problems of

software development and the potentialities of hardware developments.”

The boundary-spanning character of computer architecture was further evident by the

rapid movement of both the ACM and Computer Society into this emergent sub-field. The

Computer Society’s Technical Committee on Computer Architecture (TCCA) was established in

1970, while the ACM’s Special Interest Committee on Computer Architecture (SICARCH) was

founded in 1971 and elevated to SIG status by early 1972 (Foster, 1972).209 The two groups also

quickly cultivated a cooperative relationship, as reflected in a letter that was published in

Computer in 1972. As reported by SICARCH chair Michael J. Flynn, participants at a joint

meeting of the SICARCH and TCCA had raised a number of pointed concerns about the overall

lack of cooperation between the ACM and the Computer Society (Flynn, 1972). In response, the

two groups passed a unanimous resolution:

Resolved ACM-SICARCH and IEEE CS-TCCA request that their parent

organizations develop policies which will support our operational mergers within

technical components, within chapters, and within students chapters the two

societies appropriate to their mutual benefits.

Flynn went on to report that the Computer Society had 17,000 members and the ACM about

25,000, and he added that “a large number (five to ten thousand; no one seems sure) of these are

joint members.”210 He also asked how the interests of the field might best be served. Relating

these issues to the educational sphere, Flynn noted that “the bifurcated professional attitude is

reflected too often at universities with overlapping Computer Science and Electrical Engineering

Department structures.”

209 The founding of SICARCH also reflects the ACM’s movement into emergent boundary areas. In fact,
Caxton Foster complained in a 1970 letter about the lack of ACM involvement in the area of computer
organization (Foster, 1970b). "In glancing over recent publications of the ACM,” Foster explained, “I was
struck by the dearth of papers on the subject of machine organization or architecture. ... [A] total of 6 out
of some 330 publications of the Association for Computing Machinery bear on the subject of the design
or organization of machinery for computing.” Foster concluded his letter by tentatively proposing the
establishment of a Computer Architecture SIC. As noted above, it was founded the following year.
210 According to an AFIPS survey that was conducted and published in 1971, approximately 20% (or 633
of 3,110) of responding ACM members also belonged to the IEEE, while 35.4% (or 633 of 1,790) of
responding IEEE members also belonged to the ACM (Dickmann, 1971, p. 2). Extrapolating these figures
to the full member populations suggests that at least 5,000 to 6,000 individuals were joint members of the
two groups in the early 1970s.

www.manaraa.com

 256

It was fitting that these two particular groups stepped forward with such a call, especially

given the extent to which the emergent field of computer architecture was positioned on the

boundaries of computer science and computer engineering, software and hardware. And while

the members of SICARCH and TCCA could do only so much to encourage a merger of their

parent organizations, their cooperative activities helped model how the boundaries around the

ACM and the Computer Society could actively be blurred. In 1973, for example, the two groups

organized and co-sponsored the first in a long series of joint symposia on computer architecture.

The second such symposium was held in 1975, and thereafter the event was held annually.

Summarizing the state of the field, a report on the second symposium explained that the program

for event was based on “the relatively unsophisticated but exacting view that architecture is the

study of those aspects in the analysis and design of computers which specifically relate their

structure and their function” (King and Garcia, 1975, p. 79). A 1976 description of the TCCA, on

the other hand, noted that the committee itself was primarily concerned with “research and

development in the integrated hardware and software design of both general-purpose and special

purpose digital computers” (“IEEE Computer Society, 1976, p. 26). In fact, some of the first

tools and techniques for developing such integrated systems were emerging around this time, and

they helped stimulate the eventual emergence of a growing body of research in the area

appropriately known as “hardware/software codesign.” I return to this theme below.

As this overview reveals, the TCCA was acting as an important “interface” between the

Computer Society and the ACM, just as computer architects were playing an increasingly pivotal

role in mediating computer “structure” and “function,” such as by improving the integration of

software and hardware. Yet this same committee was also serving a similar role within the

Computer Society. As noted above, the TCCA collaborated with the Technical Committee on

Operating Systems to organize a “Workshop on the Interaction of Operating Systems and

Computer Architecture” in early 1973. As nicely summarized in one report, the event was

intended to encourage “further dialogue and interaction between operating systems and computer

architecture” (Jensen, 1973, p. 15). Materials from the workshop were also published in a special

issue of Computer, and guest editor E. Douglas Jensen explained that the publication might help

“stimulate further dialogue and interaction between the two disciplines from the outset of the

computer design.”

www.manaraa.com

 257

Such comments reveal that improving the interface between software and hardware was

viewed by many as a social and disciplinary problem as much as a technical challenge. In fact,

one might surmise that one way to overcome the stubborn hardware-software divide was to

encourage improved cooperation and communication between computer architects, systems

programmers, and other factions of the computer design process. And indeed, this is precisely

what commentators such as Carr had championed in as early as the 1950s. Hence, these types of

workshops and publications helped ameliorate some of the sociotechnical barriers that were

characteristic of the computer field generally, as well as the vertical organization of the

Computer Society’s technical committees more specifically. These themes are brought into

further relief in the following sections, where I focus on the Computer Society’s movement into

the areas of software engineering and microprogramming.

Software Engineering

While the Computer Society’s involvement in the emergent field of computer

architecture in the 1970s is largely a story of intra- and inter-society mediation, the group’s early

movement into the domain of software engineering helps bring themes of both expansion and

mediation into further relief. As background, the term “software engineering” first started to

surface around 1967, when the first calls were made for an international conference dedicated to

this newly-named domain. And as noted in the previous chapter, by 1967 ACM President

Anthony Oettinger praised the emergence of the notion of software engineering (Oettinger,

1967), while his successor Richard Hamming argued in a 1968 lecture that “more than the usual

engineering flavor be given to computer science” (Hamming, 1969, p. 3). While these

commentators surely had manifold reasons for promoting an engineering-oriented view of

software and computer science, they were clearly responding to a number of major challenges

that were being grappled with around this time. Many critics, for example, were starting to

complain that theoretically-oriented computer science programs were turning out graduates who

were ill-prepared to undertake large programming projects. And just as importantly, discussions

about a so-called “software crisis” were rising to a fever pitch, especially as software

development budgets skyrocketed and hardware costs continued to fall.

The concept of software engineering gained further momentum in 1968 and 1969 through

back-to-back conferences that were sponsored by the Science Committee of the North Atlantic

www.manaraa.com

 258

Treaty Organisation (NATO). As the organizers of the first conference explained, the phrase

“software engineering” was deliberately selected as a “provocative” unifying theme for the

event, although Mahoney has argued that the phrase was only provocative to the extent that it

relied on terminology and metaphors that were vague, ill-defined, or uncommon (Mahoney,

2004, p. 9). Yet like other terms such as “computer science,” the lack of a clear definition for the

term was quickly overshadowed by its appeal, and by the late 1960s and early 1970s the phrase

“software engineering” was appearing with increasing frequency in a variety professional and

trade journals, including those published by the ACM and the Computer Society.

The Computer Society made its first formal claims in this emergent domain in the mid

1970s. In 1974, for example, the Computer Society Board approved both the formation of a

Technical Committee on Software Engineering (TCSE) and the publication of a new periodical

titled IEEE Transactions on Software Engineering (Yau, 1974a; 1974b). As President Sephen

Yau summarized, this new journal covered “all aspects of specifications, design, development,

management, test, maintenance, and documentation of computer software” (1974b, p. 2).211 The

Computer Society’s movement into software engineering was also evident in May of 1975, when

a special issue of Computer was dedicated to the topic. In addition, the Computer Society and the

National Bureau of Standards (NBS) co-sponsored the First National Conference on Software

Engineering, which was held in September of 1975. With 700 total attendees, the event was

deemed a success. And in late 1975, a Prospectus for the Software Engineering TC was

published in Computer (“Software Engineering Prospectus,” 1975). By providing both a

definition for the phrase “software engineering” and a description of the typical professional

responsibilities of “software engineers,” the prospectus further bolstered the group’s settlement

in this area.

The ACM made its own formal moves into software engineering in 1976 with the

establishment of a Special Interest Committee on Software Engineering (SICSOFT) (Sammet,

1976). From the very beginning, the group established a cooperative relationship with its

counterpart committee in the Computer Society. In the group’s first newsletter, for example,

211 In a subsequent announcement, the scope of the journal was outlined in more detail: “Devoted to the
engineering aspects of computer software, the new Transactions will present state-of-the-art research
papers in such specific areas as programming methodology, software reliability, system performance
evaluation, software development management, and software development tools. Other areas covered will
include hardware-software interface, man-machine interaction, software development for minicomputers,
and the use of automatic programming” (“Announcing a Major new Publication,” 1975).

www.manaraa.com

 259

editor Peter Neumann noted the “obvious overlap in scope between SICSOFT and the IEEE

Computer Society Technical Committee on Software Engineering” (Neumann, 1976, pp. 2-3).212

Further, he added that differences in the membership of each organization and the difficulties of

a possible merger of the ACM and Computer Society helped justify this “duplication,” and he

explained that Tony Wasserman was acting as a liaison between the two groups through his role

as both SICSOFT Vice Chairman and TCSE executive committee member (p. 3). The close

relation of the two groups was also reflected in the Second International Conference on Software

Engineering, which was jointly sponsored in 1976 by the ACM, IEEE, and National Bureau of

Standards (NBS) (“Conference Report,” 1976). When Wasserman took over as chair in 1977,

SICSOFT claimed an impressive 2000 members, and by mid-1977 it was upgraded to SIG status

(Wasserman, 1977a; 1977b). By this time it was clear that both SIGSOFT and the TCSE were

well established.

Given that the leaders of the Computer Society appeared eager to expand the group’s

settlement into software and applications, the concept of “software engineering” emerged at an

opportune time. By moving into this domain the organization could make strong claims in the

sphere of software, while simultaneously retaining the engineering-oriented image of the group

and its members. Publications such as the Transactions on Software Engineering helped

legitimate and secure the Computer Society’s settlement in this area, while the ACM’s parallel

movement into software engineering was mediated through the cooperative efforts of the TCSE

and SIGSOFT groups. And just as the emergence of software engineering itself tended to call

into question some of the deeply entrenched schisms that separated engineers and engineering

from computer scientists and computer programming, the reasonably close and cordial relation

of the TCSE and SIGSOFT revealed another important point of overlap between the ACM and

the Computer Society.

Microprogramming

The area of “microprogramming” provides further evidence for some of the processes of

sociotechnical mediation that were at work in the 1970s. Yet unlike relatively young fields such

212 Neumann also noted overlaps between SICSOFT and other ACM SIGs, including SIGPLAN
(Programming Languages) and SIGOPS (Operating Systems) (Neumann, 1976, p. 2). Yet he countered
that SICSOFT might provide “a more global viewpoint,” especially by emphasizing the many common
subjects and interests that spanned these various groups. Hence, the SICSOFT group was assuming a
mediating role both within the ACM and between the ACM and the Computer Society.

www.manaraa.com

 260

as software engineering and computer architecture, microprogramming had a longer history, and

it was somewhat more closely bound to technology and the technological state of the art. Credit

often goes to British computer pioneer Maurice Wilkes for coining the term in 1951, used to

describe a new type of computer design with a modifiable rather than fixed instruction set

(Wilkes, 1989).213 With such a machine, a computer designer or programmer could more easily

modify existing – or even create entirely new – operation codes. While this was certainly a novel

and promising concept, limitations in memory technology, conservative cultures of computer

design, and deeply entrenched schisms between computer designers and users all helped stall the

commercial realization of the idea. However, the EDSAC 2 finally went into operation at

Wilkes’ own University of Cambridge in 1958 as the first microprogrammed computer, thereby

helping to establish the feasibility of the concept (Wilkes, 1992).

An even more important development came in the early-1960s when computer giant IBM

decided to implement microprogramming in a number of different models in their new 360 line

of computers (Smotherman, 1999). And while successfully implementing the idea required

significant research in memory technology, the company came to realize that microprogramming

technology could greatly improve compatibility across a range of different computer models. By

the mid-1960s, the proliferation of microprogrammed machines from IBM and other vendors

also stimulated new approaches to simulation and emulation, where one type of computer could

be configured to operate like another model. In light of these and other virtues – such as

dramatically increasing the flexibility of a given system – microprogramming techniques were

increasingly common from the late 1960s onward, as evidenced by an expanding assortment of

publications on the topic, including full-length texts such as Microprogramming: Principles and

Practices (Husson, 1970). As nicely summarized in one historical account: “Because of the

success of the IBM System/360 product line, by the late 1960’s microprogramming became the

implementation technique of choice for most computers except the very fastest and the very

simplest. This situation lasted two decades” (Smotherman, 1999).

Given that the technology of microprogramming was squarely situated on the boundaries

of software and hardware, it is perhaps not surprising that the Computer Society and ACM

maintained overlapping interests in this area. Yet collaboration once again prevailed over

213 It is worth noting that Wilkes’ background was not in engineering, but rather mathematics. Once again,
we find an important development in the area of computer design coming from a non-engineer.

www.manaraa.com

 261

competition. By the late 1960s, for example, the Computer Society and ACM were co-

sponsoring a series of annual workshops on microprogramming, which were continued in the

1970s as the two groups made more formal moves into this domain. By at least 1970, an ACM

Special Interest Group on Microprogramming (or SIGMICRO) was ramping up its activities,

including through the publication of a newsletter (Carlson, 1970). On the other hand, the

Computer Society’s Technical Committee on Microprogramming was finally established in 1974

(Yau, 1974b, p. 3). Cross-talk between the TC and the SIG was very evident, as suggested by the

continued joint sponsorship and organization of a long series of annual microprogramming

workshops. And by 1975, a single individual – IBM microprogramming expert J. Michael Galey

– was simultaneously serving as the chair of both ACM SIGMICRO and the Microprogramming

TC (Galey, 1975). To a significant extent, the two groups were functioning like a single entity.

It is worth noting that the increasingly close alignment of these and other committees and

groups was recognized at the time. As nicely summarized in a 1975 Computer Society

subcommittee report, “Many Technical Committees of the Computer Society are paralleled by

similar Special Interest Groups/Committees within the ACM. The overlap in interest has been

significant enough in some cases that the TC and SIG have operated virtually as a single

organization with key individuals holding dual offices” (Salisbury, Snyder, and Smith, 1975).

However, the authors added that ongoing efforts to operate some combined TCs and SIGs as a

single organization “have generally been opposed by the parent organizations, placing emphasis

on differences between the two societies rather than the similarities.” Such remarks once again

revealed the many challenges faced by those who favored a partial or even full merger of the two

parent organizations.

In August of 1975, the aforementioned Galey served as guest editor for a special issue of

Computer that was topically dedicated to “Microprogramming: The Bridge between Hardware

and Software.” In a simple illustration that accompanied Galey’s introduction to the feature

articles, a computer chip appeared suspended in a chasm, acting as a sort of bridge for a curving

road that flowed from one side of the valley to the other. It was an apt visual metaphor, given

that microprogramming technology had grown up on the boundaries of hardware and software. In

fact, new terms such as “firmware” emerged and started to gain traction in the late 1960s to

www.manaraa.com

 262

describe this expanding, intermediate level of computer technology. A 1967 Datamation article

by Ascher Opler is often credited as the original source of this term (Opler, 1967). 214

Yet in light of the preceding historical review, this line of analysis can be taken one step

further. That is, the bridge metaphor worked equally well in describing how the Technical

Committee on Microprogramming and its SIGMICRO counterpart had emerged as crucial bridges

between the ACM and the Computer Society. To put it another way, these two groups – as well

as a number of other TCs and SIGs – acted as the metaphorical “firmware” between the more

hardware-oriented Computer Society and the software- and applications-oriented ACM. Further,

it was no coincidence that these sorts of bridging activities grew up in areas where these

organizations and their members maintained overlapping interests. Below, I discuss in more detail

this striking similarity between the actual organization of computer technology and the structure

and relation of these two professional societies. Yet in order to provide additional background

details for this argument, it is first necessary to more generally document the Computer Society’s

technical committee structure through the 1970s and into the 1980s, as well as the group’s more

general evolution and expansion.

Expansion and Identity, Merger Talks and Mediation (Part II)

As detailed in the preceding section, technical committees were an increasingly important

part of the Computer Society’s growth in the 1970s. In fact, by 1976 the Society consisted of 17

technical committees (“IEEE Computer Society Technical Committees,” 1976), and in 1978 the

ongoing expansion of the committee structure prompted the formation of two umbrella Technical

Interest Councils (TICs) (“Technical Interest Councils,” 1979). With one TIC encompassing the

area of “Systems Technology” and another dedicated to “Software and Applications,” the TICs

were established to review, coordinate, and manage an increasingly large and unwieldy

assortment of committees. Further, one cannot help but notice that the divide between the TICs

roughly reflected the persistent hardware-software schism. The establishment of the TICs can

214 As Opler explained, “I believe it worthwhile to introduce a new word into our vocabulary: firmware. I
use this term to designate the microprograms resident in the computer’s control memory, which
specializes the logical design for a special purpose, e.g., the emulation of another computer” (p. 22,
author’s emphasis). Referencing Opler’s article, microprogramming pioneer Maurice V. Wilkes
summarized in 1969 that “firmware may take its place along with software and hardware as the main
commodities of the computer field” (Wilkes, 1969, p. 143).

www.manaraa.com

 263

therefore be viewed as a structural fix that brought the Computer Society’s two faces into further

relief, especially as the group’s settlement covered an ever-larger sociotechnical territory.

The growth of the Society continued in subsequent years, and by 1979 the group claimed

20 technical committees. President Oscar Garcia noted that the number of TCs had increased to

26 by early 1982, and he added that committees had recently been formed to cover “such new

areas as distributed processing, multiple-valued logic, optical processing, computer graphics,

computers and the handicapped, computational medicine, VLSI [Very Large Scale Integration],

and office automation” (Garcia, 1982). The number of committees jumped to 30 by late 1982,

and the roster of newly established TCs covered areas as diverse as computer languages,

personal computing, and robotics (“Chairmen Named,” 1982). And in a 1983 report, Roy Russo

– the Computer Society’s Vice President for Technical Activities – nicely summarized the

pivotal role that the technical committees had assumed within the organization (Russo, 1983). To

begin with, he noted that the TCs were extensively involved in running conferences, developing

standards, publishing newsletters, and sponsoring special issues of Computer Society

publications (p. 3). Referring to the TCs as “the backbone of the Computer Society,” his remarks

also hinted at the role that the committees were playing as sociotechnical mediators. “[O]ur

technical activities,” Russo explained, “provide the principal mechanism for cooperation with

other professional organizations both within and outside the IEEE, for example, the

Communications Society [of the IEEE] and the ACM” (Russo, 1983, p. 6).

Membership contests and other campaigns helped the Computer Society maintain a

steady pattern of growth into the mid 1970s, and total membership finally passed the 20,000

mark by the end of 1974 (Yau, 1975, p. 3). By 1975 the group was entering a period of more

rapid development, fueled in part by both the expansion of the Society’s activities and the

addition of large numbers of new affiliate and student members. As outgoing President Yau

boasted in 1976 – the year of the group’s 25th anniversary – “the Society is stronger and healthier

than ever,” and he added that membership had risen above 23,000 (Yau, 1976, p. 4). Subsequent

announcements revealed that the society was comprised of 33,000 members by late July of 1978

– an increase of more than 10,000 individuals in less than two years (Smith, 1978). As explained

by Computer Society President Merlin Smith, these statistics were attributable to both the growth

of the computer field and the responsiveness of the Society to member interests. But regardless

of the ultimate reasons, the expansion largely continued unabated.

www.manaraa.com

 264

References to the Computer Society as mainly a computer engineering society were also

increasingly rare in the mid and late 1970s, and a 1977 update to the Society’s constitution

helped made more explicit the group’s increasingly expansive settlement. For example, the terms

“application” and “science” were inserted into the group’s stated objectives: “The society shall

strive to advance the theory, practice, and application of computer and information processing

science and technology” (“IEEE Computer Society Constitution,” 1977, p. 108, my emphasis). A

similar change was also made to the Society’s official statement scope, with the updated version

declaring: “The scope of the society shall encompass all aspects of theory, design, practice, and

application relating to computer and information processing science and technology” (p. 108).

And if there remained any doubts about the group’s wide-ranging agenda around this time,

President Merlin G. Smith explained that “society leadership is now committed to provide

technical programs and publications across much of the total hardware, software, and

applications spectrum” (Smith, 1977a).

From the late 1970s onward this broad commitment was realized in a variety of ways,

including through the formation of technical committees, as noted above. New publications and

conferences provide additional evidence for this trend. As noted above, Transactions on

Software Engineering was added as the group’s third major publication in 1975. IEEE

Transactions on Pattern Analysis and Machine Intelligence was launched in 1979, while IEEE

Computer Graphics and Applications and IEEE Micro (which was dedicated to microcomputers

and related topics) were added in 1981. The addition of IEEE Design and Test of Computers and

IEEE Software in early 1984 raised the group’s total number of regular publications to eight.

New conferences and workshops also reflected the group’s growth, and by the early 1980s the

Society was annually sponsoring or co-sponsoring as many as 45 to 50 special interest

conferences, workshops, and symposia (Yau, 1981).

One new conference of particular note was the first IEEE Computer Society International

Computer Software and Applications Conference (COMPSAC), first held in 1977. As one pre-

conference report explained, “COMPSAC 77 will bring together computer practitioners, users,

and researchers to share their ideas, experiences, and requirements for applications software,

management techniques, and software development support, including automated techniques”

(“COMPSAC 77,” 1977). As suggested by this description, the Computer Society was serious

about expanding its settlement to cover significant swaths of software and applications.

www.manaraa.com

 265

Membership growth was also rather dramatic from the late 1970s into the 1980s. In fact,

by early 1980 the size of the Society had reached parity with the ACM, with both groups

claiming about 44,000 members (McCracken, 1980, p. 66; “Record Growth,” 1980). By the end

of 1981, total membership rose above 62,000. On the one hand, this number made the Computer

Society the largest society within the IEEE, by a factor of three (Bonn, 1982, p. 4). In fact,

Division Director Dick Simmons noted in 1982 that the Computer Society was growing at twice

the rate of any of the IEEE’s 31 technical societies (Simmons, 1982, p. 6). On the other hand, the

leaders of the Computer Society could finally boast that they were at the helm of the “the largest

professional technical society devoted to computers” (“IEEE-CS Membership,” 1982). This was

no small feat, as the expansion of the ACM had long outpaced the Computer Society. And in

October of 1982, President Oscar Garcia noted that the membership stood at 66,605, which

represented a doubling of the size of the organization in less than four years (Garcia, 1983, p. 5).

For reference, ACM President David H. Brandin reported around this same time this his

organization was comprised of about 57,000 members (Brandin, 1982a, p. 769).

In a replay of the early 1970s, this level of expansion helped trigger renegotiations of the

Computer Society’s relations with both the IEEE and ACM. On the IEEE side, for example, the

Computer Society made bold moves in 1980 and 1981 to change the name of the parent institute.

As Dick Simmons – who at the time was serving as a division director on the IEEE Board of

Directors – explained:

Now might be the time to consider changing the name of the institute from the

Institute of Electrical and Electronics Engineers to the Institute of Electrical and

Computer Engineers. In my opinion this would encourage increased participation

of the computer professional in both the Computer Society and the IEEE

(Simmons, 1980).

This was a striking development, as it suggested the field of computer engineering was taking on

a distinct professional and disciplinary identity. And while this particular measure had broad

support among the leaders of the Computer Society, in 1981 it failed to gain sufficient traction

among the leaders of the parent organization (Feng, 1980; Bonn, 1982, p. 4). The Computer

Society was more successful in 1982 when it secured a second division director slot on the IEEE

Board (Bonn, 1982; Garcia, 1983). This new position gave the Computer Society control of two

www.manaraa.com

 266

of eight total division director slots, effectively doubling the group’s representation in the top

leadership structure of the IEEE (Bonn, 1982, p. 4).

Yet as many surely recognized at the time, the Computer Society’s prominent position –

both with regard to the IEEE specifically and the computer field generally – was at least partially

due to an expanding roster of affiliate members. Membership and Information President Dennis

Fife reported that the Society was comprised of almost 72,000 members by the end of 1982, and

he noted that roughly a quarter of the 10,000 members that had been added in 1982 were affiliate

members. “Many of these members are not engineers by training,” Fife explained, “but many of

them either participate heavily in or, in fact, lead activities of the society that benefit all

members” (Fife, 1983, p. 6). And in 1984, when the Computer Society boasted somewhere in the

neighborhood of 80,000 members, an editorial on the group’s relationship with the ACM

revealed that somewhere between 15,000 and 20,000 individuals were paying dues to both

organizations (Carlson and Simmons, 1984).

As suggested by such statistics, the expansion of the Computer Society had deepened the

group’s overlap with the ACM, while also eroding the dominant image of the Society as first and

foremost a computer engineering organization. In fact, questions about whether it was

sustainable or desirable to maintain this bifurcation between the computer field’s two major

professional societies received renewed attention in the early and mid 1980s, especially under the

leadership of Computer Society President Oscar Garcia. Some of the earliest evidence for this

trend can be found in a special message from ACM President David H. Brandin that was

published in the November 1982 issue of Computer. While ostensibly concerned with the topic

of technology transfer – at a time of growing concern about the global competitiveness of the

U.S. computer industry – Brandin added that “Oscar Garcia has said that there are no two

technical societies on the face of this earth that have more in common than ACM and the IEEE-

CS. I agree with him” (Brandin, 1982).

Another important touchstone for this movement surfaced in mid-1983, when Garcia and

Bradin authored a special joint message that was published in both Computer and the CACM.

Suggestively titled “Where do parallel lines meet? or The Common Goals of ACM and the

IEEE-CS” (Brandin and Garcia, 1983), the two Presidents noted that “[t]he distinction between

the two societies is no longer clear,” and they added that increasing levels of intersociety

competition reflected ongoing efforts “to break out of the binary mold of thinking – hardware vs.

www.manaraa.com

 267

software, engineering vs. computer science” (p. 6). The two presidents indicated that both the

Computer Society Board and the ACM Council had recently voted in favor of resolutions that

supported accelerated cooperation and possibly even a merger between the two groups, and they

added that an ad hoc Committee for Intersociety Cooperation had been established (pp. 6-7).

In a summary report published in early 1984, the leaders of this committee identified a

series of common objectives for the two groups, as well as some areas were cooperative progress

was being made (Carlson and Simmons, 1984). In fact, they discussed five key areas of interest

or concern that were shared by the two groups, namely membership overlap, educational

activities, conferences, technical committees and special interest groups, and publications. As a

more specific example of the cooperative efforts that were once more gaining momentum,

Carlson and Simmons pointed to a 1983 analysis that revealed that 19 of the Computer Society’s

Technical Committees had “a significant correspondence” to an equal number of ACM Special

Interest Groups (p. 89). Conversely, only 12 TCs and 14 SIGs had minimal or no overlap.

Such statistics revealed the increasingly overlapping and interpenetrating character of the

settlements claimed by these two professional societies, while also revealing the potential for

further crosstalk and coordination. As the authors explained, an aggressive program for

promoting cooperation between TCs and SIGs had been proposed, and a joint meeting of all TC

and SIG chairs was planned for later in the year. The report also noted that plans were underway

to develop a new joint publication for the members of both societies, although the authors

acknowledged that preliminary discussions had revealed that such an endeavor was beset by

problems that were “editorial, technical, administrative, legal, financial, and even political in

nature” (p. 89). In light of such challenges, Carlson and Simmons admitted that “a full merger

will not occur rapidly,” but they nonetheless spoke to the value of ongoing efforts to identify

common areas of interest and improve service to the members of both groups.

Martha Sloan – who served as Computer Society President from 1984 to 1985 – ended

her term by repeating the message that the organization should “[b]uild stronger bridges to IEEE

and ACM,” and she called on her colleagues to “meet the challenge of unifying the computing

profession by improving coordination with ACM while exploring possibilities of a merger”

(Sloan, 1985, p. 7). Yet in the wake of Sloan’s Presidency, merger discussions were gradually

www.manaraa.com

 268

superceded by more pressing matters.215 In fact, both groups were making important moves in

the area of conferences in the latter half of the 1980s. For example, the cordial mid-1970s

relation of the ACM and the Computer Society helped lead to the establishment of a new Fall

Joint Computer Conference (FJCC) series. Intended as a replacement to the ACM’s National

Conference and the Computer Society’s Fall COMPCON, the first meeting was held in 1986 and

attracted 3000 people (“ACM and IEEE-CS Launch,” 1987). Yet in a somewhat surprising turn

of events, low attendance at the second of these events in the led the Computer Society and ACM

to cancel FJCC 88 and its successors (“The Last FJCC,” 1987).

In a sense, this turn of events symbolized the extent to which the two parent organizations

had once again backed away from a possible merger. It is also worth noting that the failed revival

of the FJCC was organized outside the purview of AFIPS. In fact, the event looked like

something of a throwback to the mid-1950s, when the joint computer conferences emerged as an

important common point of contact and negotiation for three main groups, namely the ACM,

AIEE CDC, and IRE-PGEC. And despite the failure of this new joint conference, other

developments made it clear that the leaders of the ACM and the Computer Society preferred to

work out their relationship directly, rather than through intermediaries such as AFIPS.

This theme was brought into further relief in 1987, when both organizations gave notice

that they were formally withdrawing from the National Computer Conference series (Abrahams,

1987; “Computer Society Votes,” 1987). After attendance peaked at 100,000 in 1983, the NCCs

entered a downward spiral, and by 1987 attendance was estimated at a paltry 14,000. Both

groups expressed concerns that the events were no longer meeting the needs of the professional

community, and were also a potential financial liability for the sponsoring organizations. In fact,

the Computer Society Board even went so far as to pass a movement calling for the cancellation

of all future NCCs (“Computer Society Votes,” 1987). The leaders of AFIPS voted to continue

the event, but by this time the writing was on the wall. The last NCC conference was held in

1987, and AFIPS itself was dissolved in 1990.

215 In a 1987 commentary on the ACM’s development over roughly the preceding fifteen years, Eric
Weiss noted that the ACM had long maintained “cordial working relationships” with “natural rivals” such
as the Computer Society, yet he added that “attempts to merge the two always fail” ().

www.manaraa.com

 269

Conclusion

On the one hand, the demise of the Joint Computer Conference series in 1987 marked the

end of a historical era that can be traced back to the first such event in 1951. On the other hand,

by the late 1980s it was clear that other and more direct forms of sociotechnical mediation had

emerged to maintain stability both within an expanding Computer Society and between the

Computer Society and the ACM. These mediators ranged from affiliate membership plans and

jointly-sponsored conferences to coordinated publication activities. In this chapter I also placed

particular emphasis on the mediating role of the Computer Society’s Technical Committees and

the ACM’s Special Interest Groups. As noted above, from the 1970s onward these sub-groups

became key points of contact and negotiation – or “interfaces” – between the two parent

organizations. More specifically, these groups and their activities helped smoothed the flow of

information, people, and power, both within and between the Computer Society and the ACM.

On a closely related note, my analysis also describes the striking structural similarities

between the dominant model of computer system design and the structure and relation of these

two professional societies. Just as the SIGs and TCs acted as “interfaces” between the hardware-

tilted Computer Society and the software- and applications-oriented ACM, so too did

intermediate levels of technology such as firmware and operating systems act as bridges between

the physical hardware of computing and the associated software and applications. Further, many

of the SIGs and TCs that were cooperating most closely – sometimes even to the point of near-

merger – were situated in sociotechnical boundary-areas, such as microprogramming, computer

architecture, and software engineering. The Janus-faced character of computer technology was

therefore both reflected in and reinforced by the computer field’s Janus-faced professional

societies.

Yet my claims about the historical coproduction of the social and the technical are not

entirely without precedent. In a 1968 Datamation article, for example, researcher Melvin E.

Conway tentatively worked in similar directions when he argued that “organizations which

design systems … are constrained to produce designs which are copies of the communication

structures of these organizations” (1968, p. 31). He used the term “homomorphism” to describe

these “structure-preserving relationships,” and he cleverly noted that a given organization will

tend to “stamp out an image of itself in every design it produces” (p. 30). Applying this idea to

the example of working computer systems, the author discussed how the hardware, system

www.manaraa.com

 270

software, and applications associated with such systems were frequently linked to three distinct

sets of “designers,” namely the computer manufacturer’s engineers and system programmers,

and the end-user’s application programmers. Emphasizing the extent to which the design of a

technology often reflected pre-existing channels of organizational communication, Conway also

noted “[t]hose rare instances where the system hardware and software tend to cooperate rather

than merely tolerate each other are associated with manufacturers whose programmers and

engineers bear a similar relationship” (p. 30-31). Following this line of reasoning, the author

argued that effective design required a flexible and lean organization with good communication

between design groups.

The ideas presented by Conway in this article remain novel and thought provoking, and

his main thesis eventually gained fame in computer circles as “Conway’s Law.”216 Yet the thrust

of his article remains limited by its unidirectional character. That is, it posits that technological

design can be inflected by organizational structures, but it fails to discuss the reciprocal shaping

of organizations by the structure or design of technology. A more recent text helps fill out the

other half of this equation. In Design Rules, Volume 1: The Power of Modularity, business and

economics experts Carliss Baldwin and Kim Clark analyze the historical evolution of computer

technologies, firms, and markets (2000). In so doing, they emphasize the crucial importance of

modularity in computer design and development from the 1960s onward, especially against the

backdrop of dramatic increases in the complexity of computer technology. The more specific

cases they discuss include the IBM 360 and Digital PDP computer lines, both of which featured

modular designs that helped enable the establishment of new “modular clusters” of

manufacturing firms in a variety of niche vertical markets, producing add-on products ranging

from disk drives and display terminals to circuit boards and pre-packaged software. In summary,

Baldwin and Clark essentially reverse Conway’s Law by documenting “the structure of the

design [of computer systems] influencing the structure of firms and markets in the surrounding

industry” (p. 15).

216 As described in one well-known hacker’s dictionary, Conway’s Law is “[t] he rule that the
organization of the software and the organization of the software team will be congruent; commonly
stated as ‘If you have four groups working on a compiler, you'll get a 4-pass compiler’. The original
statement was more general, ‘Organizations which design systems are constrained to produce designs
which are copies of the communication structures of these organizations’” (“Conway’s Law,” 2003).

www.manaraa.com

 271

In line with the work of Carliss and Baldwin, the structure and relation of the Computer

Society and the ACM significantly reflected the dominant structure of computer technology. Yet

one must be wary of the technological determinism that can accompany such a description,

where computer technology is implicitly or explicitly framed as a primary or even singular

shaper of social structure. Carliss and Baldwin also place significant emphasis on the market,

which at times shades into economic determinism. Conway’s analysis therefore acts as a

corrective to this view by suggesting that the structure of organizations and institutions can

powerfully inflect the processes and products of technological design. And indeed, this type of

thinking resonates with a long line of reformers who argued that the improved integration of

physical computer machines and their ultimate application could be achieved by encouraging

enhanced communication between – and perhaps even the integration of – hardware and

software design groups.

For the present analysis, however, I set aside questions of directionality – even if one

may find specific cases and examples that provide additional support for either Conway’s Law or

the claims of Carliss and Baldwin. Instead, my primary focus is on larger patterns of

sociotechnical coproduction that span diverse contexts. My account emphasizes the persistent

intertwining of the social and technical structure, reflecting and reinforcing one another,

sometimes even to the point of being indistinguishable. In fact, my approach has some continuity

with Peter Galison’s analysis of 1940s-era plans for the organizational structure of the Radiation

Laboratory at MIT, which tended to mirror the various technological systems that were in

development there. As summarized by Galison, “Material objects – those building blocks of

microwave devices – were inseparable from … questions of administrative and conceptual

control” (1997, p. 247). As suggested by Galison’s use of the term “inseparable” in this passage,

the theoretical concept of “co-production” nicely captures this deep intertwining of social and

technical structure.

And while the present chapter traced these processes of coproduction in the sphere of

professional societies, in prior chapters I analyzed similar phenomena in the context of worksites

and educational settings. In fact, my analysis reveals that the structural similarities that are

evident in these diverse contexts are not a historical accident, but rather the outcome of mutually

reinforcing processes. In the following chapter I return to the academic sphere in order to

document how these larger currents of sociotechnical mediation and change inflected the

www.manaraa.com

 272

ongoing evolution of educational programs in computer engineering, computer science, and

related areas. My analysis also speaks to the importance of educational contexts as crucial sites

for both the building and differentiation of disciplines. In fact, the present chapter hints at the

extent to which the Computer Society’s sociotechnical settlement expanded well beyond the

domain of computer design and engineering, especially through the 1970s and 1980s. As a result,

university departments and programs became increasingly important sites for establishing,

defining, and growing computer engineering as a distinct educational and disciplinary domain.

www.manaraa.com

 273

Chapter 7

Bridging the Tar Pit?:

Constructing CSE and Computing Education, circa 1974-1991

Imagine for a moment that the year is 1973. The setting is one of the offices of the Sperry

Rand corporation. Down one long corridor we find the office of Michael Mulder, a mid-level

manager in the company’s UNIVAC division. Peering into the office, we find that Mulder is in

the midst of an interview – one of many that he has conducted in recent months with fresh

college graduates. In its ongoing efforts to assume and maintain its position as a key player in the

fast-moving and cutthroat computer business, Sperry Rand has an almost insatiable appetite for

new technical staff. Yet despite the fact that the current interviewee has been trained in a

computer-oriented degree program within a department of electrical engineering or computer

science, he appears woefully unprepared for the type of work that he will face as a new Sperry

Rand employee. Mulder is increasingly discouraged.217

In light of his own academic and professional background – including a Ph.D. in

electrical engineering earned a few years prior, as well as extensive stints in computer system

design and development at Sperry Rand and elsewhere – Mulder had a sense for what it takes to

be successful in the field, and many of his interviewees simply did not seem to have the right

types of knowledge and skills. As Mulder later explained in an article he authored, “Potential

new hires … lacked adequate breadth of training for industry. All too often their academic

background appeared to be confined to one or the other of the two major divisions of our

profession – hardware or software” (Mulder, 1977, p. 70). While preceding chapters reveal that

similar concerns over the computer field’s sociotechnical schisms can be traced all the way back

217 This introductory narrative is inspired by Mulder’s own accounts of how he came to get involved in a
variety of curricular reform movements in the mid-1970s (Mulder, 1977, p. 70; Jones and Mulder, 1984,
p. 24). I have taken an educated guess at both the year of this event and setting in which it unfolds. My
gendering of the interviewee as male in this passage also reflects an unfortunate historical reality, namely
that most of the candidates for such positions would have been men.

www.manaraa.com

 274

to the 1950s, Mulder’s comments suggest that the divide between the hardware- and software-

oriented factions had become particularly acute in the educational sphere. And as a rising leader

in the engineering profession, Mulder was eager to probe the cause of this problem and begin

working toward a solution.

Recognizing that the relevance of this issue extended well beyond the bounds of his own

company, Mulder took his concerns to the IEEE Computer Society. He quickly found the

sympathetic ear of C. V. Ramamoorthy, who at the time was serving as chair of the group’s

newly-formed Education Committee (Mulder, 1977, p. 70). As a result of their exchange, Mulder

soon found himself serving as the chair of a new Model Curricula Subcommittee. Mulder’s

timing was right. The Computer Society’s interests and activities in the educational arena were

beginning to gain momentum, especially as the group started to pick up where the COSINE

Committee had left off. Yet in contrast to COSINE – which in the early 1970s had promoted the

development of computer engineering programs and options within electrical engineering –

Mulder and the rest of the Computer Society’s new school of educational reformers quickly

adopted the boundary-spanning phrase “computer science and engineering” (CSE) as they

worked to improve the training of future generations of computer-oriented professionals.

The Computer Society’s embrace of the term “computer science and engineering” might

appear a somewhat surprising turn of events, especially given the significant fragmentation of

computer science and computer engineering education through the 1960s and into the early

1970s. On the other hand, the previous chapter hinted at some of the unifying trends that were

sweeping through the field beginning in the 1970s. The scope and identity of the Computer

Society, for example, expanded to encompass an ever-wider swath of “computer science and

engineering.” In fact, it was increasingly rare to find the Computer Society framed as primarily a

“computer engineering” or even “engineering-oriented” organization, especially as the Society’s

publications and activities gradually expanded to cover “much of the total hardware, software,

and applications spectrum” (Smith, 1977a).

The present chapter therefore sheds additional light on how the emergence of the “CSE

movement” was not a coincidental development, but rather part of a larger array of mutually

reinforcing processes and forces, many of which also played a role in the parallel expansion of

the Computer Society’s membership and scope. Even more importantly, my account reveals the

extent to which the efforts of Mulder and other CSE reformers was both inspired and constrained

www.manaraa.com

 275

by the sociotechnical milieu in which their work was situated, just as the Computer Society was

but one node in a larger system of professional organizations. To put it another way, these

educational reformers faced what institutional theorists call a pre-existing “organizational field”

that on the whole tended to preference conservatism, standardization, and incrementalism over

the more fundamental types of reforms that the Computer Society’s Education Committee was

ostensibly promoting.218 In fact, Mulder forcefully hinted at this theme when he later adopted the

metaphor of the “tar pit” to describe the challenges that he and others faced as they worked to

develop curricula that “mesh computer science and engineering” (Mulder, 1975, p. 28).

Below I document a variety of efforts to achieve this meshing, beginning with the

Computer Society’s promotion of CSE from the mid-1970s to mid-1980s, and culminating with

the rise of the “Computing as a Discipline” movement in the late 1980s and early 1990s. This

chapter also aims to provide a much richer description of the “tar pit” context in which these

reforms developed. More specifically, my analysis places particular emphasis on a series of

foundational “axes of similarity/difference” on which ongoing debates over the professional and

disciplinary boundaries of the computing field were frequently constructed during this time

period. To be sure, prior chapters have already shed some light on this theme, especially through

my analysis of the evolving relationships between hardware and software, and science and

engineering. Further, my discussions about the persistent tensions between fragmentation and

unification in the various fields and subfield of computing – as aptly captured by the two-faced

Janus metaphor – provides additional framing for this chapter. Yet the sections that follow look

even more closely at how the privileging of “core” versus “peripheral” concepts and concerns led

various groups and authors to very different understandings of what it means to adopt or

privilege various sociotechnical identity markers, whether it be computer scientist or computer

engineer, systems engineer or software engineer, or others.

In contrast to prior chapters, the sections that follow also place somewhat greater

emphasis on yet another important axis of similarity/difference, namely that of discipline-

profession. As a caveat, it is worth noting that concerns over disciplinarity and professionalism

218 For more on the concept of “organizational field” – as well as a discussion about the tendency for such
fields to promote standardization and homogeneity over variation and diversity – see DiMaggio and
Powell (1983). As the authors summarize, “Once a set of organizations emerges as a field, a paradox
arises: rational actors make their organizations increasingly similar as they try to change them” (p. 147).
DiMaggio and Powell also offer valuable discussions about the many ways in which professionalization
often encourages institutional isomorphism in a given organizational field (pp. 152-154).

www.manaraa.com

 276

were often noted in prior chapters, especially given the extent to which this particular distinction

can often be mapped onto another axis, namely that of science and engineering. Yet the present

analysis brings into further relief some of the key tensions between disciplinary and professional

outlooks or perspectives, tensions that became increasingly evident in the 1970s and 1980s.

More specifically, I document the difficulties and instabilities that emerged from the fact that the

domain of computers and computing has long been partially shared by engineering – which is

frequently viewed as a profession first and a discipline second – and computer science, which

since its inception has primarily been conceived as an independent academic discipline.

As further background, the rich body of scholarship reviewed in the introductory chapter

of this dissertation revealed contrasting perspectives on the organization of discipline and

professions. More specifically, Abbott has promoted the “settlement” metaphor to describe the

relatively loose and intertwined claims of disciplines, while he uses the term “jurisdiction” to

frame the more rigid and entrenched character of the sociotechnical boundaries between

professions. Further, many studies of professions tend to place primary emphasis on worksites

and working practices, while studies of disciplines often focus on the academic context and the

development of theory and abstract knowledge.

Hence, this chapter helps reveal how ongoing efforts to unify or integrate computer

science and engineering challenged some deeply entrenched boundaries, not only between

hardware and software, or even science and engineering, but also between discipline and

profession. The success of these efforts therefore rested in large part on their ability to both work

against a pre-existing and deeply entrenched organizational field and bring into a stable state of

alignment a number of major axes of similarity/difference. Further, my analysis speaks to the

importance of discourse in the construction, maintenance, and blurring of professional and

disciplinary boundaries. In fact, the present chapter provides further support for the claim that

disciplines and professions can be viewed as heterogeneous ensembles that are constructed out of

diverse sociotechnical elements, ranging from discursive markers and abstract bodies of

knowledge to technological artifacts and institutional infrastructures.

In light of this introduction, is it any wonder that the subject(s) in question appear

persistently elusive and unstable? Yet no matter how messy the tar pit, my goal for this chapter is

to develop a reasonable likeness of this complex and dynamic field, including its ongoing

www.manaraa.com

 277

evolution and development. And by focusing on the academic context in recent decades, this

chapter also begins to point toward opportunities for critically engaged intervention and reform.

www.manaraa.com

 278

Claiming CSE: The Computer Society Makes Moves in Education

At the annual Spring Joint Computer Conference (SJCC) in 1971, the Computer

Society’s Education Committee was established in ad hoc form (“Computer Society Starts,”

1971). The Committee achieved full standing committee status later in the same year

(“Education Committee Added,” 1971).219 These were important developments, as they

suggested that the Society was getting more serious about its role in the educational arena. And

as the group was gaining its initial footing and establishing a tentative agenda, the last of the

COSINE Committee reports graced the pages of Computer in 1972 and 1973, reflecting the

reasonably cordial relationship between the Computer Society and this alternate body of

educational reformers (Denning et al., 1972; Booth et al., 1973). When the COSINE Committee

disbanded around 1972, commentators such as Martha Sloan raised concerns about the ability of

the Computer Society to pick up the torch of curricular development and reform (Sloan, 1974).

Yet by the mid-1970s such concerns were beginning to look overstated, especially given the

1975 publication of one of the first major reports of the Computer Society’s Education

Committee on “A Course of Study in Computer Hardware Architecture” (Rossman et al.,

1975).220

Even more importantly, Mulder’s prodding helped lead to the establishment of the Model

Curricula Subcommittee in mid-1974 a branch of the Computer Society’s Education Committee

(Mulder, 1977, p. 70). Mulder himself served as the first chair of the group, and former COSINE

contributors such as David Robinson and Martha Sloan joined as members.221 Mulder and the

rest of the Subcommittee quickly went to work on the development of new model curricula for

four-year undergraduate degree programs in the area they suggestively dubbed “Computer

Science and Engineering.” Their first progress report was published in early 1975, and the final,

full draft of the curriculum was completed in late 1976 and disseminated more widely in 1977

through derivative and supplemental publications. The scale of the undertaking was impressive.

219 In comparison, evidence suggests that the ACM’s Education Committee was formed and active by at
least 1960, with Louis Fein serving as one of the group’s first chairmen (Huskey, 1960b). By 1970, the
relative maturity of the Education Committee was clearly reflected in its structure, which included a total
of four special interest groups (SIGs) and six sub-committees (Carlson, 1970b).
220 In fact, this six-member group included C. Gordon Bell, who had been extensively involved with the
COSINE Committee in the early 1970s.
221 Robinson was a member of the COSINE Task Force on Minicomputers (also known as Task Force
VII). Sloan’s work in and around the COSINE Committee are documented in significant detail in the
preceding chapter.

www.manaraa.com

 279

Producing the final version of the report involved roughly two and one-half years of effort, 20

primary authors, 15 solicited contributors, 19 reviewers, approximately 20,000 man-hours of

work, and more than $20,000 of Computer Society funds (Mulder, 1977, p. 70). In recognition of

this fact, Computer Society President Merlin G. Smith bestowed upon the twelve main members

of the Subcommittee a “Group Special Award” in late 1977 (Smith, 1977b). Contrary to Sloan’s

earlier concerns, the Subcommittee had carried forward the torch of curricular development and

reform with an impressive level of ambition and enthusiasm.

Yet it is worth taking a closer look at the development of the group’s recommendations,

especially to highlight some of the major themes – and tensions – that surfaced in their work. In

fact, many of these themes were evident in the group’s first presentations, delivered at the Spring

1975 COMPCON meeting (Mulder et al., 1975). As background framing, Mulder and his co-

authors articulated their concerns about the adequacy of computer-oriented degree programs:

The voiced opinion from the computer industry is that the academic community is

failing to provide the blend and the depth of computer-oriented instruction

necessary to allow these new hires to be productive without considerable

additional training. Students voice the opinion that they were not properly

prepared to meet the demanding challenges of the computer industry (p. 33).

As this statement reveals, many students in computer-oriented degree programs and their

prospective employers were no longer satisfied with the historical status quo, in which

undergraduate education in fundamentals was supplemented by considerable amounts of formal

and informal training in industry. And discontent with this educational model was only

exacerbated by perpetual increases in both the technical complexity of computer technology and

the rate of technological change, which made the provision of training by industry ever-more

extensive, time-consuming, and costly. Just how did this mismatch between the educational

sector and the needs of the computer industry come about?

Working toward an explanation, the authors noted the emergence of two distinct

educational camps, one that preferred the development of degree programs grounded in science

and theory, and another that privileged programs that were more pragmatic and engineering-

oriented. More specifically, the report noted the long-standing tendency for Computer Science

Departments to focus on abstracts and theory while neglecting subjects related to hardware,

hardware/software interfaces, and systems. Conversely, they chided Electrical Engineering

www.manaraa.com

 280

Departments for being “slow to extend their programs beyond the hardware or electronic aspects

of computer systems” (p. 33). As documented in preceding chapters, such comments echoed

critiques that had been circulating since at least the mid-1960s.

Yet as this preliminary report made clear, this new group of reformers largely followed

their predecessors when they placed primary blame on computer scientists – rather than

engineers – for the inadequate training of computer professionals. In fact, a 1968 COSINE

conference paper by C. L. Coates on “University Education in Computer Engineering” was

particularly influential on the group’s position.222 In a section suggestively labeled “The

Problem,” the authors followed Coates rather directly when they noted that computer science

was hamstrung by two “fundamental limitations,” namely the arts and science background of

most computer science faculty and the institutional location of computer science departments

with arts and science colleges. In light of these factors, they argued that computer science

departments were ill-suited to provide the more practical and engineering-oriented flavor of

education that the subcommittee favored – and that industry was supposedly clamoring for.

Much of the remainder of this same report was dedicated to outlining the subcommittee’s

platform for reform. Yet unlike Coates – who was instrumental in shifting the agenda of the

COSINE Committee away from the development of the “computer sciences in electrical

engineering” and toward degree programs and options in “computer engineering” – the group

adopted a more Janus-faced position that was focused on the domain they called “computer

science and engineering.” As they explained:

It is the conclusion of this committee and others that have preceded it that we

must recognize that computer science education and computer engineering

education are not the same and that there is a need for both. The solution may

well be the definition of model curricula that are interdisciplinary in nature with

more emphasis placed on computer engineering (p. 33).

On the one hand, computer science and computer engineering education were marked by the

authors as “not the same.” On the other hand, their use of the phrase “computer science and

engineering” suggested the need for educational programs in which the two domains were

somehow blended or merged to form a single and more coherent curriculum. While this vision

222 This particular interim report also featured a list of nine other COSINE Committee reports. Yet
interestingly enough, the COSINE Committee’s 1967 report on Computer Sciences in Electrical
Engineering was omitted.

www.manaraa.com

 281

looked like throwback to the mid-1960s efforts of Zadeh and other engineers to embrace the term

“computer science,” it was also clear that the agenda of this new committee was unique, in no

small part due to the changing sociotechnical context in which they worked.

Fleshing out what an interdisciplinary curriculum in “Computer Science and

Engineering” might look like, the group explained that such academic programs should cover

three intersecting areas, namely hardware systems technology, software systems technology, and

processors/logic technology (p. 34). The report also argued that such programs needed to place

“more emphasis on computer engineering, proper emphasis on computer science, and a flexible

structuring of the curricula” (p. 34). The subcommittee’s preference for the term “technology”

and phrase “computer engineering” looked like a corrective to the dominant mode of computer

science education, which tended to emphasize theory, programming, and software. Further, their

strategic and guarded use of the term “computer science” looked like an attempt by these

engineers to selectively and strategically claim portions of this adjoining disciplinary domain. In

fact, the authors followed Coates by arguing that computer science departments were not

amenable to the development of programs in “computer science and engineering,” especially

given their association with faculties and colleges of “arts and science.”223 And elsewhere the

report reiterated that education in the area of “computer science and engineering” was “best

provided in the domain of engineering (i.e., Electrical or Computer Engineering)” (p. 34).

Given this overview, one might also wonder how the Subcommittee came to couch their

work under the aegis of “Computer Science and Engineering.” In fact, this particular phrase was

never promoted in earlier COSINE Committee reports, and it appeared only occasionally in

professional publications through the early and mid-1970s, even as the Computer Society

expanded its purview beyond computer engineering and into other areas. The Model Curricula

Subcommittee also failed to offer an explanation for its choice of words. My own research

suggests that the aforementioned Anthony Oettinger was one of the first individuals to widely

promote this particular phrase. As documented in Chapter 5, Oettinger served from 1966 to 1968

as President of the ACM, and during this time he expressed significant ambivalence about the

status of computer science as a discipline. In a 1967 commentary, he explicitly claimed that the

term “computer science” was a misnomer, and in as early as 1966 he was using the alternate

223 In fact, Coates’ original 1968 comments about the affiliation of computer science with the arts and
sciences appeared in near-verbatim form in this committee report.

www.manaraa.com

 282

phrase “computer science and engineering” (Oettinger, 1966b, p. 839). A 1968 letter by

Oettinger also referenced “Computer Science and Engineering,” with capitalization used to

suggest that this was indeed a recognized and distinct field of activity (Oettinger, 1968b, p. 293).

Even more importantly, Oettinger spearheaded the establishment of a Computer Science

and Engineering Board (CSEB) at the National Academy of Sciences in 1968, amidst growing

concerns about the relatively low visibility and influence of computer professionals and their

interests in Washington (“Computer Science and Engineering Board,” 1968; Titus, 1968). In

addition to acting in an advisory capacity to both the Academy and the government on a wide

range of computer-related issues, the group also promoted the interests of the computer field,

especially in areas such as funding for research. Yet in spite of both Oettinger’s efforts and the

formation of the CSEB, the application of the term “computer science and engineering”

remained rather infrequent and scattered through the early 1970s.224 In fact, the CSEB itself was

disbanded by late 1973, which might have been the demise of the phrase had the Model

Curricula Subcommittee not embraced it shortly thereafter (Ralston, 1973b, p. 725).

But even as “CSE” was being brought back to life by this other group of actors,

numerous questions remained about the extent to which these engineers were claiming computer

science, or some portion thereof. Through a series of additional papers and presentations, the

group gradually refined its vision and provided a more detailed picture of what educational

programs in “Computer Science and Engineering” might look like. And over time, the work of

the subcommittee started to look more like a discipline-building project, albeit in ways quite

distinct from Oettinger’s prior efforts. In the sections that follow, I review a number of the

group’s subsequent publications. My analysis brings into further relief the group’s evolving

agenda, as well as the numerous barriers that stood in the way of realizing educational programs

bearing the mark of CSE, much less an entire discipline.

Bridging the Tar Pit?: Toward a Curriculum in Computer Science and Engineering

Another snapshot of the Education Committee’s activities appeared in the December of

1975 issue of Computer, which was topically dedicated to “Computer Education.” In a lead

article, Mulder reviewed the ongoing work of the Model Curricula Subcommittee. And while the

224 As documented in the preceding chapter, Lotfi Zadeh also adopted this particular phrase when he
noted in a 1971 paper that “electrical engineering has a special responsibility to train its students in both
the basic and applied aspects of computer science and engineering” (1971, p. 153).

www.manaraa.com

 283

general message of the report followed prior documents closely – at times in verbatim or near-

verbatim form – Mulder embellished his account with an evocative analogy. As the author

explained, prior efforts to develop “model curricula that mesh computer science and

engineering” were akin to the “tar pits” of prehistoric lore, where great beasts engaged in mortal

struggle (Mulder, 1975, p. 28). Further, he explained that the committee’s work toward a new set

of model curricula for Computer Science and Engineering programs represented an effort to

“bridge the tar pit” (p. 28). Emphasizing the value of a more integrated or unified approach to the

education of computer professionals, Mulder explained that the work of the subcommittee was

“the first effort to bridge the gap between computer science and computer engineering. And this

is the difference between past and current efforts” (p. 31).

On the one hand, individuals such as Zadeh and some of the early COSINE reports can

be credited with taking some tentative first steps toward this type of bridging. On the other hand,

both Mulder’s tar pit analogy and the committee’s use of the “computer science and engineering”

moniker suggested that this new reform movement was more explicitly concerned with working

toward some sort of curricular unification that spanned these two sociotechnical domains. In fact,

the author noted that the model curricula project was focused on an “integration” of the

“hardware and software disciplines,” and he added that the subject areas identified by the

subcommittee represented “the domain of computer science and engineering” (p. 29). Such

statements reveal the extent to which the development of curricula can quickly shade into a form

of discipline-building. And indeed, the subject areas and courses identified in Mulder’s article

covered a broad array of topics that were at least partially germane to the work of computer

engineers and computer scientists, ranging from digital logic and computer organization to

operating systems, software engineering, and computing theory.225 The author also explicitly

declared that “a merging of computer science and computer engineering disciplines is both

desirable and possible” (p. 31).

Yet in spite of Mulder’s ambitious remarks, the uptake of this early draft of the

subcommittee’s model curricula was probably limited, especially given that it was short on detail

and marked as “interim.” Further, building metaphorical bridges on paper was far easier than

225 The minimal “core” and more extensive “typical” curricula presented in the report also covered a wide
range of material, albeit with greater emphasis on boundary-spanning topics such as computer
organization, operating systems, and software engineering. The peripheries of hardware and theory
received somewhat less attention.

www.manaraa.com

 284

realizing a “unified approach to education in computer science and engineering” in the “tar-pit”

milieu of actual academic institutions. Two additional papers published during this same time

period provide additional insights regarding the historical context for – as well as the Janus-faced

character of – the Computer Science and Engineering movement. The first of these was

published alongside Mulder’s article in the same 1975 issue of Computer, and it presented the

results of a survey of electrical engineering and computer science departments (Sloan, 1975).

Spearheaded by Model Curricula Subcommittee member Martha Sloan, this project was

described as an update to the 1972 COSINE survey, which I reviewed in Chapter 5.

Given that it was mailed to 222 electrical engineering and 95 graduate-level computer

science departments, the survey revealed the extent to which the latter discipline was well-

established at a large numbers of schools. And the results of the survey provided other important

insights about the departmental and curricular boundaries that had grown up in the realm of

computer-oriented education. Sloan’s data showed, for example, that the vast majority of the 160

responding departments carried the name “Electrical Engineering” or “Computer Science,” while

only three used the combined “Electrical Engineering and Computer Science” (p. 36). The author

also noted the tendency for many departments to fall rather predictably on one side or the other

of the hardware-software divide: “The distinction between CS departments predominating in

software and EE departments predominating in hardware is well established, at least in the

aggregate” (p. 40). Along similar lines, Sloan reported that joint faculty appointments and joint

course offerings between the two types of departments were rare, and she added that “[E]ven

when a department does teach a course traditionally belonging to the other department, it colors

the course with its own orientation” (p. 40). These deeply entrenched curricular and departmental

bifurcations help reveal the salience of Mulder’s “tar pit” analogy.

With regard to the field of computer engineering more specifically, Sloan indicated that

only 3 of the 160 responding departments carried the name “Electrical and Computer

Engineering,” although a much more impressive 51% of all responding electrical engineering

departments offered some type of CS or CE degree program or option (p. 36). As these data

reveal, computer engineering remained largely positioned as a branch or “dimension” of

electrical engineering education, rather than as a distinct discipline unto itself. In addition,

Sloan’s analysis suggested that this situation was not likely to change, at least in the near term.

She noted, for example, that the growth of computer science and computer engineering courses

www.manaraa.com

 285

and options was slowing within EE departments, although she added many opportunities

remained to “consolidate and improve curricula” for computer science and/or computer

engineering programs (p. 40).

And indeed, the term “consolidation” appeared an apt characterization of the curricular

reform efforts that were underway around this time. Yet her survey also revealed major barriers

to the development of academic programs in the area of “computer science and engineering,”

including the persistent division of computer science and computer engineering programs,

courses, and faculties, which were often situated in entirely different departments and even

colleges. By contrast, computer science departments and graduate programs – both of which

serve as key markers for disciplinary identity and crucial sites for disciplinary development in

the American academic context – had proliferated from the mid-1960s onward. Truly unifying

the disciplines of computer science and computer engineering therefore appeared a formidable

task, especially given the various schisms that had grown up between these two fields in the

educational arena. On the other hand, those at the forefront of the CSE movement appeared

increasingly interested in developing their own flavor of computer science and engineering

education within schools and departments of engineering, and with little concern for the ultimate

role or fate of computer science departments and programs.

Many closely related themes were evident in a 1976 review article titled “Computer

Science and Engineering Education,” authored by Education Committee chair and Model

Curriculum Subcommittee member C. V. Ramamoorthy (Ramamoorthy, 1976). Published in a

special 25th anniversary issue of the IEEE Transactions on Computers, Ramamoorthy’s article

started by briefly chronicling “the evolution of CSE education,” from the development of logic

design and programming courses at a handful of pioneering institutions in the 1950s to the rise of

Computer Science departments and programs in the 1960s. And with regard to more

contemporary matters, Ramamoorthy acknowledged the many different institutional realizations

of “CSE education,” including through separate Computer Science and Electrical Engineering

Departments (Illinois at Urbana, Northwestern, Stanford, and Texas at Austin), combined

Departments of Computer Science and Electrical Engineering (MIT and California at Berkeley),

and the relatively recent emergence of Electrical and Computer Engineering Departments

(University of Michigan and University of Wisconsin at Madison). Turning to the historical

development of curricula, the author reviewed a series of key milestones, including the ACM’s

www.manaraa.com

 286

Curriculum 68, various COSINE Committee reports, and the ongoing work of the Computer

Society. He also discussed a number of major trends and key issues with regard to CSE

education, including accreditation and certification efforts, the development of laboratory

facilities, and debates over the value of theory versus practice in computer-oriented degree

programs.

On the one hand, the author’s wide-ranging review revealed a desire among reformers to

strategically frame “Computer Science and Engineering” as a single domain, in spite of the

extensive historical segregation of computer science and computer engineering in the academic

context. On the other hand, Ramamoorthy clearly delineated the computer field’s two

sociotechnical faces. He explained, for example, that “the computer scientist is interested in the

theory and science of computation and programming,” while “the computer engineer is

interested in the specification, design, implementation, and utilization (operation) of data

processing systems including both hardware and software” (pp. 1200-1201). Even more

suggestively, the author noted that “[t]he computer engineer (including the software engineer)

uses the principles of computer science and/or electrical engineering in specifying, designing,

implementing, and utilizing computer systems for specific applications” (p. 1201).

As suggested by these remarks, engineers such as Ramamoorthy were inclined to frame

computer engineers as claiming an ever wider swath of sociotechnical territory, including

relevant portions of software, software engineering, and even computer science. And even

though he adopted the phrase “computer science and engineering,” his comments also

perpetuated the idea that computer scientists and computer engineers were associated with

distinct disciplinary and professional identities, even if he admitted that the former might draw

on the theoretical knowledge and principles developed by the latter. In fact, the reasons for

holding onto these distinct identities were both historic and pragmatic. That is, the term

“computer engineer” emerged in the early 1950s and was used with increasing frequency

through the 1950s and beyond, while “computer scientist” was coined in the late 1950s and

widely applied in the 1960s. These monikers had seeped deeply into the discursive infrastructure

of the computer field, and replacing them would likely require a more compelling alternative

than an awkward and seemingly paradoxical phrase such as “computer scientist and engineer.”

In summary, the three articles reviewed here shed important light on the fundamental

tensions that came with calling for the establishment of integrated educational programs in the

www.manaraa.com

 287

area of “Computer Science and Engineering.” Even more specifically, I have documented the

Janus-faced character of this movement, where various reformers framed computer science and

computer engineering as distinct fields, albeit somehow united under the aegis of CSE. Further,

my analysis hints at the extent to which the discursive construction of CSE as a unified or

integrated domain was significantly in conflict with the persistent structural segregation of

computer science and computer engineering courses, programs, and faculties in separate

academic departments and even colleges. And Ramamoorthy’s comments in particular reveal the

deeply entrenched distinction between the respective identities of computer scientists and

computer engineers.

While the members of the Model Curricula Subcommittee were likely cognizant of at

least some of these issues, the following sections reveal that the group’s continued optimism

regarding the development of educational programs dedicated to Computer Science and

Engineering. My analysis also brings into further relief the extent to which these reformers were

concerned with encouraging and overseeing the development of CSE within colleges and

departments of engineering.

A(n Engineer’s) Curriculum in Computer Science and Engineering

Following a long series of interim reports, conference presentations, workshops, and

revisions, the final version of A Curriculum in Computer Science and Engineering was dubbed

“Revision 1” and initially published in early 1977 (Education Committee, 1977). As background

for this lengthy report, the authors explained that their recommendations were designed to

provide sufficient curricular breadth and depth, bridge the gap between hardware and software,

and be suitable for implementation in a variety of institutional contexts (pp. 1-2). The

organization of the curriculum had also evolved considerably since the group’s first reports, and

the authors ultimately settled on recommending four main subject areas for coursework, namely

digital logic, computer organization and architecture, software engineering, and theory of

computing.226 The report also featured detailed outlines, instructional objectives, and lists of

226 These four subject areas were the result of a gradual evolution that started with the aforementioned
division of CSE into hardware systems technology, software systems technology, and processor/logic
technology. In late 1975, an intermediate report by Mulder revised this spectrum to include hardware
systems, software systems, and computing theory (Mulder, 1975, p. 30). This report also added a new,
parallel set of categories that included digital logic, computer organization, operating systems and

www.manaraa.com

 288

reference materials for a total of 22 courses and 6 laboratories. A smaller subset of courses and

labs were identified as a minimal “core curriculum” for schools in the early stages of developing

and/or implementing CSE programs.

Acknowledging the ambitious character of their proposed curriculum, the authors

explained that the recommendations represented “the global continuum of computer science and

engineering” (p. 3). Yet despite such discipline-building rhetoric, the authors were strategic in

what they included, as well as what they left out. For example, only four courses were

recommended in the subject area marked “Theory of Computing,” and these tended to emphasize

the theoretical foundations of analysis and design rather than the more abstract and theoretical

topics that were typically associated with computer science education.227 In addition, only a

relatively small portion of the Theory of Computing subject area fell within the prescribed core

curriculum, which seemed to reflect the committee’s aforementioned commitment to placing a

“proper emphasis on computer science.” The recommended coverage of the hardware-oriented

“Digital Logic” area was also comparatively minimal. In fact, this part of the curriculum featured

just four classes, and only a fraction of this content was included in the core curriculum. Both the

Software Engineering and Computer Organization and Architecture subject areas, on the other

hand, dominated the report generally and the core curriculum specifically. These emergent

boundary fields were therefore implicitly framed as unifying cornerstones for CSE education, as

well as for CSE writ large.

Yet the development of the model curriculum was not happening in isolation, and it is

worth noting that the group’s recommendations paralleled larger trends in the computer field. As

noted in the preceding chapter, for example, the impressive expansion of the Computer Society’s

size and scope in the 1970s was in part linked to the group’s strategic movement into various

subfields on the boundaries of computer science and computer engineering. In fact, many of the

group’s new technical committees, workshops, conferences, and publications were focused on

precisely those domains that were at the core of the new Model Curriculum, such as Computer

Architecture, Operating Systems, and Software Engineering. The shifting boundaries of both the

software engineering, and theory of computing. The original categories were eventually dropped and
replaced by the new category names as listed here.
227 In fact, the authors of the report noted that the area of “Theoretical Computer Science and
Engineering” had historically developed in a two-pronged manner, with “one concerned with hardware
design (automata theory) and the other with programming language and compiler design (formal
languages)” (p. 64).

www.manaraa.com

 289

Computer Society and the proposed model curriculum therefore reflected and reinforced one

another, as well as the technological state of the art. Further, the expanding claims of engineers

in these boundary-spanning subfields helped legitimize their adoption of the phrase “computer

science,” as well as their selective borrowing of subjects and topics that had historically been

associated and/or shared with computer science.

This same report also hinted at the extent to which colleges and departments of

engineering remained the authors’ preferred site for the development of CSE programs. To begin

with, the minimal core curriculum appeared well-suited for implementation as a new option

within existing engineering programs. And even more importantly, an Appendix tacked on at the

end of the report provided an outline for a four-year “Electrical and Computer Engineering

Curriculum” that was designed to meet accreditation guidelines that had been established by the

Engineers Council for Professional Development (p. 98). While the authors offered little in the

way of explanation regarding this supplemental documentation, it revealed this group’s

preference for the development of “Computer Science and Engineering” education within

colleges and departments of engineering. This appendix also hinted at the rising importance of

accreditation, a point I discuss in more detail below.

The work of the Subcommittee received even wider distribution in late 1977 through the

publication of a special issue of Computer on the topic of “Computer Science and Engineering

Education.” In addition to a series of articles on the proposed curriculum and related topics, this

same issue also included an article that compared and contrasted the Computer Society’s Model

Curriculum with another set of curricular recommendations that were being developed by the

ACM’s C3S, and which were first published in draft form in mid-1977 (Engel, 1977). Author

Gerald Engel – who at the time maintained close ties with the ACM, including through his role

as liaison between the ACM’s Education Board and the Computer Society’s Education

Committee – explained that the two reports reflected “differences in background and philosophy

between the computer engineer and the computer scientist trained in the liberal arts tradition” (p.

121).

Yet rather than belaboring this point, Engel instead emphasized the overlap between the

two sets of recommendations, especially in core subject areas such as software engineering and

“programming design.” Noting the potential for closer cooperation between the Model

Curriculum Subcommittee and C3S, Engel concluded on an optimistic note: “One day, perhaps,

www.manaraa.com

 290

computer science and computer engineering will no longer exist as separate entities, but instead

as a single program representing options of a common core of fundamental material. This

common core is the essence of our profession” (p. 123). While Engel’s claim that the so-called

“core” represented the unity of the computer field, the continued development of separate

curricular recommendations by the ACM and Computer Society revealed the persistence of the

field’s two sociotechnical faces, as well as the continued importance of “peripheral” domains of

technology and knowledge for the various actors and groups in this story.

However, various committees and initiatives seemed to bring the educational activities of

these two professional societies into closer alignment, especially in the late 1970s and through

the 1980s. This time period was also marked by expanded efforts to establish and promote the

discipline of “Computer Science and Engineering.” These trends hinted at the tentative

emergence of a more unified discipline. Yet the ultimate success of this movement was far from

assured, especially given that it required the assembly of rather complex – and fragile – ensemble

of heterogeneous sociotechnical elements. In the following sections I continue to trace out this

complex tangle of interests and forces, both within the Computer Society’s Education Committee

and beyond.

Supporting Curricular Reform in Electrical Engineering Education

While the mid-1970s ambitions of the Model Curricula Subcommittee were impressive,

other groups and events provided the group with both direct and indirect forms of support. For

example, the participants in the Digital Systems Education (or DISE) Project spearheaded a

variety of activities that were synergistic with both the work of the Subcommittee and the earlier

efforts of the COSINE Committee.228 After meeting for the first time in 1974, this inter-

university and inter-industry working group secured three years of NSF funding for the

development of educational materials in the “digital systems” area (Cain and Hoelzeman, 1977).

As explained in one of the group’s reports, the project was largely prompted by the difficulties

that educators faced as they tried to keep pace with rapid technological and theoretical change

(Cain and Hoelzeman, 1977, p. 145). In support of their goals, the group established a newsletter

and a repository for instructional materials, and a variety of DISE task force groups led the

228 Taylor Booth was the only former COSINE member to participate in the DISE Project. J. T. Cain and
Ronald Hoelzeman, on the other hand, were members of both the Model Curriculum Subcommittee and
DISE Committee.

www.manaraa.com

 291

development and collection of materials in areas ranging from digital systems to software

engineering (Cain, 1975). Another DISE task force concerned itself with improving

communication and cooperation between universities and industry (Cain, 1975). The group also

organized a Workshop on Microprocessors and Education in 1976, and select papers from this

event were published in the January 1977 issue of Computer.

On the one hand, the DISE Project was significant because it continued one of the major

areas of reform led by the COSINE Committee, namely the reorganization of electrical

engineering education around digital systems and related topics. DISE efforts to promote the

development of software engineering education also fit into this larger movement, and one DISE

report even framed software engineering as a “‘new’ area or approach within the digital systems

area” (Cain, 1975, p. 15). On the other hand, the overall impact of DISE was likely limited,

especially given that the group appears to have been disbanded after NSF funding ran out in

1977. Further, the concept of “Digital Systems Education” as promoted by DISE was largely a

subset of larger, parallel efforts to develop educational programs in computer science and

engineering. In fact, Ramamoorthy noted in his 1976 review of computer science and

engineering education that the efforts of the DISE Committee to collect and develop educational

materials were in part being guided by the curricular recommendations being developed by the

Computer Society’s Model Curricula Subcommittee (Ramamoorthy, 1976, p. 1202).

Two additional branches of the Computer Society’s Education Committee provided other

types of support for the work of the Model Curricula Subcommittee. The Regional HELP

Subcommittee, to begin with, was formed to provide assistance to those schools wishing to

establish programs or departments dedicated to computer science and/or computer engineering

(Ghosh, et al., 1975). This group was therefore designed to overcome the challenges of

implementation and reform at actual institutions, a problem that the COSINE Committee had

tried to address with its less-than-successful site visit program.229 The specific activities of this

group were not widely publicized, which makes it difficult to document its overall impact and

agenda. However, a 1976 report of the group’s activities revealed that its members were working

closely with a handful of schools, with the goal of developing computer engineering programs

that were in agreement with the recommendations of the Model Curricula Subcommittee (Rine,

229 By 1979 the Regional HELP subcommittee was renamed “Curriculum Implementation and
Assistance,” and by 1982 it was titled “Curriculum Assistance.” Additional research is needed to
determine the overall role and impact of this evolving group.

www.manaraa.com

 292

et al., 1976). The authors also noted that a series of regional HELP Workshops were being

planned, where interested faculty could begin to think about and plan for the implementation of

the Computer Society’s model curricula on their own campuses. And finally, this report

identified a number of programs that might serve as “models” for CSE education, and the list

featured a number of well-known institutions such as UC-Berkeley, Stanford, Illinois, Carnegie-

Mellon, and MIT (p. 210).

The Subcommittee on Coordination, on the other hand, was established to coordinate

matters of mutual interest between the Computer Society’s Education Committee and other

groups and organizations (Salisbury, Snyder, and Smith, 1975). In fact, the ACM’s Standing

Committee on Curriculum in Computer Sciences (C3S) was the group’s sole initial focus (p. 41).

Noting that the “common educational concerns between the Computer Society and the ACM

mirror in large measure the overlapping areas of interest of the two organizations,” the authors a

1975 subcommittee report put forward the “oversimplified” view that the ACM tended to focus

on the development of the “computer science” curriculum, while the Computer Society was

concerned with “computer engineering” (p. 41). This same report also noted that one of the

major functions of the subcommittee was to “eliminate duplication of effort in those areas where

the two curricula can properly follow a common core” (p. 41). In order to work toward this goal,

“observers” from the ACM and Computer Society were selected to attend relevant meetings in

each counterpart organization. The report also noted the close relation of the Coordination group

with both the Model Curriculum and Survey Subcommittees.

As suggested by this overview, the Subcommittee on Coordination was framed as an

“interface” and “channel of communication,” both within the Computer Society and beyond. It

therefore acted as a sociotechnical mediator, in a manner akin to many of the other ACM SIGs

and Computer Society TCs that maintained overlapping interests. Further, it is worth noting that

the relation of these two professional societies on educational manners was generally cooperative

around this time, especially given that individual institutions rather than professional societies

were the primary sites for battles over discipline building and curricular reform. In fact, the 1978

publication of A Library List on Undergraduate Computer Science, Computer Engineering, and

www.manaraa.com

 293

Information Systems – which was prepared by a joint committee of the ACM and the Computer

Society – provides further evidence for this cordial relationship (Joint Committee, 1978).230

A series of Workshops on Computer Science and Engineering (CSE) Curricula provided

additional support for the Education Committee and its various subcommittees. The first three of

these events – which took place in 1976 and 1977 – were primarily concerned with the overall

development and site-specific implementation of the Computer Society’s Model Curriculum in

CSE.231 The third workshop was also noteworthy for its explicit concern with both bridging the

gap between hardware and software and incorporating microprocessor technology in CSE

education. The fourth and final workshop was organized in early 1978 and emphasized the

adaptation of CSE materials for use by smaller institutions, community colleges, and

introductory courses at large schools. The impact of these workshops was likely significant,

given that each event attracted anywhere from 80 to 130 or more participants. Digests of papers

were also published for the latter two events, further disseminating the content of these meetings.

While the various committees and events reviewed in this section provided various types

of support for the development of CSE in the academic context, the term “computer science and

engineering” was also being adopted for other purposes and projects, especially in the late 1970s

and early 1980s. In fact, these projects were projecting the outward image of a full-blown

discipline-building project, supported by an impressive cadre of actors and groups. Yet as my

analysis reveals, these projects managed to only thinly veil the underlying sociotechnical

tensions that came with them.

Disciplining CSE: Taxonomies, COSERS, and Encyclopedias, oh my!

As noted above, many of the publications and presentation of the Model Curricula

Subcommittee indicated that the group’s proposed curriculum was a sort of outline or map of the

boundary-spanning discipline dubbed Computer Science and Engineering. This is perhaps not

surprising, especially given the extent to which the building of curricula – not to mention

associated departments and degree programs – is often deeply intertwined with the building of

230 The overall organization of this extensive list of books and other reference materials was itself an act
of boundary-work, in that it involved the development of a taxonomic organization scheme for computer
science, computer engineering, and information systems. The report probably provided inspiration some
of the subsequent taxonomy projects that I discuss in more detail below.
231 My summary of these events is based primarily based on the remarks of Rine and Lee (1978) as a part
of their introduction to the published proceedings of the fourth such workshop in 1978.

www.manaraa.com

 294

disciplines. Yet in the middle and late 1970s, at least three major projects got underway that were

quite explicitly concerned with outlining the historical trajectory, contemporary contours, and

future research horizons of the discipline ostensibly dubbed “computer science and engineering.”

These large and ambitious undertakings spanned multiple years, required significant financial

backing, and involved large numbers of coordinators, authors, and reviewers. These three

projects were also explicitly concerned with producing final reports that were accessible to those

outside of the field, thereby reflecting growing concerns about the proper image and perceived

legitimacy of the computer field and its branches, both in society generally and in communities

of scientists, technologists, and policy-makers specifically.

Initiated by the American Federation of Information Processing Societies (AFIPS) in

1977 and published in 1980, the Taxonomy of Computer Science and Engineering report was the

result of three years of work by a committee of eleven, along with seventy additional authors and

reviewers, many of them well-known in the field (Ralston, 1980). The project also received

financial support from the Institute of Computer Science and Technology of the National Bureau

of Standards and the Air Force Office of Scientific Research and the Office of Naval Research.

Committee chairman Mathematician, computer scientist, and former ACM President Anthony

Ralston explained in a preface to the group’s final report that the development of the taxonomy

involved “a study of the structure of a discipline which appears to be unique among the sciences

and almost unique among all disciplines” (p. v). Further outlining the motivations behind the

project, Ralston added that the project was designed as a response to persistent

misunderstandings about “what computer science and engineering is,” especially by those

outside of the field, and especially in light of its rapid growth and development (p. v). Among a

variety of possible uses, the authors suggested that the taxonomy could serve as a reference for

definitions or bibliographic sources, or as a guide for allocating research grants, classifying jobs,

or organizing publications.

The taxonomy itself was organized as a “tree” with nine major branches, namely

hardware, computer systems, data, software, mathematics of computing, theory of computation,

methodologies, applications/techniques, and a residual category dubbed “computing milieux.”

As the authors explained, the organization of the taxonomy in this manner reflected the

committee’s view that “Hardware and Software are the ‘pure’ endpoints of a core computer

science and technology continuum” (AFIPS Taxonomy Committee, 1980, p. 416). Yet as in

www.manaraa.com

 295

previous reports and commentaries, the taxonomy came to reflect various disciplinary and

professional bifurcations, in spite of its stated objective of codifying the structure of “Computer

Science and Engineering.” It included, for example, a series of suggestive taxonomic

descriptions of occupational titles and organizations, including the following:

9.6.1 Occupational Titles
 9.6.1.1 Computer scientist
 [A person involved in computer research or advanced

development.]
 9.6.1.2 Computer engineer
 [A person involved in design or development of

computer hardware.]
 …
9.6.2 Organizations
 9.6.2.1 Technical Societies
 …
 9.6.2.1.2 ACM

[The Association for Computer Machinery whose
members are mainly computer scientists and
programmers.]
…
9.6.2.1.4 IEEE Computer Society
[The Institute of Electrical and Electronic
Engineers Computer Society whose members are
mainly computer engineers.]

(AFIPS Taxonomy Committee, 1980, p. 11)

To begin with, these entries once again acknowledged the existence of distinct social and

professional identities for computer scientists and computer engineers. Further, the

accompanying organizational descriptions revealed the respective and persistent linking of these

two identities with the field’s two main professional societies, in spite of increasing overlap and

coordination between the two groups.

In summary, the dominant image of the field’s social and professional boundaries stood

in marked tension with the authors’ claim that Computer Science and Engineering could indeed

be viewed as a single discipline. Yet in a discussion of philosophical and technical issues

included at the end of the taxonomy, the authors acknowledged some of the tensions that came

with their project. They noted, for instance, that CSE was a “new and rapidly changing field,”

thereby impeding the ability of this group to establish a high degree of “conceptual unity and

stability” in the proposed taxonomy (p. 415). As a more specific example of these challenges, the

www.manaraa.com

 296

report acknowledged that significant controversy had erupted over the “Computer Systems”

node, which reviewers had apparently criticized as a “misconceived hybrid” (p. 416). While

certainly a suggestive turn of phrase, in the context of the present analysis it quite naturally leads

to the question of whether “computer science and engineering” was itself a misconceived hybrid,

especially for those uneasy about blurring the disciplinary and professional boundaries that

traditionally separated science from engineering.

One finds similar tensions evident in COSERS, or the “Computer Science and

Engineering Research Study,” which was conceived in 1974 and launched in 1975 with financial

support from the NSF (Arden, 1980, Preface). The COSERS steering committee featured thirteen

well-known computer scientists and engineers, including university, government, and industry

affiliates. The committee also included three members of the aforementioned AFIPS Taxonomy

Committee.232 According to Bruce Arden – who chaired the project while serving as the head of

Princeton’s Department of Electrical Engineering and Computer Science – the major objectives

of the COSERS study involved identifying and describing the boundaries of research in the

domain marked “computer science and engineering” (Preface). According to the group’s final

report, this description would also serve as an “operational definition” for the formative field.

Revealing one of the main motivations for their ambitious undertaking, Arden noted in one his

earlier reports that the development of such a definition “will have a salutary, self-organizing

effect on this relatively new research area and … the resulting report will be useful for technical

administrators in their task of research-support allocation” (Arden, 1976, p. 673). Such

comments reveal some overlap between the goals of this project with both the AFIPS Taxonomy

work and prior projects, including Oettinger’s efforts to promote research in “Computer Science

and Engineering,” including through the establishment of the short-lived CSEB.

The final COSERS report – titled What Can Be Automated: The Computer Science and

Engineering Research Study – was published in 1980 by The MIT Press and featured the work of

eighty contributing authors. In most general terms, the report was organized around eight

primary subject areas. In “decreasing order of longevity,” these subjects included numerical

computation, theory of computation, hardware systems, programming languages, artificial

intelligence, operating systems, database systems, and software methodology. The group also

232 The three overlapping members included Bernard Galler, Jean Sammet, and Stephen Yau. The two
projects also involved a number of overlapping authors and reviewers.

www.manaraa.com

 297

described research in a diverse variety of “application” areas, ranging from algebraic

computation and computational linguistics to computer applications in medicine and air traffic

control. Yet in contrast to the AFIPS taxonomy, the COSERS project was somewhat more

explicitly concerned with identifying and describing future directions for research. Following

Mahoney, the COSERS participants were attempting to codify the disciplinary agenda of

computer science and engineering, especially around the question “What can be automated?”233

Yet the impressive breadth of the final report revealed that the actual research agenda was both

wider in scope and more fragmented than suggested by any single, unifying question.

In his introductory remarks, Arden also acknowledged ongoing debates regarding the

respective boundaries around the science and engineering aspects of computing, and he reviewed

a series of justifications for maintaining this division. For example, he noted that computer

scientists tended to focus on explanatory models and “understanding,” while computer engineers

were more concerned with applications and implementation. Arden countered, however, that

common concerns with efficiency made it difficult to maintain the science-engineering

distinction. The author also noted that the two fields were frequently divided according to their

relative proximity to physical equipment: “In short, there is currently an operational difference

between computer science and computer engineering, which corresponds roughly to how close

interests are to the levels of physical implementation of algorithms, or the machine level”

(Arden, 1980, p. 7). Yet he questioned this rationale as well, arguing that concerns about “the

cost of algorithms at all levels” tended to blur this difference. Following another closely related

theme, the report also summarized ongoing efforts to develop a succinct and universal definition

of computer science, while noting both the inherent difficulties with such a task and the author’s

preference for an “operational” rather than “simple” definition.234 As suggested by this overview,

233 As Mahoney explains, “The agenda of a field consists of what its practitioners agree ought to be done,
a consensus concerning the problems of the field, their order of importance or priority, the means of
solving them, and perhaps most importantly, what constitutes a solution” (2000).
234 Interestingly enough, Arden added: “Since computer engineering, no matter how it is distinguished
from computer science, rests ultimately on the same definition, it has not generated independent
candidates for definition” (Arden, 1980, p. 7). While perhaps overstated, this remark once again revealed
the extent to which computer science and computer engineering had evolved in relation to one another.
This comment also hints at the extent to which the development of computer engineering as a distinct
field tended to involve implicit rather than explicit discipline-building activities, such as the ongoing
development of curricula, programs, social identities, etc.

www.manaraa.com

 298

Arden was intent on framing “Computer Science and Engineering” as a single field, in spite of

both its broad span and history of segmentation and fragmentation.

Various subsequent publications also perpetuated the image of a unified field, at least on

the surface. For example, the Encyclopedia of Computer Science – which was first released in

1976 – was published in second edition form in 1983 under the modified title Encyclopedia of

Computer Science and Engineering (Ralston and Meek, 1976; Ralston and Reilly, 1983).235 This

name change was not entirely surprising, given that the aforementioned Anthony Ralston served

as an editor for both editions. As Ralston explained in a Preface to the second edition, “This

change is both an attempt to describe the contents of this book more accurately and an explicit

recognition of a greater emphasis on this edition than in the last on computer technology”

(Ralston and Reilly, 1983, p. xi). In addition, Ralston noted that the major categories used to

classify the articles in the encyclopedia largely corresponded to those presented in the AFIPS

Taxonomy. Hence, these two projects were in part mutually reinforcing.

Yet a closer look at these tomes reveals a continued privileging of the computer science

outlook. The first and second editions, for instance, included entries for “computer science,” but

none for “computer engineering” or even “computer science and engineering.” However, the

1983 edition acknowledged that computer science maintained significant overlap with both

mathematics and electrical engineering, and at one point even claimed that computer science “is

also considered an engineering science,” especially given the role of design-oriented activities in

many phases of the field (p. 366). An appendix in the second edition also included a list of

universities in the United States and Canada that offered the Ph.D. degree in computer science or

closely related fields (pp. 1598-1600). Of 83 such schools, more than three-quarters offered

Ph.D. degrees that were situated in departments or programs of computer science, computing

science, or similar. On the other hand, just eleven of the listed programs and departments

included the word “engineering” in their title, and these varied widely in naming. This appendix

therefore put forward the image of computer science as a bona fide discipline, complete with

well-established departments and programs that were steadily churning out doctorate degrees in

computer science.

While Oettinger can be credited with first popularizing the term “computer science and

engineering” and the Model Curricula Subcommittee later promoted the development of

235 For a recent, article-length history of the Encyclopedia of Computer Science, see Ralston (2004).

www.manaraa.com

 299

educational programs bearing this moniker, the AFIPS, COSERS, and Encyclopedia projects

reveal that the disciplinary development of CSE had entered a new phase. More specifically,

these projects variously attempted to identify and in part codify the structure of the discipline,

including via hierarchically ordered lists of various constituent categories, sub-categories, and

subjects. In addition, these projects were framed as contributing to ongoing efforts to garner

additional support for the field of computer science and engineering, with particular emphasis on

improving how uninitiated outsiders understood the character and contours of the field. In fact,

the COSERS project in particular placed significant emphasis on identifying a unifying agenda

for the field, as well as a variety of more specific research horizons. These projects were strategic

and political, as they promoted an outward image of unity in the domain marked computer

science and engineering, despite the various internal schisms that divided the field.

My discussion of these projects also reveals that the discipline-building project of CSE

had at least partially transcended the Computer Society and its cadre of educational reformers. In

fact, these projects brought together a variety of actors who maintained close ties with the ACM

and the Computer Society, computer science and computer engineering, and industry and the

academy. On the other hand, the Computer Society’s Education Committee largely retained

control of the phrase “Computer Science and Engineering” for its own model curricula, and these

recommendations tended to privilege the needs and perspectives of the many engineers and

engineering educators who dominated the group. In the following sections, I document how this

tension persisted through much of the 1980s, and then partially reversed in the late 1980s

through the “Computing as a Discipline” movement. As my account makes plain, the shifting

disciplinary landscape of the computer field was persistently suspended between the abstract

ideals of discipline builders and the extant realities of pre-existing institutional structures,

professional identities, divisions of labor, accreditation processes, discursive constructs, and

technological developments. In the following sections I take a closer look at some of the currents

and undercurrents that accompanied the emergence of “Computer Science and Engineering.”

Managing Complexity: The Hybridization of Hardware and Software Engineering

While my analysis has hinted at the importance of technological change as a backdrop for

the evolving professional and disciplinary landscape of computing, it is worth bringing this

theme into further relief. More specifically, this section reveals the persistent blurring of not only

www.manaraa.com

 300

the software-hardware boundary, but also the various bodies of knowledge and techniques

associated with these domains. In doing so, my goal is not to paint technology is a cause or prime

mover behind the various movements documented in this chapter, but rather as one important

factor among many. As background, I also engaged with a number of closely related themes in

the preceding chapter, including through my review of the emergence of some new domains of

expertise. More specifically, the development of new technologies, design techniques, and

bodies of expertise contributed to the establishment of new subfields such as computer

architecture and microprogramming. Further, work in these areas revealed a continued blurring

of the boundaries between software and hardware, especially at the intermediate levels of

computer design.

However, the preceding analysis tended to gloss over another important aspect of this

history, namely the spectacular increases in the complexity of the technological art of computer

design, especially from the 1970s onward. One finds, for example, dramatic increases in both the

density and scale of integrated circuits, leading from medium-scale integration (or MSI, with

hundreds or thousands of transistors on a chip) to large-scale integration (or LSI, many

thousands of transistors on a single chip) to very large-scale integration (or VLSI, with many

tens-of-thousands to hundreds-of-thousands transistors on a chip) within the span of just over a

decade.236 As one might suspect, designing and producing reliable devices of this scale – not to

mention incorporating them into even larger and more complex systems – proved a formidable

challenge, even for the most seasoned individuals and design teams.237

In fact, in his 1989 article on the co-evolution of electronics technology and computer

science from the 1940s to 1970s, historian Paul Ceruzzi framed “the management of complexity”

as a common concern of both electronics engineers and computer scientists, and he largely

credited the field of computer science for providing engineers with the ability to cope with the

task of building chips that consisted of hundreds of thousands of individual transistors (Ceruzzi,

1989). And while Ceruzzi’s assumptions in this article about the respective boundaries around

computer science and computer engineering are certainly debatable, it is worth probing in more

236 Wikipedia provides a reasonable overview of the defining characteristics and major time periods for
the historical development of integrated circuit technologies, including MSI, LSI, and VLSI (“Integrated
circuit,” n.d.).
237 Tracy Kidder’s Pulitzer Prize-winning The Soul of a New Machine (1981) provides a persuasive
account of how two design groups at a well-known computer company grappled with these types of
challenges in the mid-1970s.

www.manaraa.com

 301

detail the movement of knowledge and technology between the more “hardware” and “software”

ends of the computing spectrum, especially through the 1970s and into the 1980s.

For example, hardware and system designers benefited greatly from the continued

development and application of new hardware description languages (HDLs), especially from the

1970s onward. In addition to revealing how the knowledge and techniques of programmers and

computer scientists could usefully be applied to the engineering of ever-more complex

computing devices, HDLs were often viewed as providing an important bridge between

hardware and software design. More specifically, these languages provided computer engineers

and designers with a much greater appreciation for the behavorial as well structural aspects of

hardware.238 To put it another way these languages provided not only the ability to describe the

physical structure and interconnections of a given integrated circuit and/or system, they also

improved the ability of designers to specify in detail how that circuit or system would behave.

Further, the development of common specification languages for both hardware and software

helped enable the simulation of combined hardware-software systems. Such simulations also

helped enhance the ability of designers to analyze the increasingly important trade-offs that came

with shifting functionality between hardware and software.

HDLs – coupled with a variety of supporting technologies and developments – seemed to

provide crucially important scaffolding for the emergence of a truly integrated approach to

hardware and software design. In fact, it didn’t take long for observers to sense the larger

significance of these developments. In as early as 1974, for example, F. J. Mowle of Purdue

noted the potential impact of HDLs in the educational sphere. As Mawle explained, the

emergence of hardware description languages, new semiconductor technologies, and shifting

divisions of system design labor pointed toward “an integrated education in hardware and

software principles by use of a suitable combination of hardware description language and high-

level programming language … This will be a promising approach to overcoming the pedagogic

efficiencies of the conventional methodological segregation and its consequences” (as quoted in

Chu, 1974, p. 20). Mowle’s comments help bring into further relief the currents of change that

seemed to be afoot as the Computer Society’s educational reformers went to work on developing

their ambitious new boundary-spanning curriculum in CSE, and as other groups worked more

generally to outline the contours of CSE.

238 I draw significant inspiration here from the remarks of R. Hartenstein, as quoted by Chu (1974, p. 20).

www.manaraa.com

 302

On the one hand, the rise of HDLs seems to provide support for Ceruzzi’s claim that the

engineers had greatly profited from the prior innovations of computer scientists. Yet the

movement of knowledge between these two groups clearly flowed both ways. In fact, just as the

engineers learned much from the more behavioral or procedural perspective of computer

scientists and programmers, so too did computer scientists learn from the structural outlook of

the engineer-cum-designer. At risk of overgeneralizing, the emergence of the field of “software

engineering” provides evidence for this trend, where the tools and techniques of engineers were

used to cope with the increasing complexity of software. For example, one finds the application

various design methodologies and cycles to the domain of software. Further, many of the metrics

long-privileged by engineers for the design of physical artifacts – such as simplicity, reliability,

modularity, economy, and adaptability – were imported wholesale into the realm of software

design. Hence, if the increasing complexity of integrated circuit technology showed the limits of

a purely structural approach to engineering design, so too did the increasing complexity of large-

scale software projects begin to reveal the limits of both computer science theory and purely

procedural approaches to programming.

The emergence of the next major generation of integrated circuit technology – dubbed

very large-scale integration, or VLSI – sheds additional light on the continued interplay between

the realms of software and hardware development.239 Commentator Ben Spaanenburg, for

instance, suggestively summarized that the “VLSI 81” conference held in Edinburgh, Scotland

was largely organized around the question: “Will VLSI be solved by (computer) science or

(electrical) engineering?” (1982). Describing the event as a “staging area for a clash” between

science and engineering, the author presented a somewhat lopsided view of the event by

emphasizing the continued influx of computer science into engineering and microelectronics. In

fact, he noted in that one participant in the event had put forward the view that “software is the

key to VLSI design, with the crucial skill being complexity management.”

While such comments seem to support Ceruzzi’s claims, other evidence reveals that the

flow of technology and knowledge in and around the domain of VLSI was altogether more

239 As other commentators have noted, the difference between LSI and VLSI was not only a matter of the
number of transistors that could be packed onto a chip, but also associated differences in design
philosophies. LSI technologies allowed computer systems to be developed by wiring together standard
LSI modules. VLSI, on the other hand, opened the way for entire systems to be placed on a single chip.
As this overview suggests, the design of systems based on VLSI rather than LSI technology required very
different design methodologies and approaches.

www.manaraa.com

 303

complex. Later in the same year, for example, a three-day workshop “on the engineering of VLSI

and of Software” was organized by the Computer Society. According to one announcement, the

workshop was conceived to examine “the role, utility and value of [s]oftware engineering

practices applied to VLSI” and “VLSI technology and engineering practices applied to software”

(“Call for Participation,” 1982). Rather than promoting the tired image of persistently

fragmented field, this particular event suggested that many of the technical boundaries between

software and hardware had been breached. On the other hand, Spaanenburg’s remarks revealed

that images of science and engineering as distinct domains continued to have much currency in

the field, even if it was increasingly difficult to determine where the tools, techniques, and

knowledge of the computer scientist ended and the computer engineer began.

Research Directions in Computer Engineering: (Re)Defining the Discipline

While many of the technological currents outlined above appeared largely synergistic

with the philosophy and motivations of the “Computer Science and Engineering” movement,

other 1980s era developments simultaneously undermined it. In order to document this trend I

begin in the early 1980s, when a handful of engineers worked to both (re)establish a definition

for computer engineering and promote the field as a distinct discipline and domain of research.

Evidence for this movement can be found in a published report on a 1981 NSF workshop on

“Research Directions in Computer Engineering” (Freeman, 1982; 1983). In terms of

composition, the fourteen participants at this event included six industry affiliates, while another

eight hailed from the academy (p. 80). Electrical engineer Herbert Freeman of Rensselaer

Polytechnic Institute served as chairman, and C. V. Ramamoorthy was among the participants

(Freeman, 1983, p. 81).

As Freeman noted in a follow-up report – which was published in Computer – the

workshop participants were ostensibly gathered to discuss the future of research in the area of

computer engineering, yet they quickly surmised that it was necessary to first establish the field’s

definition, scope, position, and goals. More specifically, this same report indicated that the group

spent considerable time on the topic of “What is computer engineering?” “Computer engineering

has never been clearly defined” (Freeman, 1983, p. 80), Freeman explained, and he suggested

that this condition largely stemmed from both the relative newness and rapid development of

www.manaraa.com

 304

computer technology. The author then summarized the participants’ efforts to clear up some of

this ambiguity, including via their own attempt at a definition:

[C]omputer engineering is the discipline that deals with the design and

development of computer systems and emphasizes such factors as function,

performance, cost, size, power requirements, reliability, maintainability, and

societal impact. Intrinsic to computer engineering is the concept of design as it

applies to all aspects of a computer system – the hardware, the software, the

algorithms used – and the application for which it is intended (p. 80, authors’

emphasis).

The report also emphasized that computer engineering was neither science nor mathematics,

especially given the orientation of engineers toward applying theory and focusing on matters of

implementation. As this overview reveals, the workshop participants leveraged the historical

links between engineering and design to frame computer engineering as covering a wide swath

of sociotechnical territory. In fact, the authors used their rather expansive definition to claim that

“most people working in the computer industry (other than pure science) are computer

engineers” (p. 80).

To be sure, many self-described computer scientists probably recoiled at such claims. The

suggestion that the group’s definitional work was largely novel was also questionable. As

documented in prior chapters, many prior commentators had made implicit and explicit claims

about the scope and contours of computer engineering. For example, the COSINE Committee’s

widely-distributed 1970 recommendations for computer engineering options quite explicitly

defined computer engineering, while also hinting at how the education and work responsibility of

computer engineers differed from their computer science and electrical engineering ilk. And as

noted above, Ramamoorthy himself put forward a rather succinct definition for computer

engineering in his 1976 review article on “Computer Science and Engineering Education.”

In light of this evidence, how do we account for this collective case of amnesia – this

apparent lack of disciplinary memory – which led this group to claim that computer engineering

had never been defined? To begin with, many earlier publications had framed computer

engineering as a branch of engineering or dimension of electrical engineering, rather than as a

discipline unto itself. In fact, one finds a similar tendency among the NSF workshop participants,

especially as they worked to distinguish computer engineering and computer science. As

www.manaraa.com

 305

Freeman summarized: “[c]omputer science tends to stress understanding and insight,” while

“[c]omputer engineering emphasizes practical, economic systems” (p. 80). This statement

implied that the workers in each of these domains possessed their own distinct outlooks or

perspectives, and these roughly cleaved along the science-engineering boundary. Freeman added

that this difference was especially apparent in the academic context, where computer engineering

students were schooled not only in computer hardware and software, but also in basic science,

engineering science, and engineering design. The author quite suggestively added that computer

engineering students enrolled in ABET accredited programs were educated as “engineers first

and computer engineers second” (p. 81). Such comments support the claim that the development

of computer engineering as a recognized discipline was often and persistently overshadowed by

ongoing efforts to turn engineering undergraduates into appropriately qualified professional

engineers.

The parallel promotion of “Computer Science and Engineering” as an all-encompassing

disciplinary and professional moniker only caused further confusion about both the past and

present landscape of the computer-oriented disciplines. And in line with this alternate view of the

field, Freeman acknowledged that computer engineers and computer scientists maintained

overlapping interests in many of the same epistemological and technological territories. “Except

for the very theoretical aspects of computer science and the very strong hardware aspects of

computer engineering,” the author explained, “the domain of interest of computer science and

computer engineering are virtually the same” (p. 80). Echoing many prior commentators,

Freeman ultimately concluded that the two disciplines should be regarded as “complements”

rather than “competitors” (p. 82). And the workshop group even went so far as to identify the

“integration of hardware and software disciplines” as one of 16 major five-year research goals

for the field (p. 82).

As this overview reveals, over the span of roughly three decades the field of computer

engineering had largely failed to achieve an independent disciplinary identity, even for those

who self-identified with the field. In fact, computer engineering appeared stubbornly suspended

between electrical engineering and computer science, profession and discipline, and the NSF

workshop hinted at some of the potentially deleterious consequences that came with the field’s

boundary-spanning position. The report raised questions, for example, about the extent to which

university administrators, students, funding agencies, and the lay public understood what

www.manaraa.com

 306

computer engineering encompassed. Perhaps even more suggestively, Freeman added that “the

choice of name for a university department can have far-reaching implications on the types of

students it attracts, its faculty, the kind of research support it will receive, and its ultimate growth

and development” (p. 81). While the author failed to elaborate on this comment, its probable

meaning is easily inferred, namely that working the phrase “computer engineering” into

departmental titles was an important step toward its recognition as an academic discipline.

Yet as the following section makes clear, promoting the institutional, disciplinary, and

discursive legitimacy of computer engineering stood in at least partial tension with not only this

group’s comments about integrating the hardware and software disciplines, but also with those

who continued to lobby for a more unified approach to computer science and engineering

education. And indeed, the Computer Society’s next major curriculum development project was

once again framed under the boundary-spanning guise of CSE, even as others were beginning to

raise questions about the extent to which the group’s work actually promoted the blurring or

crossing of disciplinary boundaries.

From Curriculum to Program: The Engineers Revisit CSE Education

Through the late 1970s and into the 1980s the Computer Society’s Education Committee

continued to expand, both in terms of its membership and level of activity. In 1979, for example,

chairman David Rine boasted that the group consisted of about 300 members, and he added that

approximately 35 papers related to the committee’s activities had recently been presented at

conferences (Rine, 1979, p. 3; 4). Around this time the group was involved with assisting

educators with the implementation of model curricula, developing new curriculum reports for

other educational levels (including pre-college, community college, and graduate), and

establishing new recommendations for more specific subfields, including graduate-level

programs in software engineering (Rine, 1979). Committee members were also increasingly

involved in accreditation-related work, as discussed in more detail below. The committee’s

institutional prominence was further elevated when it officially became the Educational

Activities Board (EAB) in the early 1980s (Booth, 1982). As a result of this change, the group’s

leader was recognized as a voting Vice President on the Computer Society’s governing board.

Within the span of a decade, education had clearly emerged as a centrally important domain of

activity for the Computer Society and many of its members.

www.manaraa.com

 307

Not content to rest on its laurels, by late 1981 the group was pondering a review of its

1977 curricular recommendations for CSE. Reports suggest that Ramamoorthy initiated this

undertaking, and he and the other reviewers quickly concluded that a major revision of the model

curriculum was needed, especially in light of ongoing and rapid technological changes (Cain,

Langdon, and Varanasi, 1983, p. vi). When Taylor Booth took over as head of the EAB in 1982,

he was instrumental in expanding the project to more explicitly address faculty and resource

issues as well as curriculum (p. vi). This expansion of the project strongly reflected the full range

of implementation challenges that many institutions faced as they attempted to establish

educational programs in CSE and related areas. The group’s final report was first published in

late 1983 and also appeared in summary form in an April 1984 issue of Computer that was

dedicated to “Computers in Education” (Model Program Committee, 1983; Cain, Langdon, and

Varanasi, 1984).

In summary, the new model program took an evolutionary rather than revolutionary step

beyond the group’s earlier work.240 One change worthy of noting centers on the core curriculum,

where outlines for individual courses were replaced with descriptions of 13 core subject areas,

with 9 of these marked as lecture/recitation and 4 as laboratory.241 The report also identified a

diverse assortment of 15 advanced subject areas, and recommended that any given program

should provide in-depth coverage of at least two. Elsewhere in the report, the authors stressed the

importance of striking a balance between hardware and software-oriented CSE programs: “The

curriculum component of the program is intended to provide potential graduates with a well-

balanced education in fundamental principles of hardware and software design, reinforced with

experiential skills” (16).

The Committee also echoed the COSERS and AFIPS Taxonomy projects by explicitly

framing Computer Science and Engineering as a discipline. The authors of the report described

electrical engineering and mathematics as the main “sister fields” (p. 99) or “sister disciplines”

240 Engineer V. Rao Vemuri – who served as a member of the committee that produced the 1983 Model
Program in CSE – nicely captured in a 1993 article the tendency for model curricula to develop in a
conservative manner: “Indeed, there has never been a shortage of studies on model curricula. … What
seems to impede progress is that curricular recommendations have the tendency to exhibit tremendous
‘implementation inertias.’ They resist all but the most incremental changes” (Vemuri, 1993, p. 108).
241 The nine lecture/recitation areas included Fundamentals of Computing, Data Structures, System
Software and Software Engineering, Computing Languages, Operating Systems, Logic Design, Digital
Systems Design, Computer Architecture, and Interfacing and Communication. The subject area of
Discrete Mathematics was also identified as a crucial supporting topic for CSE.

www.manaraa.com

 308

(p. 120) of computer science and engineering, for example, and elsewhere they noted that

“computer science and engineering is now recognized as a separate, identifiable discipline” (p.

98). Such comments once more reveal the strategic importance of building disciplines through

discourse, especially given that only a handful of departments and programs actually carried the

title of “computer science and engineering” by this time. In fact – and like the advocates of

computer science before them – the authors of the model program report were forced to

acknowledge the potential for wide variation in how CSE might be realized in diverse

institutional contexts. “The administrative structure used to support programs in this area,” the

report explained, “can take a variety of forms” (p. 98).

Once again, we find a persistent and unresolved tension in the disciplinary landscape of

computing. To whit, the authors’ insistence on the existence of CSE as a distinct disciplinary

field was accompanied by a lack of consensus regarding the prevailing or even preferred location

for its associated educational programs. And elsewhere in this report, the authors revealed their

preference for linking CSE with engineering, even as they emphasized that the field spanned the

hardware-software spectrum:

The undergraduate program in computer science and engineering must contain a

core that gives each student a comprehensive understanding of the hardware and

software principles underlying the computer area. In addition, the student must

also have a strong background in mathematics, the basic sciences, and the

engineering sciences (p. 123).

As one might suspect, the “core” summarized in this passage seemed to have much in common

with other types of engineering programs. That is, engineering students in diverse sub-fields

were expected to pass through a reasonably standard sequence of foundational courses in math,

science, and engineering science before moving on to more specialized engineering subjects.

Still other publications revealed that various actors were eager to promote and oversee

the development of CSE departments and programs within colleges and departments of

engineering. In a 1984 review article on the topic of “Computer Education,” for example, former

COSINE Committee member and Computer Society EAB Vice-President Taylor Booth echoed

the Model Program report when he noted that “computer science and engineering has matured

into a well-defined disciplined” (p. 64). Yet even more suggestively, the author added:

www.manaraa.com

 309

[M]any schools are reconsidering their departmental structures and creating

computer science and engineering departments, apart from electrical engineering.

This trend should accelerate in the next few years, and by the 1990’s, the

computer science and engineering department will be considered key to any

engineering school that wishes to offer a full-spectrum program” (Booth, 1984, p.

64).

Booth’s comments reveal growing recognition among educational reformers regarding the

importance of building the discipline computer science and engineering through the

establishment of thusly-named departments and programs, albeit within colleges and schools of

engineering. In fact, Booth noted that recent revisions to ABET criteria for computer science and

engineering programs had been “revised to reflect the fact that it [CSE] is a distinct engineering

discipline” (p. 64).

On a closely related note, Booth was also a member EAB task force that was formed in

1984 to analyze the role of “design education” in computer science and engineering. In addition

to dovetailing with both the Computer Society’s 1983 model program and ABET accreditation

criteria that I discuss below, the group’s recommendations – which were published in 1986 –

emphasized the integral role of engineering design in the field of computer science and

engineering, especially given “the many conceptual levels involved in information systems, from

hardware components to complex software systems” (Booth, et al., 1986, p. 26). This same

report revealed the potential for engineers to strategically leverage their historical monopoly on

“design education” in order to retain control of the domain dubbed Computer Science and

Engineering. “In the world of technology,” the authors explained, “design has been the

traditional province of the engineer and differentiates the engineer from the scientist” (p. 21).

And while the ongoing development of software engineering courses and programs in a variety

of departments suggested that both engineers and non-engineers maintained overlapping interests

and claims in the arena of software design, the following section reveals the importance of

accreditation structures and processes in ongoing efforts to establish and police the boundaries

around engineering and design.

www.manaraa.com

 310

Engineering Accreditation and The Discursive Politics of Professional Certification

Given its mediating role betwixt profession and discipline, industry and the academy,

accreditation is an important topic. In fact, the present case helps illustrate the pivotal role that

professional societies often assume at the intersection of profession and discipline, especially as

their members undertake tasks such as developing accreditation criteria and reviewing individual

academic programs. As further background on the topic, it is worth briefly reviewing some

relevant history.242 In the wake of the 1930 publication of the influential Wickenden report on

engineering education, a climate of cooperation helped enable the 1932 founding of the

Engineers’ Council for Professional Development (ECPD). With the early support and active

participation of seven major engineering professional societies, the group went to work,

approving its first set of accreditation criteria for engineering programs in 1933 and issuing its

first accreditations in 1936. The group was quickly recognized as the accreditation body for U.S.

educational programs in engineering, engineering technology, and related fields.

The ECPD maintained a single set of accreditation criteria for all types of programs for

many decades, and these grew longer and more complex through the 1960s and 1970s as the

various fields and subfields of engineering continued a long historical pattern of evolution and

diversification. And indeed, computer engineering was one among many fields that emerged and

were eventually recognized by the ECPD. As reported by Jones and Mulder (1984, p. 25), in

1971 the computer engineering program at Case Western Reserve University became the first

accredited engineering program with the word “computer” in its title. Syracuse University and

the University of Connecticut followed close behind, with the former named “computer

engineering” and the latter dubbed “computer science” (p. 25).

The accreditation of these programs was an important step in the recognition of computer

engineering as a partially or perhaps even wholly distinct field or discipline, although the

existence of Connecticut’s engineering-oriented computer science program revealed continued

uncertainty over how such programs should be named. Further, these programs were accredited

under “special” EPCD guidelines since no specific criteria existed for these relatively new types

of degrees. Amidst growing concerns that more specific guidelines were needed for computer-

oriented engineering programs, a Computer Society committee chaired by Ramamoorthy went to

work on the problem in 1975 (Jones and Mulder, 1984, p. 25). The ECPD approved the group’s

242 This brief historical review is largely based on the accessible account developed by Stephan (2002).

www.manaraa.com

 311

recommendations for “Computer Engineering” in 1978, and they were first used for accreditation

visits in 1979 (p. 25). In addition to “amplifying” and “interpreting” the ECPD’s general criteria,

the IEEE guidelines stressed the importance of education in the areas of engineering design and

the engineering sciences (IEEE Educational Activities Board, 1978).243

The EPCD was renamed the Accreditation Board for Engineering Technology (ABET) in

1980, and by October of the same year the organization had accredited a total of 10 bachelor’s

level and 3 master’s level programs in the “Computer” program area (ABET, 1980). In the early

1980s the Board also spearheaded the development of more specific “program criteria” that

would be used for the accreditation of programs in various sub-fields of engineering, thereby

reducing ongoing confusion over the publication of separate, supplemental guidelines by various

professional societies (Jones and Mulder, 1984, p. 25; ABET, 1982). The IEEE responded with a

set of program criteria for “computer and similarly named engineering programs,” and these

were approved and in active use by the mid-1980s (Jones and Mulder, 1984, p. 26).

As noted above, the Computer Society’s development and promotion of A Curriculum in

Computer Science and Engineering in the mid- and late-1970s dealt with the matter of

accreditation rather lightly, although the inclusion of an “Electrical and Computer Engineering

Curriculum” designed to meet EPCD guidelines revealed that this group was at least nominally

interested in making their recommendations accreditation-friendly. The Computer Society’s

1983 Model Program, on the other hand, revealed the increasing importance of explicitly

dovetailing the group’s educational recommendations with ABET criteria. The first major

section of the program report, for instance, featured detailed information about the ABET

general criteria, as well as draft criteria for what the group variously referred to as “Computer

Science and Engineering Programs” or “Computer and Similarly Named Engineering Programs”

(Model Program Committee, 1983, pp. 3-6). The curricula section of the report also featured

three sample course-by-course implementations of four-year CSE programs, all assumed to be

situated in schools of engineering, and all satisfying ABET accreditation criteria (pp. 89-97).

Interestingly enough, no other sample implementations were presented, which further suggested

that the group’s primary interests did indeed center on the development of CSE or CE programs

within departments and schools of engineering.

243 According to one preliminary report, these guidelines were intended for “computer engineering,
computer science, information science, and similar programs for which ECPD accreditation is request”
(IEEE Educational Activities Board, 1978, p. 67).

www.manaraa.com

 312

In 1984, a Computer article co-authored by Michael Mulder and Edwin C. Jones also

dealt rather extensively with the matter of accreditation. In addition to summarizing the historical

development and contemporary status of accreditation in the area of “Computer Science and

Engineering,” the authors outlined a series of “Issues and Concerns” that they felt warranted

further study. It is worth quoting the authors at length here, as they nicely captured many of the

persistent concerns and tensions that accompanied both the ongoing development of computer-

oriented curricula and the changing disciplinary landscape of the computer field:

1) What is the role of basic science in computer science and engineering

education, and what are the appropriate basic sciences for CSE programs?

2) What is the role of programming courses? The general trend today is not to

allow programming courses to be considered in any of the five major

curriculum classifications because they are considered skills, not course

material in engineering science or design.

3) What is computer engineering? How does it differ from computer science?

Are the distinctions worth noting? Could the discipline be called computer

science engineering [sic] or some other title? Should the professional societies

move toward combining these disciplines if they are separate?

4) What is software engineering and is it really “engineering”? Some people tend

to look at the software problem and argue that, since it does not involve

hardware, it is other than an engineering concern. This view is, of course,

disputed by those who see the decision to make a trade-off in design between

hardware and software as purely an engineering problem.

5) What should we do with model programs? New model programs have been

prepared to set goals and provide guidance. In the near future, we should try to

incorporate these ideas into the program criteria.

 (Jones and Mulder, 1984, p. 27)

In most general terms, this list of issues revealed many points of instability in the milieu of

computer-oriented education. In fact, one is struck by the extent to which these authors were

questioning the fundamental nomenclature and identity of their own disciplinary field and its

www.manaraa.com

 313

related subfields – especially in contrast to other reports published around this same time period.

As noted above, for example, the 1983 Model Program had rather confidently declared that

“computer science and engineering” was indeed a “separate” and “identifiable” discipline.

Three additional and more specific themes are also worth highlighting here. First, one

finds tensions running through this passage regarding what should or should not be counted as

engineering, and how engineering was related to the sciences. Second, the authors once again

adopted a Janus-faced position, especially by implying that there was such a thing called

“computer science and engineering education,” and then raising questions about whether

computer science should be distinguished from computer engineering. Third, Jones and Mulder

questioned whether the professional societies might somehow “move toward” a merger of the

computer engineering and computer science disciplines, thereby putting forward an image of the

professional societies as key loci of disciplinary development. While my account certainly

speaks to the role of such societies in the emergence and building of disciplines, the present

chapter also emphasizes both the heterogeneous nature of discipline building in general and the

importance of the academic context in particular.

Data culled from a series of ABET annual reports provides a more detailed view of the

ongoing development of computer-oriented engineering degrees and programs in the early and

mid-1980s. To begin with, the number of accredited programs in the so-called “computer area”

continued to rise. By October of 1985, for example, the number of ABET recognized programs

at the bachelor’s-level had risen to 34 (ABET, 1985, p. 37). On the surface, these numbers may

appear rather small, especially given that many hundreds of electrical engineering and computer

science departments and programs were in existence by this time. However, this data only

reflected those programs that were specifically accredited by ABET in the computer area. In fact,

there were surely many ABET-accredited electrical engineering programs that offered options in

computer engineering, computer science, and related areas. Yet the incorporation of computer

engineering as part of a multi-option degree structure suggested that computer engineering was a

branch or subfield of electrical engineering, rather than a discipline unto itself.244

These same ABET reports also revealed important trends in the naming of programs. To

begin with, the term “Computer Engineering” remained popular and influential, and by 1985 it

244 As noted above, Sloan’s data from 1974 showed that 51% of EE departments responding to her survey
offered CS or CE degrees or options. And as noted in Chapter 5, a similar survey conducted by Sloan in
1972 revealed that 49% of responding EE departments maintained Computer Engineering degree options.

www.manaraa.com

 314

was being used to describe 18 of 34 accredited programs (ABET, 1985, p. 60). The phrase

“Computer Science and Engineering” also became more widespread in the early part of the

1980s, appearing in just two accredited program titles in 1982 and a more impressive seven in

1985 (p. 60). By 1985, other program names included “Computer Science” (3 programs),

“Computer Systems Engineering” (3 programs), and a smattering of more unusual one-offs (p.

60).245 And on a closely related note, a new ABET guideline in the mid-1980s mandated that all

accredited engineering programs must include the word “engineering” in their titles after 1985

(Jones and Mulder, 1984, p. 26). According to one account, the phrase “and engineering” was

simply appended to many program names in order to satisfy this requirement (Yeargan, 2002, p.

111). Nonetheless, this anecdote forcefully reveals that the policing of discourse can play an

important role in ongoing efforts to construct and maintain professional and disciplinary

identities.

CSAB and CSAC: Independent Accreditation for an Independent Discipline

No matter how any given degree program was named, it was clear that the criteria and

guidelines published and used by ABET were by definition intended for engineering programs.

Hence, computer science and other computer-oriented programs situated outside of colleges and

departments of engineering lacked a suitable and widely-recognized accreditation processes. Yet

the need for such an accreditation system had been recognized much earlier. In fact, interest in

the matter among ACM members and leaders can be traced back to at least the late 1960s and

early 1970s, with ACM President Walter Carlson identifying accreditation as one of his top goals

for the organization in 1969. More specifically, he called on the group to issue curricular

recommendations for all levels of computer education by 1972, and accredit at least fifty percent

of all computer-oriented educational programs by 1980 (Carlson, 1969).

Yet many within the ACM were skeptical about the potentially stifling effect of

accreditation on computer science programs, even if they were willing to support some sort of

certification process for courses of study in programming and related areas, many of which were

being offered by trade and technical schools. As summarized by the Secretary of the ACM

SIGCSE, “In view of the developing nature of computer science it was observed that an

245 These other program names included Computer and Electrical Engineering (Purdue), Computer and
Information Engineering Sciences (University of Florida), Computer and Systems Engineering (RPI), and
Computer Science Engineering (San Jose State University) (ABET, 1985, p. 60).

www.manaraa.com

 315

accrediting committee might serve to stifle rather than encourage the natural development of

computer science curriculae. … After lengthy interchange the only consensus was that

accreditation in computer science similar to accreditation procedures in other more established

disciplines is not in the immediate future” (Matula, 1969).

In striking contrast to the engineering community – where accreditation had for many

decades played a pivotal role in the development and recognition of educational programs – the

computer science camp privileged their independence, thereby stalling Carlson’s ambitious

agenda. In fact, it wasn’t entirely clear what it would mean to “professionalize” computer science

through accreditation programs, especially since the field’s dominant image was largely based on

its status as an academic discipline. Certifying professional programmers, on the other hand, was

a somewhat more palatable prospect since programming was often viewed as closely linked to –

but also partially distinct from – computer science.

These tendencies were reflected in the 1973 establishment of the Institute for the

Certification of Computer Professionals (ICCP) by eight professional organizations, including

the ACM and IEEE Computer Society (McCracken, 1979, p. 145). Through the 1970s the ICCP

initiated and administered the Certificate in Computer Programming (CCP), yet this credential

was primarily aimed at individual programmers. It therefore had only indirect bearing on both

computer science generally and computer-oriented degree programs specifically. In 1977 the

ACM finally approved its first set of accreditation guidelines for “Bachelor’s Degree Programs

in Computer Science,” but even these were primarily intended for use by individual institutions

for informal, self-study, and/or for use in connection with regional accreditation procedures

(ACM Accreditation Committee, 1977).

As both the number of computer science programs continued to expand the concerns

about their quality persisted, around 1981 the ACM and the Computer Society finally took the

first steps toward developing a new accreditation process that was tailored for computer science

education (Mulder and Dalphin, 1984, p. 30). A joint task force co-chaired by Michael Mulder of

the Computer Society and John Dalphin of the ACM went to work on the problem, and in 1982

they recommended the establishment of a new accreditation body (p. 30). This led to the 1984

founding of the Computing Sciences Accreditation Board (CSAB) as an independent, non-profit

organization, with the Computing Sciences Accreditation Committee (CSAC) established shortly

thereafter to oversee the actual accreditation process. During the first accreditation cycle in the

www.manaraa.com

 316

Fall of 1985, a total of 31 schools were reviewed and 23 approved (Booth and Miller, 1987, p.

379). On a closely related note, this same report noted that the ACM maintained a master list of

more than 450 institutions that offered some type of four-year undergraduate degree in computer

science. The CSAB clearly had a long list of prospective clients (p. 378).

The joint creation of the CSAB by the ACM and Computer Society stands as another

testament to the reasonably close relation of these two professional societies in the early and

mid-1980s. In fact, this same time period was marked by other signs of cooperation, including

renewed discussions about the possible advantages of merging the two groups. Yet just as the

Computer Society remained institutionally suspended between the IEEE on the one side and the

ACM on the other, the accreditation criteria and processes for computer-oriented degree

programs had developed in a similarly bi-furcated manner, with both ABET and the CSAB

pursuing partially independent goals and certifying different types of programs.

In fact, Figure 7.1 – which was originally presented by Mulder and Dalphin in their 1984

article on Computer Science accreditation – suggestively depicts these tensions. On the one

hand, we find Electrical Engineering and Computer Science Engineering explicitly aligned with

both Schools of Engineering and ABET Accreditation, while Computer Science and Information

Science were linked to “Liberal Arts and Science.” Yet the anticipated “program range” for

CSAC accreditation was framed as covering a broad span of the so-called “Computing

Sciences,” even reaching into the domain of “Computer Science and Engineering.” As I note

below, reconciling the overlapping jurisdictions of ABET and CSAC emerged as an increasingly

important issue, especially in the late 1980s and into the 1990s.

Figure 7.1 – Distribution of Computer Science Programs with Present and
Projected Accreditation (Mulder and Dalphin, 1984, p. 31) © 1984 IEEE

www.manaraa.com

 317

In following section I document how the close relation of the ACM and Computer

Society led to another unprecedented project, namely the joint development of a common

curriculum. On the other hand, my analysis once again reveals a variety of incongruities between

the development of new model curricula, the historically dominant structure of academic

departments and programs, and the ongoing evolution of accreditation criteria and processes.

The Diversification of Computer Science Curricula

If the development of the CSAB/CSAC hinted at a continued independent streak among

computer science programs and departments, so too did a series of 1980s-era publications on

computer science curricula. In fact, many of these documents allowed various groups and actors

to refine their definition of computer science, while also resisting or simply ignoring the alternate

educational agenda that was being developed by the Computer Society. The ACM, to begin with,

selectively updated its curricular recommendations in the early and mid-1980s. In 1981, for

instance, the ACM C3S published a set of “Recommendations for Master's Level Programs in

Computer Science” (Magel, et al., 1981). The report offered little in the way of surprises, as the

group’s recommendations were significantly informed by a number of M.S. programs in

Computer Science that were already in existence at various schools.

More specifically, the report proposed curricular coverage in a number of predictable

subject areas, such as programming languages, theoretical computer science, and data and file

structures. Courses in a fourth topical area, namely “Operating Systems and Computer

Architecture,” provided students with some exposure to hardware and systems, although it was

clear that these programs were more generally rooted in computer science rather than

engineering. And a pair of subsequent ACM task force committees developed revised curricula

for the first two courses recommended in Curriculum ’78, namely “CS1” and “CS2.”

Respectively published in 1984 and 1985, these new recommendations were framed as a

responding to both an increase in computer science knowledge and the need for greater emphasis

on software engineering (Koffman, Miller, and Wardle, 1984; Koffman, Stemple, and Wardle,

1985).

Other groups were also leading the development of curricula in the early and mid-1980s,

and these tended to reflect some of the schisms that were growing both within computer science

and between computer science and computer engineering. The Carnegie Mellon Curriculum for

www.manaraa.com

 318

Undergraduate Computer Science (Shaw, 1985), to begin with, was the result of a three-year

effort by an eight-member group affiliated with Carnegie Mellon’s Computer Science

Department. This undertaking was largely prompted by the decision to establish an

undergraduate Bachelor’s degree in Computer Science at the school, although Carnegie Mellon’s

Computer Science Department and associated Ph.D. program had been in existence since 1965

(Preface). The authors also framed their work as forward-looking, and they complained that the

ACM’s prior recommendations were overly conservative, disunified, and lacking in mathematics

content (pp. 18-19).

The authors of this report also critiqued the Computer Society’s curriculum as “heavily

biased toward hardware,” and they noted that it “fails to expose the important common

fundamentals in joining hardware and software” (p. 19). They went on to conclude that the

proposed curriculum “might be reasonable for a curriculum directed purely at the electrical

engineering side of the discipline, but the designers claims that the curriculum is suitable for

computer science” (p. 19). As suggested by these remarks, these computer scientists clearly

viewed the Computer Society’s curriculum as ultimately focused on “computer engineering,”

despite the discursive garb of “computer science and engineering” that surrounded it.246 The

group responded with their own nearly 200-page report. In addition to once again revisiting

questions about the nature and definition of computer science, the authors emphasized the

balanced integration of theory and practice, outlined a total of 30 courses, and proposed overall

requirements for undergraduate degree programs.

“A Model Curriculum for a Liberal Arts Degree in Computer Science” (Gibbs and

Tucker, 1986), on the other hand, was based on another partially unique set of interests and

philosophies. In part developed through two major workshops, this project was funded by the

Alfred P. Sloan foundation. In their final report, co-authors Norman E. Gibbs and Allen B.

Tucker noted the increasing obsolescence of the ACM’s Curriculum ’78, and they critiqued the

more recent CSAB accreditation standard “for its inflexibility and for its strong bias toward a

professional engineering education” (p. 203). Along similar lines, they credited the Carnegie

Mellon report for promoting a “liberal professional education,” but nonetheless faulted its

“significant engineering point of view” (p. 203). The authors of the report went on to stress that

246 The authors of the Carnegie-Mellon report even referenced the “IEEE computer engineering
curriculum,” in spite of the fact that it was actually titled “computer science and engineering” (19).

www.manaraa.com

 319

“computer science is science,” and they emphasized that “[i]n defining computer science, we

should be able to distinguish it from computer engineering, just as chemistry is distinguished

from chemical engineering, and physics from mechanical and electrical engineering” (p. 204,

authors’ emphasis). The curriculum outlined by the group – which was largely organized around

just four core courses – was explicitly framed as leading to B.A. degree within a liberal arts

setting. As suggested by this overview, this curriculum represented a growing bifurcation of

computer science education, where the needs and interests of particular schools and faculties

appeared increasingly divergent from other types of institutions. The Gibbs and Tucker report

also revealed an explicit resistance to the educational imperatives of industry, which by this time

were increasingly influential on the curriculum development and accreditation activities of

groups such as the Computer Society and ACM.

One therefore finds in these various reports and recommendations a continued

diversification of computer science curricula. Perhaps not surprisingly, this posed challenges to

those who preferred a more unified model for a wide range of educational programs, ranging

from computer science programs oriented to the liberal arts to computer engineering options

deeply rooted within engineering. Yet as the following sections make clear, these challenges did

not stop the actors and groups involved with the “computing as a discipline” movement from

making their own moves toward unifying computer-oriented education.

From Discipline in Crisis to Computing as a Discipline

While the aforementioned Liberal Arts report was clearly inflected by the location of its

authors in a particular type of institutional location, this group also expressed hope that their

efforts might be viewed as a contribution to a complete overhaul of Curriculum ’78. And while a

liberal arts point of view was explicitly included in the ACM’s next set of curricular

recommendations, it would be a number of years before this important next chapter in history of

computer-oriented curricula got underway. As background, the “Computing as a Discipline”

movement laid the initial foundations for a complete revision of the ACM’s recommended

curricula. Largely led by well-known computer scientist Peter Denning, the origins of this

movement can be traced back to the biennial Snowbird conferences, which were organized by

and for the leaders of doctorate-granting computer science programs. Designed to grapple with

the major issues that were facing the field at any given time, the 1980 and 1982 meetings were

www.manaraa.com

 320

noteworthy for their explicit emphasis on the so-called “crisis in computer science,” which

involved an ongoing and acute shortage of trained personnel in the computer field, especially at

the Ph.D. level. The reports that came out of these two events included a number of

recommended improvements to the environment in computer science departments, in hopes of

attracting more students and turning out more graduate degrees (Denning, et al., 1981; Yau, et

al., 1983).

While the 1984 Snowbird report trafficked in much the same territory, it also grappled

more explicitly with the topic of “computer science as a discipline.” Noting “[t]he continued

skepticism of scientists from other disciplines concerning the substance of computer science,”

the authors added that “computer scientists have no single picture of the nature of their own

field. … [N]o core description is universally accepted” (Tartar, et al., 1985, p. 102). Such

comments reveal the somewhat anomalous character of computer science in the academic

landscape. In spite of two decades worth of history – not to mention the existence of

approximately 1200 undergraduate degree programs bearing the stamp of computer science – the

discipline seemed to lack a widely-recognized definition or description. And as the report

acknowledged, computer-related courses and programs occupied diverse positions within the

university structure, and the authors complained that “this situation fragments resources and

weakens the cases made by these departments for additional funding” (p. 102). In light of these

issues, the authors urged improved cooperation among the leading departments in the field. Just

as importantly, they called for the development of a “unifying image of computer science” (p.

105).247

One finds striking parallels here with the aforementioned 1981 workshop on “Research

Directions in Computer Engineering.” But while the NSF workshop seemed to generate

relatively little in the way of follow-up action, the Snowbird report helped stimulate the

establishment of the ACM’s Task Force on the Core of Computer Science in 1985, with Denning

acting as chair (Denning, et al., 1989a, p. 9). The Computer Society cooperated enthusiastically

in the undertaking, and no less a figure than Michael Mulder served as a member of the group (p.

247 Denning likely played a leading role in the development of this agenda. In a commentary piece that
was both passed on his opening address at Snowbird 84 and later published in both the CACM and
Computer, Denning urged his academic colleagues to revisit faculty salaries, equipment and facilities,
promotion and tenure, and the treatment of junior faculty. However, he also stressed the importance of
long-range planning, revisiting the core curriculum, improving relations with other disciplines, and
moving into new research areas.

www.manaraa.com

 321

9).248 Originally charged with developing a description for computer science, proposing a

teaching paradigm for the field, and outlining an introductory course sequence, the group

ultimately developed what they described as a “new intellectual framework for our discipline and

a new basis for our curricula” (Denning, et al., 1989a, p. 10). And while originally focused on

the domain of “computer science,” the group quickly extended its work to cover computer

engineering, reasoning that “no fundamental difference exists between the two fields in the core

material” (p. 10). In fact, the group’s final report was titled “Computing as a Discipline,”

reflecting their desire to “embrace all of computer science and engineering” with a new moniker

that was boundary-spanning, catchy, and succinct. The work of this task force was also

distributed widely. In addition to being published in stand-alone form, condensed versions of

their final report also appeared in Communications of the ACM and Computer (Denning, et al.,

1988; 1989a; 1989b).

One central feature of the group’s report was its emphasis on the three fundamental

“paradigms” or “cultural styles” of computing, namely theory, abstraction (or “modeling”), and

design. As the authors explained, these three paradigms were respectively rooted in mathematics,

experimental science, and engineering. And although they acknowledged that so-called computer

scientists tended to focus on theory and abstraction while computer engineers were more

concerned with the abstraction and design, the authors developed a boundary-spanning definition

for work in all phases of the field:

The discipline of computing is the systematic study of algorithmic processes that

describe and transform information: their theory, analysis, design, efficiency,

implementation, and application. The fundamental question underlying all of

computing is, “What can be (efficiently) automated?” (Denning, et al., 1989a, p.

12).

The concluding question presented in this passage reveals the influence of the aforementioned

COSERS report on this group’s work. The authors’ efforts to position “computing” within a

larger disciplinary landscape also advanced arguments that had been variously trotted out in

previous publications, such as the COSERS report. They emphasized, for example, that the roots

of the field extended deeply into both mathematics and engineering, and elsewhere they claimed

248 In a reciprocal gesture, the Computer Society established a task force on computing laboratories, with
the cooperation of the ACM (Denning, et al., 1989a, p. 9).

www.manaraa.com

 322

that “The science and engineering [of computing] are inseparable because of the fundamental

interplay between the scientific and engineering paradigms within the discipline” (p. 16). The

authors were clearly focused on the core of this settlement rather than its many peripheries.

Further fleshing out their vision for the discipline of computing, the authors proposed the

segmentation of the field into nine distinct sub-areas, including algorithms and data structures,

programming languages, architecture, numerical and symbolic computation, operating systems,

software methodology and engineering, database and information retrieval systems; artificial

intelligence and robotics, and human-computer communications (Denning, et al., 1989a, p. 12).

And given that each of these areas could also be viewed in terms of theory, abstraction, and

design, the authors presented the discipline writ large as a nine by three matrix, and in an

attached appendix they included summary descriptions for all twenty-seven of the constituent

boxes. These were then used to inform the development of a new curriculum for an introductory

course sequence, which was also elaborated in significant detail in an Appendix to the group’s

full-length report (Denning, et al., 1988, pp. A-II-1-18).

At least on the surface, “Computing as a Discipline” looked like an important document.

It was developed under the auspices of the ACM but with the cooperation of the Computer

Society, and it put forward an innovative new integrative structure for all phases of the

computing field. The authors had carefully articulated a definition for the proposed discipline

that both built on prior work and pointed the way toward the further development of curricula.

The efforts of the task force also helped stimulate another unprecedented development, namely

the establishment of an ACM/IEEE-CS Joint Curriculum task Force in early 1988 (Tucker, et al.,

1991). This new group was co-chaired by Allen B. Tucker – who was a key player in the

development of the aforementioned liberal arts computer science curriculum – and Bruce Barnes,

an NSF division director with both longstanding ties to the computer science community and

significant earlier experience with curriculum development. And while the chairmen of the group

seemed to reflect a bias toward computer science, the other members of the fourteen-member

task force included well-known engineering reformers such as Michael Mulder and J. Thomas

Cain.

The activities of the task force spanned a period of roughly two years, and included eight

major working meetings and numerous panel presentations. The group’s recommendations also

went through three major rounds of reviews, involving dozens of educators. Ultimately dubbed

www.manaraa.com

 323

“Computing Curricula 1991” (CC1991), the group’s final recommendations were first published

in late 1990, and were summarized in both CACM and Computer in 1991 (Tucker, et al., 1991;

Tucker, 1991; Tucker and Barnes, 1991). In summary, the authors’ recommendations were

extensively informed by the results of the “Computing as a Discipline” project. They explained,

for example, that their curricular recommendations were intended “for baccalaureate programs in

the discipline of computing, which includes programs with the titles ‘computer science,’

‘computer engineering,’ ‘computer science and engineering,’ and other similar titles” (Tucker, et

al., 1991, p. v).249 The group also reiterated the importance of theory, abstraction, and design as

the three main processes or “point of view” in the computing field, and they explained that the

nine major subject areas identified by their predecessors “cover the entire discipline.” In

organizing the common requirements for all undergraduate curricula in the discipline, these nine

areas were further broken down into smaller “knowledge units.”

Yet the CC1991 report went beyond prior efforts, including by identifying a set of twelve

“recurring concepts” that were framed as fundamental for the discipline. These diverse,

boundary-spanning themes ranged from complexity and efficiency to security and tradeoffs, and

the report noted that they could help play a unifying role in the development of courses and

curricula. “By pointing out and discussing the recurring concepts as they arise,” the authors

explained, “the conscientious instructor can help portray computing as a coherent discipline

rather than as a collection of unrelated topics” (Tucker, et al., 1991, p. 15). Perhaps more than

any prior author or group, this task force can be credited with articulating a unified core of

knowledge, skills, and concepts that truly spanned the full spectrum of the field in question.

But even as the authors worked to present a single, coherent set of underlying principles

for the design of their curricula, their recommendations once more reflected the Janus-faced

character of “computing.” In outlining the motivations behind their work, for example, the

authors pointed out that “the discipline and its pedagogy have changed significantly in recent

years,” and they went on to note “growing recognition of substantial curricular commonalities

among programs, despite strong and fundamental differences” (Tucker, et al., 1991, p. 2). The

tension between commonalities and differences was particularly evident in an appendix featuring

twelve detailed sample curricula. Nine of these curricula were framed as preparatory for entry

249 The authors went on to clarify that “[p]rograms in related areas, such as information systems, were not
considered by the Task Force” (Tucker, et al., 1991, p. 2).

www.manaraa.com

 324

into the “computing profession,” and these were further broken down into three specific

implementations for Computer Engineering programs, four for Computer Science, one for a

liberal-arts-oriented Computer Science, and one for Computer Science and Engineering

(Appendix A). These nine implementations were also predictably linked to corresponding

accreditation criteria, with Computer Engineering programs designed to satisfy EAC/ABET

guidelines, the Computer Science programs designed to satisfy CSAC/CSAB criteria, and the

CSE implementation designed to meet both.

The report also included three additional implementations that largely ignored

accreditation criteria in order to meet goals other than the training of so-called “computing

professionals” (pp. 136-154). These implementations included two computer science programs

that were even more explicitly oriented toward the liberal arts, clearly reflecting the influence

and interests of task force members such as Tucker. The third such program, on the other hand,

emphasized mathematics, theoretical foundations, and formal methods, thereby providing

foundations for graduate studies in computer science or related areas. This twelfth curriculum

once again reflected an emphasis on disciplinarity among many computer scientists.

Perhaps more than any other report or document from this time period, Computing

Curricula 1991 captured in a single document the Janus-faced character of educational programs

in the domain of “computing.” On the one hand, the underlying philosophy of CC1991 centered

on the idea that all phases of the computing field were united via both a common concern with

abstraction and a shared interest in various overlapping subject areas and recurring concepts.

Placing further emphasis on the “core” of the field, the developers of CC1991 carefully and

strategically crafted a set of “common requirements” that were framed as foundational for

educational programs in all phases of the field. On the other hand, the twelve sample

implementations revealed the extent to which the multiple faces of computing were stubbornly

persistent in the academic context, with ABET-accredited computer engineering programs at one

end of this spectrum to liberal arts-oriented Computer Science programs at the other. CC1991

therefore reflected both the core and the peripheries of computing, and it rather uneasily

straddled some of the major axes of difference – such as science-engineering, theory-design, and

discipline-profession – that constituted yet simultaneously divided the field. In spite of the

premise and promise of CC1991, its authors remained partially constrained by the organizational

field in which their work was situated. And continued instability in the disciplinary and

www.manaraa.com

 325

professional boundaries of the field profoundly shaped this work, while also setting the stage for

later developments.

The Shifting Institutional Landscape of Computing

It is worth taking another step back to more generally assess the institutional backdrop for

the development and publication and CC1991. As noted above, available data suggests that more

than half of all electrical engineering departments were offering programs or options in computer

engineering by the late 1970s, while the number of departments offering ABET accredited

undergraduate degrees in computer engineering and closely related areas had risen to 34 by late

1985 (ABET, 1985, p. 37). Yet as subsequent ABET annual reports revealed, there was a very

noticeable uptick in the number of undergraduate programs in the computer area in the late

1980s and early 1990s. More specifically, by November of 1988 there were 55 such programs at

the bachelor’s level, and by November of 1990 there were 58 (ABET, 1989, p. 37; ABET, 1990,

p. 34). These reports also reveal important naming trends. In 1990, for example, 43 programs

carried the title “Computer Engineering,” 9 were dubbed “Computer Science and Engineering,”

and the handful of remaining programs carried designations ranging from “Computer Systems

Engineering” to “Computer Science” (ABET, 1990, p. 66). Not only do these data reveal the

continued establishment of a partially distinct professional and disciplinary identity for

computing engineering, they also suggest that the term “Computer Science and Engineering” had

gained only modest traction in the academic context, despite of the Computer Society’s prior

promotional work.

These same reports also hint at the extent to which ABET-accredited programs in the

computer area were primarily focused on the training of future professionals, especially via the

granting of bachelor’s degrees. In fact, only two computer programs at the master’s level

maintained ABET accreditation during this time period. Another perspective on these trends can

be gleaned from the results of the Taulbee survey, which annually solicits data from those U.S.

and Canadian departments that grant doctoral degrees in computer science and computer

engineering. According to the 1989-1990 Taulbee report, the survey was sent to a total of 136 CS

and 34 CE Ph.D.-granting departments (Gries and Marsh, 1992, p. 133). These numbers alone

reflect the ongoing tilting of computer science toward the trappings of disciplinarity, where

doctoral degrees and independent departments reign supreme. By contrast, computer engineering

www.manaraa.com

 326

remained more professionally oriented, although the existence of 34 CE graduate programs

suggested an ongoing expansion of the field’s disciplinary identity, especially through academic

research and same-named graduate degrees.

This same Taulbee survey also revealed continued instability in the naming of

departments – and a scattered assortment of other institutional homes – for graduate programs in

CS and CE. First, the authors reported that an impressive 96 of the surveyed departments (and

other Ph.D.-granting academic units) carried the title of “Computer Science” or “Computer

Sciences,” revealing the continued salience of this disciplinary identifier (Gries and Marsh, 1992,

p. 134). Second, the term “Computer Engineering” and its closest variations were counted a total

of 42 times in the survey, including a further breakdown of 23 instances of the name “Electrical

and Computer Engineering,” 12 of “Computer Science and Engineering,” 4 of “Computer

Engineering,” and a handful of one-off variations such as “Computer Engineering and Science,”

“Electrical, Computer, and Systems Engineering,” and “Electrical Engineering and Computer

Engineering” (p. 134).250 As suggested by these data, the frequent concatenation of the term

“computer engineering” with other titles revealed the continued lack of a distinct and

independent disciplinary identity for the field. Further, the twelve occurrences of the name

“Computer Science and Engineering” once again reflected the relatively meager take-up of this

boundary-spanning moniker.

In fact, the existence of departments and programs that included both “computer science”

and “engineering” in their titles led to concerns in the late 1980s about which organization(s)

should handle their accreditation. Following a 1989 directive from the Council on Postsecondary

Accreditation (COPA), the directors of ABET and CSAB jointly declared that “[a] program

whose title implies that it could be accredited by both ABET and CSAB must be evaluated and

accredited by both agencies simultaneously” (Yeargan, 2002, p. 112). Once again, it was clear

that a dense web of professional and disciplinary politics surrounded the naming of computer-

oriented educational programs, regardless of their precise location or even content. And in even

more pragmatic terms, this ruling imposed significant logistical and financial burdens for the

250 The other department/unit names reported in this same survey included Computer and Information
Science(s) (10 instances), Electrical Engineering and Computer Science (8), Electrical Engineering (3),
Computer Science and Operations Research (2), Mathematical and Computer Sciences (2), Computing
Science (2), Information and Computer Science (1), Advanced Computer Studies (1), Applied Sciences
(1), and Computer Science and Electrical Engineering (1) (Gries and Marsh, 1992, p. 134).

www.manaraa.com

 327

institutions that wished to maintain accredited programs with boundary-spanning names. In fact,

no less a school than MIT petitioned ABET in 1992 to retain their “Computer Science and

Engineering” program while foregoing CSAB accreditation (Yeargan, 2002, p. 112). With strong

encouragement from the IEEE, ABET ultimately approved MIT’s “grandfathering” request, and

it also extended this policy to cover a handful of similarly named programs. These developments

clearly flew in the face of the ongoing efforts of reformers to promote the establishment of

educational programs dedicated to “Computer Science and Engineering” or even “Computing.”

The discussion and debate around this issue helped prompt discussions regarding a possible

merger of the ABET and CSAB, a topic to which I return below.

Conclusion

In an important sense, CC1991 looked like an important metaphorical bridge over the so-

called tar pit of computer-oriented curricula. In addition to involving engineers and computer

scientists and bearing the mark of the Computer Society and ACM, this report and its authors

were working to bring together all phases of computer science and engineering education,

especially by emphasizing an array of core common subjects, processes, and concepts. The

unifying potential of CC1991 was therefore significantly premised on identifying and describing

a shared body of knowledge and common set of educational approaches. Commentators

recognized the significance of this strategy. As reviewer N. S. Coulter noted in late 1991, for

example, “The success if Curricula 91 will depend greatly on the truth of the conjecture that the

diverse field of computing has a common core” (Coulter, 1991). In support of this agenda, the

CC1991 project also carried forward a discipline-building project that was based on the

boundary-spanning moniker of computing. In fact, the discursive shift from “computer science

and engineering” to “computing” was another key strategy, as it helped counter persistent

suspicions that the CSE movement was much more focused on computer engineering rather than

computer science.

Yet the CC1991 report could not fully escape a larger organizational field that both

powerfully inflected its development and set the stage for its subsequent diffusion and uptake. In

fact, the inclusion of a series of sample implementations at the end of the document revealed the

extent to which CC1991 remained situated in a larger disciplinary and professional context. And

as my analysis reveals, fragmentation was a dominant feature of the computer field generally –

www.manaraa.com

 328

as well as in the area of computer-oriented education specifically – through the historical period

covered by this chapter. Evidence for this theme includes the persistence of multiple

accreditation bodies, the continued existence of diverse types of educational departments and

programs, and the ongoing use of distinct types of sociotechnical identity markers by different

types of professionals.

I have also focused on the extent to which CC1991 and many prior documents were

implicitly and explicitly linked to a number of foundational “axes of similarity/difference.” For

instance, axes such as software-hardware, science-engineering, and theory-design have

powerfully inflected and informed ongoing debates over the sociotechnical boundaries of the

field. In the present chapter, I also placed particular emphasis on the discipline-profession axis as

providing another way to understand the persistent instabilities of the computer field, especially

in the educational arena. More specifically, my analysis has documented how the dominant

image of computer science as an academic discipline stands in significant conflict with the image

of computer engineering as a profession. These two different outlooks or perspectives lead

various actors and groups to privilege very different types of educational programs, career

pathways, institutional structures, and even identity markers.

In light of this overview, the underlying assumptions on which CC1991 was built may

appear deeply naïve. And indeed, my remarks in the epilogue that follows reveal something of a

resurgence of fragmentation and factionalism in the computer field, especially in the late 1990s

and early 2000s. Yet I also document a number of countervailing trends that suggest a continued

blurring of the sociotechnical boundaries of computing, including in the educational context.

Whether or not the tar pit described in this dissertation can – or even should – be bridged remains

largely an open question. Further, the stakes that came with answering this question one way or

another continue to loom large, not only for future generations of computer professionals, but

also for future generations of computer technology. In even more general terms, these debates

potently exemplify the ongoing emergence of technoscience as a dominant mode of practice in

both the industrial and educational sectors, where demarcating science, technology, and

engineering often looks like an increasingly futile exercise in boundary-work. By comparison,

the dominant images of engineering-as-profession and science-as-discipline remain rather

stubbornly entrenched.

www.manaraa.com

 329

Epilogue

Computing Curricula and Codesign:

Divergent Pathways?

In the immediate wake of the Computing Curricula 1991 project, it appeared as though

forces of integration were sweeping through computer field. In 1992, for example, a lengthy

report titled Computing the Future: A Broader Agenda for Computer Science and Engineering

(Hartmanis and Lin, 1992) was released by the National Research Council. As indicated by its

title, this document embraced the idea that Computer Science and Engineering (CSE) was indeed

a single “intellectual discipline” (pp. 19-24; pp. 213-214), and the term “computing” was also

used extensively throughout the report. Pointing to key challenges in the field such as increasing

demand for “more powerful and easier to use” computing technologies, as well as a continued

blurring of the boundaries within and around CSE, the authors of the report made many

recommendations for improving research and teaching in CSE. In fact, their plan included

sustaining the field’s “traditional core activities,” while also broadening its “intellectual agenda”

(p. 18). In summary, the authors of Computing the Future therefore framed CSE as a wide-

ranging yet contiguous disciplinary settlement. In fact, much of the report took the disciplinary

status of the field as a given. Yet as subsequent developments helped reveal, the authors’ views

of CSE were increasingly out of tune with the actual disciplinary milieu of the computer field.

One important piece of evidence for this theme surfaced in late 2004, when a joint task

force of the ACM and IEEE Computer Society released the final draft of a report titled Computer

Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer

Engineering (Computing Curricula for Computer Engineering Joint Task Force, 2004). As even

its title suggested, this document looked like a rather direct affront to many of the prior projects

and reports that had called for the development of more integrated or even unified educational

programs in “computer science and engineering” or even “computing.” Further, the dedication of

major chapters of this report to topics such as “Computer Engineering as a Discipline” (Ch. 2)

www.manaraa.com

 330

and “Professionalism” (Ch. 6) suggested that new moves were afoot to assert that computer

engineering was indeed both a distinct disciplinary and professional domain. But how do we

account for this turn of events, and what is its larger significance?

To begin answering these questions it is necessary step back to 1998, when the IEEE

Computer Society and ACM established a new “Computing Curricula” (CC) joint task force.

According to one report, this group was originally chartered “[t]o review the Joint ACM and

IEEE/CS Computing Curricula 1991 and develop a revised and enhanced version that addresses

developments in computing technologies in the past decade and will sustain through the next

decade” (The Joint Task Force on Computing Curricula, 2001, p. 1). As suggested by such

statements – as well as frequent references to the project as “Computing Curricula 2001”

(CC2001) – it initially looked like this new task force was charged with developing an updated

set of recommendations for what their predecessors had dubbed the “discipline of computing.”

Yet as some of the participants admitted in a later report, “That task has proved much

more daunting than we had originally realized” (p. 1). In addition to noting dramatic changes in

the computing field since the release of CC1991, the authors explained that “the scope of what

we call computing has broadened to the point that it is difficult to define it as a single discipline”

(p. 1). Emphasizing the multi-disciplinary character of the field, the authors asserted:

“[C]omputing in the 21st century encompasses many vital disciplines with their own integrity

and pedagogical traditions” (p. 2). Such claims were surely debatable, but they provided the

authors with an explanation and justification for a rather impressive fragmentation of CC2001

project.

In fact, entirely new committees were ultimately formed to develop five separate

computing curricula reports for Computer Science (CCCS), Computer Engineering (CCCE),

Information Systems (CCIS), Software Engineering (CCSE), and Information Technology

(CCIT). Representatives of these groups were also tapped to develop a post-hoc overview report,

with the major goal of somehow reviewing and linking five separate sets of recommendations,

including by identifying associated commonalities and differences. It was also noted that the

overview project might help reveal new or emergent curricular areas. As of late 2006, final

curriculum reports had been released for all of the areas except for Information Technology. The

overview project also remained in process, although interim drafts revealed that this group was

making substantial headway.

www.manaraa.com

 331

The splintering of the CC2001 project is itself a noteworthy development, especially

when viewed against the longer historical backdrop presented in this dissertation. In fact,

CC2001 seemed to once again point the way toward an expanding gulf between computer

designers and programmers – as well as between their tangible outputs, in the form of machine

hardware and software code – thereby perpetuating a trend that had been the subject of periodic

critique since at least the 1950s. On the other hand, many parts of this story are perhaps not

entirely surprising, especially given my claims about the unique and somewhat unstable position

of computer engineering betwixt the realms of discipline and profession. In order to highlight

these themes, it is worth taking a closer look at the Computer Engineering 2004 report.

To begin with, the authors of this document worked to both define computer engineering

as a distinct academic discipline and position it with respect to other fields. This is a particularly

significant development, as this was one of the most explicit and extensive efforts of this type to

date. The authors’ executive summary provided a brief yet rather general definition for the field:

Computer engineering is a discipline that embodies the science and technology of

design, construction, implementation, and maintenance of software and hardware

components of modern computing systems and computer-controlled equipment.

Computer engineering has traditionally been viewed as a combination of both

computer science (CS) and electrical engineering (EE) (p. iii).

While rather wide-ranging, this statement provided an overview of the field’s disciplinary

settlement. Subsequent chapters expanded this description, while also marking computer

engineering as a distinct disciplinary and professional domain.

In a chapter titled “Computer Engineering as a Discipline,” for instance, the authors

explained that computer engineering had “evolved from” the disciplines of electrical engineering

and computer science, albeit often within EE programs (p. 5). While such statements hinted at

the authors’ lack of awareness for the deeper origins and longer trajectory of their own field,

these remarks helped set up a historical review of ABET-accredited degree programs in

computer engineering (p. 5). In addition to noting that 1971 marked the recognition of the first

such program at Case Western Reserve University, they charted the accreditation of as many as

170 computer engineering and closely related programs. More specifically, the report indicated

that 10 new Computer Engineering programs were accredited prior to 1980, 32 during the 1980s,

44 in the 1990s, and 54 from 2000 to 2004, all leading to a grand total of 140. The authors also

www.manaraa.com

 332

noted the accreditation during this same time period of a smattering of programs with related

titles, such as Computer Systems Engineering (5 total), Electrical and Computer Engineering (11

total), and Computer Science and Engineering (12 total). For the sake of comparison, they added

that there were about 300 accredited electrical engineering programs in the United States.

Such statistics supported the authors’ claims that computer engineering was an

“independent discipline” and “a discipline in it [sic] own right” (p. 37). In fact, one finds notable

parallels here with the development of other fields such as computer science, where the bottom-

up establishment of degree programs and departments provided crucial evidence for the claim

that computer science was indeed a discipline. Further fleshing out the disciplinary settlement of

computer engineering, in another chapter the authors presented a detailed map of the field’s

“body of knowledge” (BOK) which included a total of 18 major “knowledge areas” (Ch. 4). In

fact, the same conceptual framework of the BOK appeared in all of the computing curricula

reports, suggesting that much of the larger Computing Curricula project was premised on the

idea that disciplinary settlements are largely and ultimately based on knowledge claims, albeit

with room for extensive overlaps and interpenetrations between disciplines.

While this somewhat more nuanced image of disciplinarity seemed to provide a more

realistic view of the “computing” field and its various disciplinary branches, the computer

engineering report revealed the continued importance of other, non-epistemological factors,

including both the expected abilities and preferred identities of the field’s students and

practitioners. Admitting that the distinctions between computer engineers, electrical engineers,

computer scientists, and other computer professionals and technologies were often somewhat

“ambiguous,” the authors of the report explained that computer engineers possessed three key

characteristics, namely: the ability to design computer systems, including software and hardware;

the possession of a breadth of knowledge of mathematics and engineering sciences; and a

preparation for “professional practice in engineering” (p. 5). These three characteristics nicely

captured how the authors strategically framed computer engineering as not only a distinct

academic discipline, but also an unambiguous part of the engineering profession. In fact, it was

reasonably clear that engineering education was the only widely accepted pathway by which

students could be introduced to the engineering sciences, schooled in the basics of engineering

design, and finally ushered into the fold of the engineering profession.

www.manaraa.com

 333

If there remained any doubts about these underlying assumptions, the rest of the report

largely erased them. The authors repeatedly claimed, for example, that the “ability to design”

was a key aspect of computer engineering. They also noted that “[p]rofessionalism should be a

constant theme that pervades the entire curriculum” (p. 8), and they even devoted a chapter of the

report to this topic (Ch. 6). And finally, the report placed significant emphasis on the importance

of accreditation processes and criteria in ongoing efforts to develop computer engineering

curricula and programs. As the authors explained, “The computer engineering core [body of

knowledge] acknowledges that engineering curricula are often subject to accreditation, licensure,

or governmental constraints” (p. 10). For better or worse, such statements help perpetuate the

image of computer engineering as an engineering discipline to its “core.”

Software/Hardware Codesign: Blurring the Sociotechnical Boundaries

Even as the authors of the Computer Engineering 2004 report promoted a vision of their

field as both an academic discipline and unambiguous branch of the engineering profession,

many of the developments cited in prior chapters call into question many of the underlying

technical and espistemological justifications for these types of boundary-work. In fact, my

application of the “disciplinary settlement” concept to the body of knowledge outlined in this

same report reveals the extent to which interpenetrating and overlapping knowledge claims

between computer engineering and adjacent fields is a taken-for-granted reality. Further, in

recent decades it has become increasingly common to find practicing and prospective computer

engineers and computer scientists working side-by-side, in contexts ranging from university

classrooms and labs to private-sector offices and research facilities. This trend also seems to

continue apace, despite the partially distinct disciplinary backgrounds and professional identities

maintained by the major actors and groups in question. I claim that one important enabling factor

that helps us account for this trend centers on the continued blurring of the boundaries between

“hardware” and “software,” a topic that runs through large parts of this dissertation. In order to

both bring this theme into relief and point the way toward some possible reform movements, I

turn to a brief history of the “software/hardware codesign” movement.

As noted in preceding chapters, comments about the ultimately nebulous character of the

boundary between computer hardware and software – or “machine” and “code” – can be traced

back to the 1940s and 1950s. In fact, by the 1970s this blurred view of the software-hardware

www.manaraa.com

 334

relations was almost axiomatic for many commentators, as reflected in period textbooks such as

Structured Computer Organization by well-known computer scientist Andrew Tanenbaum

(1976). In an introductory chapter, the author summarized the historical development of

computer organization and architecture, leading him to cleverly note that “one man's hardware is

another man's software” (p. 11). He also went on to describe the boundary between computer

software and hardware boundary as “arbitrary and constantly changing” (p. 11).

On the one hand, one detects in such remarks a strong resonance with the writings of a

host of prior commentators, ranging from Mauchly and Hopper to Carr and Gorn. On the other

hand, Tanenbaum’s comments tended to hide some of the thorny practical realities that came

with the actual practice of computer software and hardware design. For instance, differently

trained professionals were clearly involved in different aspects of computer system design, and

they brought with them their own partially unique tools, techniques, and cultures of design. And

indeed, these types of distinctions were even more evident when one moved from intermediate

levels of computer design to the opposite ends of the spectrum, where the design of the

electronic components of computer “hardware” seemed quite distinct from the development of

operating systems and programming tools, much less end-user applications.

Nevertheless, the mid-1970s were a time when a handful of forward-looking researchers

were tentatively seeking out and developing the appropriate tools and techniques that would

allow them to better grapple with design trade-offs that surfaced at the intersection of software

and hardware. In a 1975 paper, for example, C. W. Rose and M. Albarran noted the long-

standing tendency for the design of hardware and software to proceed “quite differently and

separately” (p. 421). Yet they noted two major trends that were upsetting the status quo. The first

of these centered on new technological developments that were providing system designers with

the ability to implement a wide variety of functions “in either hardware, software, or a

combination of both” (p. 421). The second trend – which the authors described as more

“philosophical” in nature – centered on new design methods that were systematic, hierarchical,

and capable of dealing with multiple levels of abstraction using a common design language.

As suggested by these remarks, changes in both technology and design culture were

pointing to new possibilities in the area of computer system design. But these authors also noted

a number of difficult limitations with existing software and hardware design tools, including a

lack of suitable hardware description languages (HDLs) and an overall inflexibility with regard

www.manaraa.com

 335

to determining the boundaries between software and hardware. As an alternative approach, they

called for the development of a “computer system description language” that could accommodate

the hierarchical description of hardware and software. Their own LOGOS design environment

was offered as a tentative step toward a system that could help automate the design of

“hierarchical, integrated hardware/software systems” (p. 429).

The LOGOS project looked like an important step toward a more integrated approach to

computer systems design, its immediate impact appears to have been minimal. As suggested by

other commentators, the dominance of “layered” and “hierarchical” models of computer systems

architecture through the 1970s may have hampered these alternative approaches. In fact, the

dominant culture of computer design at the time tended to either insulate hardware and software

specialists from one another or position engineers as the vanguards of computer design decisions.

It would take roughly a decade before some of these barriers started to fall, especially as

evidenced through the emergence and development of the “codesign” movement.

While the phrase “software/hardware codesign” can be traced back to at least 1985, the

concept gained significant momentum through the 1990s. And by some measures, co-design has

attracted a great deal of attention in a relatively short span of time. Many hundreds of papers on

codesign have been published since the early 1990s, and a search of the ACM and IEEE archives

reveals increasing interest in the topic. In addition, the First International Conference on

Hardware-Software Codesign was held in 1992, and international workshops and conferences

dedicated to this topic have been held annually since 1996. Published proceedings reveal upward

trends in the size and scope of these events.

In most general terms, a central tenet of the co-design approach to developing specialized

computing devices centers on the idea that the design of such systems must start with no a priori

boundaries around the software and hardware components. A 1991 article on the topic provides

one early and rather succinct description of the how and why of codesign. Authors Franke and

Purvis start this piece with a brief review of historically dominant approaches to computer

design. “Computer systems development has been ordinarily characterized,” they explained, “by

the notion that hardware engineers supply general-purpose computing systems, which are then

programmed by software engineers” (p. 344). The authors pointed to the relative independence

of software and hardware development activities under this model, and they suggested that

www.manaraa.com

 336

“layered” or “hierarchical” models of computer architecture create an environment in which

software specialists can avoid grappling with “low-level” hardware concerns.

Franke and Purvis went on to discuss how a number of important technological

developments were making it more feasible and desirable to call into question the boundaries

around hardware and software engineering. And as suggested by the title of their paper, the

authors proposed an alternative approach to computer design that “combine[s] the hardware and

software perspectives from the earliest stages of the design process” (p. 344). In a more recent

paper, computer scientists Micaela Serra and William Gardner offer a concise summary of four

key characteristics of the co-design approach: “the cooperative design of hardware and software

components; the unification of currently separate hardware and software paths; the movement of

functionality between hardware and software; the meeting of system-level objectives by

exploiting the synergism of hardware and software through their concurrent design” (1998, p. 1).

These and other codesign proponents point to a number of advantages of this model,

many with appeal to the profit-motivated private sector. In terms of the design process, for

example, codesign promises to significantly streamline the coordination of large system design

projects, leading to reductions in development time and cost. Many others argue that codesign

can lead to the development of “better” technologies, at least in terms of technical metrics like

performance, reliability, and/or flexibility.

As this overview reveals, hardware/software codesign shares much in common with

earlier historical movements. Hence, one might wonder why something like codesign failed to

gain traction earlier. After all, this dissertation reveals that interchangeability of “hardware” and

“programs” was recognized in as early as the 1950s, and the topic of hardware/software

equivalence has resurfaced regularly for decades. But during the 1980s, a unique confluence of

trends helped enable the emergence of a more recognizable movement of co-design proponents

and practitioners. On rare occasion, these individuals even note that their work is part of a longer

tradition. In an introduction to the proceedings of the Fifth International Conference on

Hardware/Software Codesign (CODES/CASHE ’97), two workshop chairs explained that

“[d]esigners have practiced co-design since the first microprocessors were used for

implementing digital control” (Ernst and Borriello, 1997).

www.manaraa.com

 337

Yet many codesign commentators and proponents are quick to follow the typical outlook

of technologists when they point to the numerous technical trends that helped set the stage for

their work. Some relevant and oft-cited developments include:

• the increasing diversity, complexity, and number of embedded systems in use

or development;

• the growth of hardware development languages, especially in tandem with

Very Large Scale Integration (VLSI) technologies for integrated circuits;

• the development of CAD systems that support the simultaneous design of both

software and hardware; and

• the emergence of new types of programmable chips, including application-

specific integrated circuits (ASICs).

Yet we might be wary of overemphasizing technological factors as we account for the rise of co-

design. As many scholars have taught us, such expressions of technological determinism are both

commonplace and easy to debunk. Indeed, the preceding overview of the pioneering work by

Rose and Albarran suggests that, by at least the mid-1970s, some of the pivotal technological and

“philosophical” developments were starting to lead toward new design approaches, and these had

much in common with codesign.

Further, one cannot help but notice other trends that were afoot around the time that the

codesign movement really started to take off. The “computing as a discipline” movement

described in the preceding chapter, for example, was gaining momentum around this same time.

Hence, it is highly plausible that the CC1991 effort both reflected and reinforced a culture of

“integration” in the computer field, thereby helping to enable the emergence and growth of the

codesign movement. This thesis is further supported by the observation that many codesign

researchers maintained university affiliations or appointments. Perhaps one of Carr’s early

assertions rings true – namely that universities do indeed play crucial roles in stimulating

research and development activities at the cutting-edge of computing.

As Serra and Gardner’s efforts reveal, introducing co-design to future generations of

computer science and computer engineering students remains something of an experiment. As

they admit, “different design cultures hamper integration,” and their own agenda is framed in

terms of developing a more “appropriate curriculum” for computer science students. Yet the

benefits of such reforms are increasingly clear. They explain, for instance, that the

www.manaraa.com

 338

interdisciplinary linking of computer science and engineering – as well as intradisciplinary

explorations within computer science – were novel features and a “source of great strength” in

their own codesign course (p. 8). Emphasizing the extent to which hardware/software co-design

challenges insular computing curricula, they add that “hardware related topics were

tremendously empowering to the mainly software students in Comp. Science, who found the

demistification [sic] of the whole area of VLSI design and CAD software useful to their breadth”

(p. 8).

These initial results are certainly encouraging, but recent currents in the educational

sphere reveal that proponents of codesign may continue to face formidable challenges, especially

as they work to introduce these alternative design approaches into computer science, computer

engineering, and related curricula. On the other hand, my analysis suggests that the codesign

movement itself may point the way toward a more integrated “discipline of computing,” both in

educational contexts and beyond.

 From Software/Hardware Codesign to Sociotechnical Codesign

Significant barriers must be overcome before codesign methods move to the forefront of

the computing curricula specifically and the computer field generally. In fact, my analysis

suggests that the most recent Computing Curricula project and the codesign movement

increasingly look like two alternative pathways for the future of computing, with the former

preserving sociotechnical fragmentation and factionalism and the latter tending toward greater

integrating and unification. And while my analysis frames codesign as a promising development

that may help in the realization of a reform movement with deep historical roots, I close with an

even more ambitious vision for the future.

As the preceding overview makes clear, software/hardware codesign remains

significantly focused on technology, both in terms of its associated enabling factors and

anticipated outcomes. However, I contend that the boundary-blurring characteristics of codesign

can provide inspiration for other important types of reform. In their 1991 paper, codesign

proponents Franke and Purvis cite a 1986 article in which well-known computer researcher

Elliott Organick described the emergence of a new breed of “heterosystems” engineers. Skilled

in working with large systems comprised of “diverse, interacting components,” Organick

explained that these designers “are no longer just software engineers or just hardware engineers”

www.manaraa.com

 339

(quoted in Franke and Purvis, 1991, p. 347). Franke and Purvis tentatively worked in similar

directions when they note that computer system professionals are increasingly involved in the

design of “reactive” systems that involve hardware, software, and “users and objects from the

real world” (p. 346).

Some may notice parallels here with contemporary research in a variety of fields,

including Science and Technology Studies (STS). As described by Donald MacKenzie, for

example, successfully developing new technologies often requires heterogeneous engineering, or

“the engineering of the social as well as the physical world” (1990, p. 28). Still others may

recognize that terms such as “codesign” and “meta-design” have been used to describe new

approaches to technological design that center on open and extensible systems and active efforts

to blur the boundaries between the designers and users of various technologies. Hence, by

challenging the drawing of a priori boundaries around hardware and software, codesign methods

can inspire us to call into question other boundaries, such as those that divide computer scientists

from computer engineers, or those that separate computer technologies from users, applications,

and even society.

The history of the software-hardware boundary presented in this dissertation forcefully

reveals the extent to which the social and technical are deeply intertwined. It is hoped that

ongoing moves to put back together the Humpty and Dumpty of software and hardware may also

point us toward a more thoroughly contextualized, reflexive, and socially responsible culture of

computer design and use. Doing so, however, will require that computer experts from a variety

of backgrounds acknowledge and critically engage other axes of similarity/different that have

played a profoundly influential role in the computing field. In fact, preceding chapters reveal that

challenging the boundaries around software and hardware can quickly raise thorny questions

about the relation of science and engineering, as well as the respective dominant images of

disciplines and professions.

www.manaraa.com

 340

Appendix A

Acronyms and Abbreviations

ABET Accreditation Board for Engineering and Technology
AC Alternating Current
ACM Association for Computing Machinery
AFIPS American Federation of Information Processing Societies
AIEE American Institute of Electrical Engineers
ASCC Automatic Sequence Controlled Calculator
ASIC Application-Specific Integrated Circuit
ASEE American Society for Engineering Education
BOK Body of Knowledge
C3S Curriculum Committee on Computer Science (of the ACM)
CACM Communications of the ACM
CAD Computer-Aided Design
CC1991 Computing Curricula 1991
CCP Certificate in Computer Programming
CDC Computing Devices Committee (of the AIEE)
CE Computer Engineering
COPA Council on Postsecondary Accreditation
COSERS Computer Science and Engineering Research Study
COSINE Computer Science(s) in Electrical Engineering
CS Computer Science
CSAB Computing Sciences Accreditation Board
CSAC Computing Sciences Accreditation Committee
CSE Computer Science and Engineering
CSEB Computer Science and Engineering Board (of the NAS)
CUPM Committee on the Undergraduate Program in Mathematics (of the MAA)
DC Direct Current
DISE Digital Systems Education
DPMA Data Processing Management Association
EAB Educational Activities Board (of the IEEE)
ECE Electrical and Computer Engineering
ECPD Engineers’ Council for Professional Development
EDSAC Electronic Delay Storage Automatic Calculator
EDVAC Electronic Discrete Variable Automatic Calculator
EE Electrical Engineering
EECS Electrical Engineering and Computer Science
EJCC Eastern Joint Computer Conference

www.manaraa.com

 341

FJCC Fall Joint Computer Conference
ENIAC Electrical Numerical Integrator And Calculator
HCI Human-Computer Interaction
HDL Hardware Description Language
IAS Institute for Advanced Study (at Princeton University)
IBM International Business Machines
ICCP Institute for the Certification of Computer Professionals
IEEE Institute of Electrical and Electronics Engineers
IEEE CS Institute of Electrical and Electronics Engineers – Computer Society
IFIP International Federation for Information Processing
IRE Institute of Radio Engineers
IS Information Systems
IT Information Technology
ITG Institute Technical Group
JCC Joint Computer Committee
JCC Joint Computer Conference
JEE Journal of Engineering Education
LoC Library of Congress
LSI Large-Scale Integration
MAA Mathematical Association of America
MANIAC Mathematical Analyzer Numerical Integrator and Computer
MIT Massachusetts Institute of Technology
MSI Medium-Scale Integration
NAE National Academy of Engineering
NAS National Academy of Sciences
NATO North Atlantic Treaty Organisation
NBS National Bureau of Standards
NCR National Cash Register
NJCC National Joint Computer Committee
NJCC National Joint Computer Conference
NMAA National Machine Accountants Association
NSF National Science Foundation
ONR Office of Naval Research
PGEC Professional Group on Electronic Computers (of the IRE)
PGIPS Professional Group on Information Processing Systems
PTGEC Professional Technical Group on Electronic Computers (of the IRE)
RCA Radio Corporation of America
SDC System Development Corporation
SIAM Society for Industrial and Applied Mathematics
SIC Special Interest Committee
SICARCH Special Interest Committee on Computer Architecture (of the ACM)
SICSOFT Special Interest Committee on Software Engineering (of the ACM)
SIG Special Interest Group
SIGCSE Special Interest Group on Computer Science Education (of the ACM)
SIGMICRO Special Interest Group on Microprogramming (of the ACM)
SIGSOFT Special Interest Group on Software Engineering (of the ACM)

www.manaraa.com

 342

SJCC Spring Joint Computer Conference
STS Science and Technology Studies
TC Technical Committee
TCCA Technical Committee on Computer Architecture (of the IEEE Computer Society)
TCSE Technical Committee on Software Engineering (of the IEEE Computer Society)
TIC Technical Interest Council
UCLA University of California – Los Angeles
UNESCO United Nations Educational, Scientific, and Cultural Organization
UNIVAC Universal Automatic Computer
VLSI Very Large-Scale Integration
WJCC Western Joint Computer Conference

www.manaraa.com

 343

Bibliography

“1946 National Electronics Conference.” (1946, September). Proceedings of the IRE, 34(9): 665-

667.

“1947 IRE National Convention.” (1947, May). Proceedings of the IRE, 35(5): 499-503.

“1948 IRE National Convention Program – Summaries of Technical Papers.” (1948, March).

Proceedings of the IRE, 36(3): 365-380.

“1949 IRE National Convention Program – Summaries of Technical Papers.” (1949, February).

Proceedings of the IRE, 37(2): 160-178.

“1949 Engineering Developments – Reviewed by AIEE Technical Committees.” (1950,

January). Electrical Engineering, 69(1): 1-11, 24-25.

“1993 OECE Recipients – Clarence L. Coates.” (1993, November). Retrieved on April 4, 2006

from Purdue School of ECE web site:
https://engineering.purdue.edu/ECE/People/Alumni/OECE/1993/coates.whtml

“A Datamation Staff Survey: Computer Components ’61.” (1961, August). Datamation, 7(8):

36-40.

“A Matter of Degrees.” (1965, June). Datamation, 11(6): 23.

Abbott, Andrew. (1988). The System of Professions: An Essay on the Division of Expert Labor.

Chicago: University of Chicago Press.

Abbott, Andrew. (2001). Chaos of Disciplines. Chicago and London: The University of Chicago

Press.

ABET (Accreditation Board for Engineering and Technology). (1980). Forty-eighth Annual

Report (1979/1980). New York, NY: ABET.

ABET (Accreditation Board for Engineering and Technology). (1982). Fiftieth Annual Report

(1981/1982). New York, NY: ABET.

ABET (Accreditation Board for Engineering and Technology). (1985). Fifty-third Annual Report

(1984/1985). New York, NY: ABET.

www.manaraa.com

 344

ABET (Accreditation Board for Engineering and Technology). (1989). Fifty-seventh Annual

Report (1988/1989). New York, NY: ABET.

ABET (Accreditation Board for Engineering and Technology). (1990). Fifty-eighth Annual

Report (1989/1990). New York, NY: ABET.

Abrahams, Paul. (1987, November). “A Farewell to NCC.” Communications of the ACM,

30(11): 899.

ACM Accreditation Committee. (1977, November). “Accreditation Guidelines for Bachelor’s

Degree Programs in Computer Science.” Communications of the ACM, 20(11): 891-892.

ACM C3S (Curriculum Committee on Computer Science). (1965, September). “An

Undergraduate Program in Computer Science – Preliminary Recommendations.”
Communications of the ACM, 8(9): 543-552.

ACM C3S (Curriculum Committee on Computer Science). (1968, March). “Curriculum 68:

Recommendations for Academic Programs in Computer Science.” Communications of
the ACM, 11(3): 151-197.

“ACM: Association for Computing Machinery, the world's first educational and scientific

computing society.” (n.d.) Retrieved April 13, 2006 from http://www.acm.org/

“ACM and IEEE-CS Launch Fall Joint Computer Conference.” (1987, January). Computer,

20(1): 117.

“ACM Special Interest Group for Mathematical Programming.” (1961, September).

Communications of the ACM, 4(9): 368. “ACM Special Interest Group for Mathematical
Programming.” (1961, September). Communications of the ACM, 4(9): 368.

Acton, Forman S. (1957). “Supply and Demand in Computational Mathematics.” In Preston C.

Hammer (Ed.), The Computing Laboratory in the University (121-125). Madison, WI:
The University of Wisconsin Press.

Ad Hoc Group, AIEE Computing Devices Committee. (1963, April). “Developments and Trends

in Computing Devices During 1962.” Electrical Engineering, 82(4): 269-274.

Ad Hoc Group, AIEE Computing Devices Committee. (1963, May). “A Summary of Recent

Advances in the Computer Field.” Computers and Automation, 12(5): 32-40.

Adams, Charles W. (1957). “The Contribution of the Computing Laboratory to the University

Curriculum.” In Preston C. Hammer (Ed.), The Computing Laboratory in the University
(139-143). Madison, WI: The University of Wisconsin Press.

www.manaraa.com

 345

“Affiliate Status.” (1960, June). IRE Transactions on Electronic Computers, EC-9(2): Back
cover.

“AFIPS Appoints Public Affairs Directors.” (1962, August). Communications of the ACM, 5(8):

425.

AFIPS Taxonomy Committee. (1980). Taxonomy of Computer Science and Engineering.

Arlington, VA: American Federation of Information Processing Societies, Inc.

“AIEE Forms Committee on Computing Devices.” (1948, March). Electrical Engineering, 67(3):

271.

“AIEE Power Industry Computer Application Conference.” (1958, September). Electrical

Engineering, 77(9): 848-849.

“AIEE Officers and Committees for 1946-47.” (1946, September). Transactions of the AIEE,

65(9): 1217-1228.

“AIEE Officers and Committees for 1948-49.” (1948, September). Transactions of the AIEE,

67(9): 1784-1798.

“AIEE Officers and Committees for 1949-50.” (1949, September). Transactions of the AIEE,

68(9): 799-811.

“AIEE Officers and Committees for 1954-55.” (1954, September). Electrical Engineering, 73(9):

834-860.

“AIEE Officers and Committees for 1955-56.” (1955, September). Electrical Engineering, 74(9):

837-850.

“AIEE Officers and Committees for 1956-57.” (1956, September). Electrical Engineering, 75(9):

841-856.

“AIEE Officers, Departments, and Committees for 1957-1958.” (1957, September). Electrical

Engineering, 76(9): 832-850.

“AIEE Officers, Departments, and Committees for 1958-1959.” (1958, September). Electrical

Engineering, 77(9): 870-888.

“AIEE Technical Subcommittees, 1950-1951.” (1950, September). Electrical Engineering,

69(9): 937-944.

“AIEE Winter General Meeting, New York, NY, February 2-7, 1958 (Tentative Technical

Program).” (1958, January). Electrical Engineering, 77(1): pp. 71-80.

www.manaraa.com

 346

Aiken, Howard H., and Grace M. Hopper. (1946). “The Automatic Sequence Controlled
Calculator.” Electrical Engineering, 65: 384-391, 449--454, 522-528.

Aiken, Howard H. (1951). [Opening Address.] In Proceedings of a Second Symposium on Large-

Scale Digital Calculating Machinery, The Annals of the Computation Laboratory at
Harvard University, Volume XXVI, Harvard University Computation Laboratory,
September 13-16, 1949. Cambridge, MA: Harvard University Press.

Akera, Atsushi. (1998). Calculating a Natural World: Scientists, Engineers, and Computers in

the United States, 1937-1968. Unpublished Dissertation. The University of Pennsylvania.

Akera, Atsushi. (2002). “The Early Computers.” In Atsushi Akera and Frederik Nebeker (Eds.),

From 0 to 1: An Authoritative History of Modern Computing (63-75). Oxford, England
and New York, NY: Oxford University Press.

Akera, Atsushi. (2004a). “The Circulation of Knowledge and Disciplinary Formation: Modern

Computing as an Ecology of Knowledge.” Conference paper presented at 3Societies
Conference, Halifax, NS, August 2004. Retrieved October 9, 2006 from
http://www.rpi.edu/%7eakeraa/3Soc-Paper.doc

Akera, Atsushi. (2004b). “Peripatetic Careers, Institutional Ecologies, and the Multiple

Foundations of New Technology: John W. Mauchly and the Origin for the Digital
Electronic Computer.” Conference paper presented at SHOT 2004 Annual Meeting,
Amsterdam, Netherlands, October 6-9, 2004. Retrieved October 9, 2006 from
http://www.rpi.edu/%7eakeraa/SHOT-Paper.doc

Akera, Atsushi. (2006). Calculating a Natural World: Scientists, Engineers, and Computers

During the Rise of U.S. Cold War Research. Cambridge, MA and London, England: The
MIT Press.

Akera, Atsushi, and Frederik Nebeker. (2002). From 0 to 1: An Authoritative History of Modern

Computing. New York: Oxford University Press.

Alt, Franz L. (1952). “Forward.” Proceedings of the Association for Computing Machinery.

Pittsburgh, PA, May 2-3, 1952.

Alt, Franz L. (1958). Electronic Digital Computers: Their Use in Science and Engineering. New

York, NY and London: Academic Press.

Alt, Franz L. (1962, June). “Fifteen Years ACM.” Communications of the ACM, 5(6): 300-307.

Alt, Franz L. (1965, January). “Some Unorthodox Predictions.” Computers and Automation,

14(1): 11-12.

“Alumni: Obituaries.” (2004, July-August). The Pennsylvania Gazette. Retrieved November 7,

2006 from http://www.upenn.edu/gazette/0704/0704obits.html

www.manaraa.com

 347

Amdahl, Lowell. (1965, November). “Gothic Computer Architecture: A Guest Editorial.”

Datamation, 11(11): 23.

American Society for Engineering Education. (1958, October). “Report on the Engineering

Sciences, 1956-1958.” Journal of Engineering Education, 49(1): 36.

Anderson, Walter L. (1962, June). “The Chairman’s Letter.” IRE Transactions on Electronic

Computers, EC-11(3): 441.

Anderson, Walter L. (1963a, February). “The Chairman’s Letter.” IEEE Transactions on

Electronic Computers, EC-12(1): 55.

Anderson, Walter L. (1963b, April). “The Chairman’s Letter.” IEEE Transactions on Electronic

Computers, EC-12(2): 176.

Anderson, Walter L. (1963c, June). “The Chairman’s Letter.” IEEE Transactions on Electronic

Computers, EC-12(3): 352.

Anderson, Walter L. (1964a, February). “The Chairman’s Letter.” IEEE Transactions on

Electronic Computers, EC-13(1): 81.

Anderson, Walter L. (1964b, April). “Chairman’s Newsletter.” IEEE Transactions on Electronic

Computers, EC-13(2): 180.

Anderson, Walter L. (1976, December). “The Middle Years.” Computer, 9(12): 45-53.

“Announcing a Major New Publication in the Field of Computer Science: IEEE Transactions on

Software Engineering.” (1975, February). Computer, 8(2): 82.

“Anthony Oettinger’s Home Page.” (1998, April 31). Retrieved October 23, 2006 from

http://people.deas.harvard.edu/users/faculty/Anthony_Oettinger/Anthony_Oettinger.html

Arden, Bruce W. (1976, December). “The Computer Science and Engineering Research Study

(COSERS).” Communications of the ACM, 19(12): 670-673.

Arden, Bruce W. (Ed.). (1980). What Can Be Automated: The Computer Science and

Engineering Research Study (COSERS). Cambridge, MA and London, England: The
MIT Press.

Armer, Paul. (1959, January). [Letter to the Editor]. Communications of the ACM, 2(1): 2-4.

Armer, Paul, Morton M. Astrahan, Isaac L. Auerbach, Walter M. Carlson, Arnold A. Cohen,

Margaret R. Fox, Claude A.R. Kagan, Morris Rubinoff, Jack Sherman, and Willis H.
Ware. (1986, July-September). “Reflections on a Quarter-Century: AFIPS Founders.”
IEEE Annals of the History of Computing, 8(3): 225-256.

www.manaraa.com

 348

Aspray, William. (1985). “Introduction.” In Proceedings of a Symposium on Large-Scale Digital

Calculating Machinery, Harvard University, January 7-10, 1947 (ix-xxiii). Cambridge,
MA and London, England: MIT Press and Los Angeles, CA and San Francisco, CA:
Tomash Publishers.

Aspray, William. (1993, April). “Edwin L. Harder and the Anacom: Analog Computing at

Westinghouse.” IEEE Annals of the History of Computing, 15(2): 35-52.

Aspray, William. (2000, July-September). “Was Early Entry a Competitive Advantage: U.S.

Universities That Entered Computing in the 1940s.” IEEE Annals of the History of
Computing, 22(3): 42-87.

Astrahan, Morton M. (1976, December). “In the Beginning there was the IRE Professional

Group on Electronic Computers.” Computer, 9(12): 43-44.

Atchison, William F. (1960, June). “Numerical Analysis and Computers in Engineering

Education.” Journal of Engineering Education, 50(10): 856-859.

Atchison, William F., and John W. Hamblen. (1964, April). “Status of Computer Sciences

Curricula in Colleges and Universities.” Communications of the ACM, 7(4): 225-227.

Atchison, William F. (1968). “The Position of Computing Science in the University Structure: A

Report of the Workshop.” In Aaron Finerman (Ed.), University Education in Computing
Science, Proceedings of a conference on graduate academic and related research
programs in computing science, held at the State University of New York at Stony Brook,
June 1967 (169-175). New York and London: Academic Press.

Atchison, William F. (1971). “Computer Science as a New Discipline.” International Journal of

Electrical Engineering Education, 9: 130-135.

Atchison, William F. (1985). “The Development of Computer Science Education.” In M. C.

Yovitz (Ed.), Advances in Computers (319-377). New York, NY: Academic Press.

Auerbach, Isaac L. (1986a, April). “The Start of IFIP – Personal Recollections.” Annals of the

History of Computing, 8(2): 180-192.

Auerbach, Isaac L. (1986b, July/September). “Harry H. Goode, June 30, 1909-October 30,

1960.” Annals of the History of Computing, 8(3): 257-260.

Autonetics, a Division of North American Aviation, Inc. (1956, February). “Engineers and

Scientists… Help us solve today’s most advanced problems.” Electrical Engineering,
75(2): 91A.

Bagley, Philip R. (1959, May). [Letter to the Editor]. Communications of the ACM, 2(5): 3-4.

www.manaraa.com

 349

Baker, W. R. G. (1957, June). “The IRE ‘Affiliate’ Plan – A New Venture in Engineering
Society Structure and Service.” IRE Transactions on Electronic Computers, EC-6(2): 71.

Baldwin, Carliss Y. and Kim B. Clark. (2000). Design Rules, Vol.1: The Power of Modularity.

Cambridge, MA: The MIT Press.

Barnard, G. A. (1960, May/June). “1960 WJCC: A Look Back.” Datamation, 6(3): 23; 52.

Beckman, Frank S. (1968). “Graduate Computer Science Program at American Universities.” In

Aaron Finerman (Ed.), University Education in Computing Science, Proceedings of a
conference on graduate academic and related research programs in computing science,
held at the State University of New York at Stony Brook, June 1967 (39-59). New York
and London: Academic Press.

Bendix Aviation Corporation. (1954, November). “Bendix – Senior Electrical Engineer.”

Electrical Engineering, 73(11): 70A.

Bendix Aviation Corporation. (1955a, August). “Analog Computer Engineers.” Computers and

Automation, 4(8): 32.

Bendix Aviation Corporation. (1955b, November). “Engineers – Permanant, Creative

Opportunities for Electrical Engineers at Bendix.” Electrical Engineering, 74(11): p.
78A.

Bendix Aviation Corporation. (1956, January). “Engineers – Permanant, Creative Opportunities

for Electrical Engineers at Bendix.” Electrical Engineering, 75(1): p. 70A.

Bennett, Arnold A. (1955). “The Impact of Automatic Computing Machines Upon the

Undergraduate Curriculum.” In Arvid W. Jacobson (Ed.), Proceedings of the First
Conference on Training Personnel for the Computing Machine Field, Detroit, MI, June
22-23, 1954 (40-46). Detroit, MI: Wayne University Press.

Bergstein, Harold. (1962, July). “A Profile of No. 1” [Interview with IBM’s Warren C. Hume

and A. L. Harmon]. Datamation, 8(7): 33-37.

Bonn, Ted. (1982, October). “A Second Division Director for the IEEE Computer Society.”

Computer, 15(10): 4-5.

Booth, Taylor L. (1982, July). “Current Activities of the Educational Activities Board.”

Computer, 15(7): 4-5.

Booth, Taylor L. (1984, October). “Computer Education.” Computer, 17(10): 57-68.

Booth, Taylor L. and Raymond E. Miller. (1987, May). “Computer Science Program

Accreditation: The First-Year Activities of the Computing Sciences Accreditation
Board.” Communications of the ACM, 30(5): 376-388.

www.manaraa.com

 350

Booth, Taylor L., C. Gordon Bell, Cecil H. Hoker, Robert M. Glorioso, Edward J. McCluskey,

Frederic J. Mowle, David M. Robinson. (1973, January). “Minicomputers in the Digital
Laboratory Program.” Computer, 6(1): 28-42.

Booth, Taylor L., Tom Brubaker, Tom Cain, Ron Danielson, Ron Hoelzeman, Glen Langdon,

Dave Soldan, and Muali Varanasi. (1986, June). “Design Education in Computer Science
and Engineering.” Computer, 19(6): 20-27.

Brainerd, John G. and T. K. Sharpless. (1948, February). “The ENIAC.” Electrical Engineering,

67(2): 163-172.

Brainerd, John G. (1955). “Keynote Address.” Proceedings of the Eastern Joint Computer

Conference, Boston, MA, November 7-9, 1955 (pp. 6-7). New York, NY: Institute of
Radio Engineers.

Brainerd, John G. (1960, June). “Setting up a Computing Faculty in a School of Engineering.”

Journal of Engineering Education, 50(10): 846-851.

Brandin, David H. (1982a, November). “ACM President’s Letter: The State of the ACM –

1982.” Communications of the ACM, 25(11): 769-770.

Brandin, David H. (1982b, November). “By invitation – a message from the ACM President: the

problems of technology transfer.” Computer, 15(11): 4.

Brandin, David H. and Oscar N. Garcia. (1983, August). “Where do parallel lines meet? or The

common goals of ACM and the IEEE-CS.” Computer, 16(8): 6-7.

Breslau, Daniel. (2000, July). “Sociology after Humanism: A Lesson from Contemporary

Science Studies.” Sociological Theory, 18(2): 289-307.

Burks, Arthur W., Herman H. Goldstine, and John von Neumann. (1989). “Preliminary

Discussion of the Logical Design of an Electronic Computing Instrument.” In Zenon W.
Pylyshyn and Liam J. Bannon (Eds.), Perspectives on the Computer Revolution (39-48).
Norwood, NJ: Ablex Publishing Corp. (Originally published in 1946.)

Browne, James C. and John J. Howard, Jr. (1973, November). “The Interaction of Operating

Systems and Computer Architecture: A Workshop Survey.” Computer, 6(11): 16-17.

Buchholz, Werner. (1953, October). “The Computer Issue.” Proceedings of the IRE, 41(10):
1220-1222.

Burroughs Corporation. (1957, May). “That Certain Man.” Computers and Automation, 6(5): 43.

Cain, James T. (1975, September). “Report of the Digital Systems Education Committee.” ACM

SIGCSE Bulletin, 7(3): 13-16.

www.manaraa.com

 351

Cain, J. T., and R. G. Hoelzeman. (1977). “DISE Project.” In Proceedings of the Computer
Science and Engineering Workshop, Williamsburg, Virginia, June 6-7, 1977 (145-146).
Long Beach, CA: IEEE Computer Society.

Cain, J. T., G. G. Langdon, Jr., and M. R. Varanasi. (1983). “Foreward.” In The 1983 IEEE

Computer Society Model Program in Computer Science and Engineering (iii-vi). Silver
Spring, MD: IEEE Computer Society Press.

Cain, J. T., G. G. Langdon, Jr., and M. R. Varanasi. (1984, April). “The IEEE Computer Society

Model Program in Computer Science and Engineering.” Computer, 17(4): 8-17.

“Call for Papers: 17th IMACS World Congress, Budapest, August 25-29, 2003.” (n.d.).

Retrieved November 7, 2006 from
http://www.ifors.org/panorama/conferences/conf_02_03.html

“Call for Participation: A Workshop on the Engineering of VLSI and of Software.” (1982,

April). Computer, 15(4): 135.

Callon, Michel. (1999). “Some Elements of a Sociology of Translation: Domestication of the

Scallops and the Fishermen of St. Brieuc Bay.” In Mario Biagioli (Ed.), The Science
Studies Reader (67-83). New York and London: Rutledge. (Original work published
1986, abridged 1998)

Campbell-Kelly, Martin, and Michael R. Williams (Eds.). (1985). The Moore School Lectures:

Theory and Techniques for Design of Electronic Digital Computers. Cambridge, MA and
London, England: The MIT Press/

Campbell-Kelly, Martin, and William Asprey. (1997). Computer: A History of the Information

Machine. New York: Basic Books.

Campbell-Kelly, Martin. (2000). “Past into Present: The EDSAC Simulator.” In Raúl Rojas and

Ulf Hashagen (Eds.), The First Computers: History and Architectures (397-416).
Cambridge, MA and London, England: The MIT Press.

Carlson, Walter M. (1969, October). “‘There is a tide in the affairs of men…’ (Letter from the

ACM Vice-President).” Communications of the ACM, 12(10): 537.

Carlson, Walter M. (1970a, September). “Finding the Real Expert (ACM President’s Letter).”

Communications of the ACM, 13(9): 525.

Carlson, Walter M. (1970b, October). “Rx for Excellence: Better Education (ACM President’s

Letter).” Communications of the ACM, 13(10): 587.

Carlson, Walter M. and Dick B. Simmons. (1984, March). “Intersociety Cooperation.”

Computer, 17(3): 88-89.

www.manaraa.com

 352

Carr, John W., III. (1953, November). “Who Will Man the New Digital Computers?” Computers
and Automation, 2(8): 1-3.

Carr, John W., III. (1956). “Conference Summary.” Proceedings of the Eastern Joint Computer

Conference, New York, NY, December 10-12, 1956 (147-150). New York, NY:
American Institute of Electrical Engineers.

Carr, John W., III. (1952, February). “Discussion.” In Review of Electronic Digital Computers –

Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12, 1951 (113-
114). New York, NY: American Institute of Electrical Engineers.

Carr, John W., III. (1957, January). “Inaugural Presidential Address.” Journal of the ACM, 4(1):

5-7.

Carr, John W., III. (1962a, March). “Better Computers.” International Science and Technology,

No. 3: 35-39.

Carr, John W., III. (1962b. March). “Better Computers.” Elektronische Rechenanlagen, 4(4):

157-160.

Carr, John W., III. (1965, January). “The Future of Programming and Programmers.” Computers

and Automation, 14(1), 15-17; 54.

Ceruzzi, Paul. (1989, October). “Electronics Technology and Computer Science, 1940-1975: A

Coevolution.” Annals of the History of Computing, 10(4): 257-275.

Ceruzzi, Paul E. (2003). A History of Modern Computing (Second Edition). Cambridge, MA:

MIT Press.

“Chairmen Named, Activities Planned for Three New TCs.” (1982, December). Computer,

15(12): 134.

Chase, W. H. (1961, December). “Merger Discussions Open Opportunities and Challenges.”

Electrical Engineering, 80(12): 908-912.

Chu, Yaohan. (1974, December). “Why Do We Need Computer Hardware Description

Languages.” Computer, 7(12): 18-22.

Coates, Clarence L. (1968). “University Education in Computer Engineering.” In Proceedings of

the Meeting on Computer Science in Electrical Engineering of the Commission on
Engineering Education, Stanford University, October 24-25, 1968 (5-11). Washington,
DC: National Academy of Engineering.

Coates, Clarence L., Jr., Bruce Arden, Thomas C. Bartee, C. Gordon Bell, Franklin F. Kuo,

Edward J. McCluskey, Jr., and William H. Surber, Jr. (1971, June). “An Undergraduate

www.manaraa.com

 353

Computer Engineering Option for Electrical Engineering.” Proceedings of the IEEE,
59(6): 854-860.

Cohen, Arnold A. (1961, December). “The Chairman’s Letter.” IRE Transactions on Electronic

Computers, EC-10(4): 845.

Cohen, Arnold A. (1962a, February). “The Chairman’s Letter.” IRE Transactions on Electronic

Computers, EC-11(1): 119.

Cohen, Arnold A. (1962b, April). “The Chairman’s Letter.” IRE Transactions on Electronic

Computers, EC-11(2): 319.

Cohen, Arnold A. (1964, June). “Minutes of the Joint Meeting.” IEEE Transactions on

Electronic Computers, EC-13(3): 341.

Committee on Computer Sciences in Electrical Engineering of the Committee on Engineering

Education. (1968). A Program to Stimulate the Development of Electrical Engineering
Courses and Curricula To Include the Computer Sciences (Continued Support)
[Proposal].

Committee on the Undergraduate Program in Mathematics (CUPM) of the Mathematical

Association of America. (1964, May). Recommendations on the Undergraduate
Mathematics Program for Work in Computing. Berkeley, CA: Committee on the
Undergraduate Program in Mathematics.

“COMPCON.” (1972, July/August). Computer, 5(4): 30.

Computing Curricula for Computer Engineering Joint Task Force. (2004, December 12).

Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree
Programs in Computer Engineering. IEEE Computer Society. Retrieved November 28,
2006 from http://www.eng.auburn.edu/ece/CCCE/CCCE-FinalReport-2004Dec12.pdf

“Computing Devices Conference Attracts Interested Audience.” (1949, April). Electrical

Engineering, 68(4): 358.

“COMPSAC 77.” (1977, February). Computer, 10(2): 4-5.

“Computer Science and Engineering Board Established at Academy of Sciences; Oettinger

Named Chairman.” (1968, July). Communications of the ACM, 11(7): 530.

“Computer Science Curriculum.” (1964, April). Communications of the ACM, 7(4): 205.

“Computer Society Members Surveyed by AFIPS.” (1972, May/June). Computer, 5(3): 12.

“Computer Society Starts Education Activity.” (1971, July/August). Computer, 4(4): 35.

www.manaraa.com

 354

“Computer Society Votes to End National Computer Conference.” (1987, August). Computer,
20(8): 110.

Concordia, Charles. (1976, December). “In the Beginning there was the AIEE Committee on

Computing Devices.” Computer, 9(12): 42, 44.

Concordia, Charles. (1994). [Oral history interview conducted by Frederick Nebeker]. New

Brunswick, NJ: IEEE History Center, Rutgers University. Retrieved October 26, 2006
from
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/oral_histor
y/pdfs/Concordia189.pdf

Condon, Edward U. (1947, April). “Electronics and the Future.” Electrical Engineering, 66(4):

355-361.

“Conference Report: 2nd International Conference on Software Engineering.” (1976, December).

Computer, 9(12): 68-71.

“Constitution for the IRE Professional Group on Electronic Computers.” (1955, September). IRE

Transactions on Electronic Computers, EC-4(3): 88-92.

Conte, Sam D. (1964). “The Computer Sciences Program at Purdue University.” In Proceedings

of the 1964 19th ACM National Conference (L1.2-1). New York, NY: ACM Press.

Conway, Melvin E. (1968, April). “How Do Committees Invent?” Datamation, 14(4): 28-31.

“Conway’s Law.” (2003, December 29). The Jargon File 4.4.7. Retrieved July 11, 2006 from

http://www.catb.org/jargon/html/C/Conways-Law.html

Cook, Charles C. (1963). A Survey of Digital Computer Instruction in Most Major U.S.

Engineering Colleges. Morgantown, WV: The Department of Industrial Engineering,
College of Engineering, West Virginia University.

Correll, Quention. (1958, July). [Letter to the Editor]. Communications of the ACM, 1(7): 2.

Cortada, James W. (1993). The Computer in the United States: From Laboratory to Market,

1930 to 1960. Armonk, NY and London, England: M. E. Sharpe, Inc.

COSINE Committee of the Commission on Engineering Education. (1967a). Summary of Talks

and Discussion Group Recommendations, Conference on Computer Sciences in
Electrical Engineering Education, Princeton University, March 28-29, 1967 (6-8).
Washington, DC: National Academy of Engineering.

COSINE Committee of the Commission on Engineering Education. (1967b, September).

Computer Sciences in Electrical Engineering. Washington, DC: National Academy of
Engineering.

www.manaraa.com

 355

COSINE Committee of the Commission on Engineering Education. (1968a, March). “Computer

Science in Electrical Engineering.” IEEE Spectrum, 5(3): 96-103.

COSINE Committee of the Commission on Engineering Education. (1968b, September). Some

Specifications for a Computer-Oriented First Course in Electrical Engineering.
Washington, DC: National Academy of Engineering.

COSINE Committee of the Commission on Engineering Education. (1968c, October). An

Undergraduate Course On Computer Organization. Washington, DC: National Academy
of Engineering.

COSINE Committee of the Commission on Engineering Education. (1968d). Proceedings of the

Meeting on Computer Science in Electrical Engineering of the Commission on
Engineering Education, Stanford University, October 24-25, 1968. Washington, DC:
National Academy of Engineering.

COSINE Committee of the Commission on Engineering Education. (1968e, November). Some

Specifications for an Undergraduate Course in Digital Subsystems. Washington, DC:
National Academy of Engineering.

COSINE Committee of the Commission on Engineering Education. (1969a, September). Impact

of Computers on Electrical Engineering Education – A View From Industry. Washington,
DC: National Academy of Engineering.

COSINE Committee of the Commission on Engineering Education. (1969b, December).

Computer-Oriented Electrical Engineering Experiments, 1969-1970. Washington, DC:
National Academy of Engineering.

COSINE Committee of the Commission on Education. (1970, January). An Undergraduate

Computer Engineering Option for Electrical Engineering. Washington, DC: National
Academy of Engineering.

COSINE Committee of the Commission on Education. (1971a, March). Digital Systems

Laboratory Courses and Laboratory Developments. Washington, DC: National Academy
of Engineering.

COSINE Committee of the Commission on Education. (1971b, June). An Undergraduate Course

on Operating Systems Principles. Washington, DC: National Academy of Engineering.

COSINE Committee of the Commission on Education. (1972, April). Minicomputers in the

Digital Laboratory Program. Washington, DC: National Academy of Engineering.

Coulter, N. S. (1991, December 1). “Computer Curricula 1991 (Review).” Computing Reviews.

Retrieved September 15, 2006 from
http://www.reviews.com/review/review_reviewprint.cfm?review_id=115546

www.manaraa.com

 356

Cruz, J. B., Jr. (Ed.). (1963, June). “What is System Theory and Where is it Going? – A Panel

Discussion.” IEEE Transactions on Circuits and Systems, 10(2): 154-160.

Dataman Associates. (1962a, November). “Careers in Computing.” Datamation, 8(11): 121.

Dataman Associates. (1962b, November). “Careers in Computing.” Datamation, 8(11): 123.

Davis, Malcom R. (1969, September). “IEEE Computer Group Personnel Survey.” Computer

Group News, 2(11): 4-41.

Denning, Peter J. and Jack B. Dennis, Butler Lampson, A. Nico Haberman, Richard R. Muntz,

and Dennis Tsichritzis. (1972, January/February). “An Undergraduate Course on
Operating Systems Principles.” Computer, 5(1): 40-59.

Denning, Peter J. (Ed.), Edward Feigenbaum, Paul Gilmore, Anthony Hearn, Robert W. Ritchie,

and Joseph Traub. (1981, June). “A Discipline in Crisis (The Snowbird Report).”
Communications of the ACM, 24(6): 370-374.

Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe

Turner, and Paul R. Young. (1988). Report of the ACM Task Force on the Core of
Computer Science. New York, NY: ACM Press.

Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe

Turner, and Paul R. Young. (1989a, January). “Computing as a Discipline.”
Communications of the ACM, 32(1): 9-23.

Denning, Peter J., Douglas E. Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe

Turner, and Paul R. Young. (1989b, February). “Computing as a Discipline.” Computer,
22(2): 63-70.

Dertouzos, Michael L., Theodore R. Bashkow, Herbert J. Carlin, Ernest S. Kuh, Joseph E. Roew,

Louis D. Smullin, and M. E. Van Valkenburg. (1971, November). “Insight Versus
Algorithms: A Leader’s View.” IEEE Transactions on Education, E-14(4): 164-169.

Dickmann, Robert A. (1971, October). “Summary report on the 1971 AFIPS Information

Processing Personnel Survey.” Montvale, NJ: AFIPS Press.

DiMaggio, Paul J. and Walter W. Powell. (1983, April). “The Iron Cage Revisited: Institutional

Isomorphism and Collective Rationality in Organizational Fields.” American
Sociological Review, 48(2): 147-160.

Douglas Aircraft Company. (1957, October). “Douglas Will Train You to Program Big

Computers.” Electrical Engineering, 76(10): 98A.

www.manaraa.com

 357

Downey, Gary L. (1998). The Machine in Me: An Anthropologist Sits Among Computer
Engineers. New York and London: Routledge.

“Editorial.” (1953, March). IRE Transactions on Electronic Computers, EC-2(1): 1.

“Editorial Prospectus.” (1962). Computer Design, 1(1): 2-3.

Editors of DATA-LINK (Los Angeles ACM Chapter Newsletter). (1958, April). “What’s in a

Name?” [Letter to the Editor]. Communications of the ACM, 1(4): 6.

“Education Committee Added to Computer Society.” (1971, November/December). Computer,

4(6): 11.

Education Committee of the IEEE Computer Society. (1977, January). A Curriculum in

Computer Science and Engineering – Committee Report. Long Beach, CA: IEEE
Computer Society.

Edwards, Paul N. (1996). The Closed World: Computers and the Politics of Discourse in Cold

War America. Cambridge, MA: MIT Press.

“EECS History.” (n.d.) Retrieved October 24, 2006 from UC Berkeley EECS web site:

http://www.eecs.berkeley.edu/department/history.shtml

“Electronic Digital Computers Considered in Five Papers.” (1949, March). Electrical

Engineering, 68(3): 266.

Engel, Gerald L. (1977, December). “A Comparison of the ACM/C3S and the IEEE/CSE Model

Curriculum Subcommittee Recommendations.” Computer, 10(12): 121-123.

Engineering Research Associates, Inc. (1952a, July). “Digital Computer Engineers.”

Proceedings of the Institute of Radio Engineers, 40(7): 118A.

Engineering Research Associates, Inc. (1952b, November). “Digital Computer Engineers.”

Proceedings of the Institute of Radio Engineers, 40(11): 129A.

Engineering Research Associates, Inc. (1952c, December). “Digital Computer Engineers.”

Proceedings of the Institute of Radio Engineers, 40(12): 132A.

Engineering Research Associates, Division of Remington Rand, Inc. (1954, May). “Unlimited

Opportunities for … Electrical Engineers, and Physicists to do Digital Computer
Engineering.” Electrical Engineering, 73(5): 68A.

Engineering Societies Personnel Service, Inc. (1952, October). “Positions Available.” Electrical

Engineering, 71(10): 86A-87A.

www.manaraa.com

 358

Engstrom, H. T. (1956). “Keynote Address.” In Proceedings of the Eastern Joint Computer
Conference, New York, NY, December 10-12, 1956 (3-4). New York, NY: American
Institute of Electrical Engineers.

Ensmenger, Nathan. (2001, October-December). “The 'Question of Professionalism' in the

Computer Fields.” IEEE Annals of the History of Computing, 23(4): 56-74.

Ernst, Rolf and Gaetano Borriello. (1997). “Message from the Workshop Chairs.” In

Proceedings of the Fifth International Workshop on Hardware/Software Codesign
(CODES/CASHE '97), March 24-26, 1997 (viii). Washington, DC: IEEE Computer
Society.

“Executive Committee – March 2, 1948.” (1948, May). Proceedings of the IRE, 36(5): 633.

“Extensive Plans Set for 1947 IRE National Convention.” (1947, February). Proceedings of the

IRE, 35(2): 172-184.

Fein, Louis. (1959). “The Role of the University in Computers, Data Processing, and Related

Fields.” Communications of the ACM, 2(9): 7-14.

Fein, Louis. (1961a, June). “The Computer-Related Sciences (Synnoetics) at a University in the

Year 1975.” American Scientist, 49(2): 149-168.

Fein, Louis. (1961b, September). “The Computer-Related Sciences (Synnoetics) at a University

in 1975.” Datamation, 7(9): 34-41.

Fein, Louis. (1963, April). “Renaming the PGEC” [Letter to the Editor]. IEEE Transactions on

Electronic Computers, EC-12(2): 136.

Fein, Louis. (1979). [Oral history interview conducted by Pamela McCorduck, May 9, 1979,

Palo Alto, California]. Minneapolis, MN: Charles Babbage Institute, University of
Minnesota. Retrieved May 3, 2006 from http://www.cbi.umn.edu/oh/pdf.phtml?id=117

Felker, J. H. (1952a, February). “The Transistor as a Digital Computer Component.” In Review

of Electronic Digital Computers – Joint AIEE-IRE Computer Conference, Philadelphia,
PA, December 10-12, 1951 (105-109). New York, NY: American Institute of Electrical
Engineers (AIEE).

Felker, J. H. (1952b, November). “Regenerative Amplifier for Digital Computer Applications.”

Proceedings of the IRE, 40(11): 1584-1596.

Feng, Tse-yun. (1980, December). “From the President.” Computer, 13(12): 3.

Fife, Dennis W. (1968, January). “Session V: Panel Discussion – The Role of Electrical

Engineers in Computer Science” (Session Report). Computer Group News, 2(1): 20-21.

www.manaraa.com

 359

Fife, Dennis W. (1983, July). “Trends in Membership Development.” Computer, 16(7): 6-7.

Finerman, Aaron. (1968). “University Education in Computer Science (Summary).” In Aaron

Finerman (Ed.), University Education in Computing Science, Proceedings of a
conference on graduate academic and related research programs in computing science
held at the State University of New York at Stony Brook, June 1967 (193-214). New York
and London: Academic Press.

“First Annual IEEE Computer Conference.” (1967, September). Computer Group News, 1(8): 1-

7.

“Five Sessions Held at Conference on Electron Tubes for Computers.” (1951, February).

Electrical Engineering, 70(2): 163.

Flamm, Kenneth. (1988). Creating the Computer: Government, Industry, and High Technology.

Washington, DC: The Brookings Institution.

Flynn, Michael J. (1972, September/October). “How Can Computing Interests Best Be Served”

[Letter to the Editor]. Computer, 5(5): 64.

“Foreward.” (1952a, February). In Review of Electronic Digital Computers – Joint AIEE-IRE

Computer Conference, Philadelphia, PA, December 10-12, 1951 (3). New York, NY:
American Institute of Electrical Engineers (AIEE).

“Foreward.” (1952b, December). Transactions of the I.R.E. Professional Group on Electronic

Computers, 1(1), 1.

Forrester, Jay W. (1952, February). “Digital Computers – Present and Future Trends.” In Review

of Electronic Digital Computers – Joint AIEE-IRE Computer Conference, Philadelphia,
PA, December 10-12, 1951 (109-113). New York, NY: American Institute of Electrical
Engineers.

Foster, Caxton. (1970a). Computer Architecture. New York, NY: Van Nostrand Reinhold

Foster, Caxton. (1970b, September). "Are You Interested in Computer Architecture?"

Communications of the ACM, 13(9): 526.

Foster, Caxton. (1972, March/April). “Computer Architecture.” Computer, 5(2): 19.

Forrester, Jay W. (1957). “Equipmental Aids to Computing.” In Preston C. Hammer (Ed.), The

Computing Laboratory in the University (15-24). Madison, WI: The University of
Wisconsin Press.

Forsythe, George E. (1961, December). “Engineering Students Must Learn Both Computing and

Mathematics.” Journal of Engineering Education, 52(3): 177-188.

www.manaraa.com

 360

Forsythe, George E. (1963). “Educational Implications of the Computer Revolution.” In W. F.
Freiberger and William Prager (Eds.), Applications of Digital Computers (166-178).
Boston, MA: Ginn and Co.

Forsythe, George E. (1964a, April). “An Undergraduate Curriculum in Numerical Analysis.”

Communications of the ACM, 7(4): 214-215.

Forsythe, Goerge E. (1964b, October). “Chairmen of ACM Committees.” Communications of the

ACM, 7(10): 635.

Forsythe, George E. (1967, January). “A University’s Educational Program in Computer

Science.” Communications of the ACM, 10(1): 3-11.

Forsythe, George E. (1968, May). “What to Do Till the Computer Scientist Comes.” The

American Mathematical Monthly, 75(5): 454-462.

Foster, Caxton C. (1972, March/April). “Computer Architecture.” Computer, 5(2): 19.

The Foxboro Company. (1967, July). “Progress-Minded Programmers…” Datamation, 13(7):

130.

Franke, David W. and Martin K. Purvis. (1991). “Hardware/Software CoDesign: A Perspective.”

In Proceedings of the 13th International Conference on Software Engineering, Austin,
TX. Los Alamitos, CA: IEEE Computer Society Press.

Frater, W. H. (1955). “Opening Remarks by the Chairman.” In Arvid W. Jacobson (Ed.),

Proceedings of the First Conference on Training Personnel for the Computing Machine
Field, Detroit, MI, June 22-23, 1954 (21-22). Detroit, MI: Wayne University Press.

Freeman, Herbert. (1982). Research Directions in Computer Engineering, Report of a Workshop,

Washington, DC, November 15-16, 1982. Washington, DC: National Science
Foundation.

Freeeman, Herbert. (1983, May). “Research Directions in Computer Engineering.” Computer,

16(5): 80-82.

Fritz, W. Barkley. (1963, April). “Selected Definitions.” Communications of the ACM, 6(4): 152-

158.

Galison, Peter. (1997). Image and Logic: A Material Culture of Microphysics. Chicago and

London: The University of Chicago Press.

Galler, Bernard. (1962, January). “Definition of Software” [Letter to the Editor].

Communications of the ACM, 5(1): 6.

www.manaraa.com

 361

Galler, Bernard. (1991). [Oral history interview by Enid H. Galler, August 1991, Sutton's Bay,
Michigan]. Minneapolis, MN: Charles Babbage Institute, University of Minnesota.
Retrieved May 3, 2006 from http://www.cbi.umn.edu/oh/pdf.phtml?id=126

Galey, J. Michael. (1975, August). “Microprogramming: The Bridge Between Hardware and

Software.” Computer, 8(8): 23.

Gannett, E. K. (1953a, October). “Acknowledgment.” Proceedings of the IRE, 41(10): 1219.

Gannett, E. K. (1953b, October). [Introduction to guest editorial by Werner Buchholz.]

Proceedings of the IRE, 41(10): 1220.

Garcia, Oscar N. (1982, January). “From the President.” Computer, 15(1): 4-5.

Garcia, Oscar N. (1983, January). “From the President.” Computer, 16(1): 4-5.

Garner, Harvey L. (1964, April). “Critique.” Communications of the ACM, 7(4): 224-225.

General Motors Research Laboratories. (1960, November/December). “…at the outer edge of

computer science.” Datamation, 6(6): 75.

General Motors Research Laboratories. (1961a, March). “Opportunities at the outer edge of

computer science…” Datamation, 7(3): 59.

General Motors Research Laboratories. (1961b, August). “Applied Mathematicians,

Programmers: Opportunities at the outer edge of computer science…” Datamation, 7(8):
83.

Ghosh, S. P., C. Harlaw, M. Tsuchiya, A. B. Salisbury, D. Pessel, D. C. Rine, and E. J. Smith.

(1975). “IEEE Computer Education: The Regional HELP Subcommittee.” In COMPCON
'75 Digest of Papers: Proceedings of the Spring ’75 COMPCON Conference, February
25-27, 1975, San Francisco, CA (37-39). Long Beach, CA and New York, NY: IEEE
Computer Society.

Gibbs, Norman E. and Allen B. Tucker. (1986, March). “A Model Curriculum for a Liberal Arts

Degree in Computer Science.” Communications of the ACM, 29(3): 202-210.

Gieryn, Thomas F. (1983). “Boundary Work and the Demarcation of Science from Non-Science:

Strains and Interests in Professional Ideologies of Scientists.” American Sociological
Review, 48: 781-795.

Gieryn, Thomas F. (1995). “Boundaries of Science.” In Sheila Jasanoff, Gerald E. Markle, James

C. Petersen, and Trevor Pinch (Eds.), Handbook of Science and Technology Studies,
Revised Edition (393-443). Thousand Oaks, London, and New Delhi: Sage Publications.

www.manaraa.com

 362

Gieryn, Thomas F. (1999). Cultural Boundaries of Science: Credibility on the Line. Chicago:
University of Chicago Press.

Gilchrist, Bruce. (1959, January). “University Computing Courses.” Journal of Engineering

Education, 49(4): 342-346.

Gilchrist, Bruce. (1961a, March). “Changes in Bylaws.” Communications of the ACM, 4(3): 136.

Gilchrist, Bruce. (1961b, June). “ACM Membership Survey – January 1, 1961.”

Communications of the ACM, 4(6): 254.

Gilchrist, Bruce. (1962, June). “ACM Membership Survey – January 1, 1962.” Communications

of the ACM, 5(6): 297.

Gilfillan. (1952a, May). “Experienced Radar and Computer Engineers.” Proceedings of the

Institute of Radio Engineers, 40(5): 106A.

Gilfillan. (1952b, June). “Experienced Radar and Computer Engineers.” Proceedings of the

Institute of Radio Engineers, 40(5): 104A.

Gill, Stanley. (1968). “Planning a Profession.” In Aaron Finerman (Ed.), University Education in

Computing Science, Proceedings of a conference on graduate academic and related
research programs in computing science, held at the State University of New York at
Stony Brook, June 1967 (117-121). New York and London: Academic Press.

Golinski, Jan. (1998). Making Natural Knowledge: Constructivism and the History of Science.

Cambridge: Cambridge University Press.

Good, Gregory A. (2000). “The Assembly of Geophysics: Scientific Disciplines as Frameworks

of Consensus.” Studies in History and Philosophy of Modern Physics, 31(3): 259-292.

Goode, Harry H. (1955, June). “PGEC Student Activities and Education in Computers.” IRE

Transactions on Computers, 4(2): 49-51.

Gorn, Saul. (1958, January.) “Letters to the Editor.” Communications of the ACM, 1(1), 2-4.

Gorn, Saul. (1959, September). “On the Logicial Design of Formal Mixed Languages.” Preprints

of Papers Presented at the 14th National Meeting of the Association for Computing
Machinery (25-1). New York, NY: ACM Press.

Gorn, Saul. (1963, April). “The Computer and Information Sciences: A New Basic Discipline.”

SIAM Review, 5(2): 150-155.

“The Great Conference Debate (Editor’s Readout).” (1963, March). Datamation, 9(3): 25-26.

www.manaraa.com

 363

Green, Judy, Jeanne LaDuke, Saunders Mac Lane, and Uta C. Merzbach. (1998, August). “Mina
Spiegel Rees (1902-1997).” Notices of the AMS, 45(7): 866-873. Retrieved December 20,
2006 from http://www.ams.org/notices/199807/memorial-rees.pdf

Grems, Mandalay, and Datamation Staff. (1960, January/February). “EJCC Impressons.”

Datamation, 6(1): 23-25.

Gries, David and Dorothy Marsh. (1992, January). “The 1989-90 Taulbee Survey.”

Communications of the ACM, 35(1): 133-143.

Grosch, Herbert R. J. (1957). “The Computer Laboratory in Industry.” In Preston C. Hammer

(Ed.), The Computing Laboratory in the University (87-90). Madison, WI: The
University of Wisconsin Press.

Grosch, Herbert R. J. (1961, July). “Software in Sickness and Health.” Datamation, 7(7): 32-33.

Grosch, Herbert R. J. (1971). [Oral history interview conducted by Richard R. Mertz.] Retrieved

October 26, 2006 from
http://invention.smithsonian.org/downloads/fa_cohc_tr_gros710330.pdf

Guttag, John (Ed.). (2005). The Electron and the Bit, Electrical Engineering and Computer

Science at MIT, 1902-2002. Cambridge, MA: MIT, Electrical Engineering and Computer
Science Department.

Hamblen, John W. (1967, August). Computers in Higher Education: Expenditures, Sources of

Funds, and Utilization for Research and Instruction 1964-1965, with Projections for
1968-1969 (Report on a Survey Conducted with the National Science Foundation).
Atlanta, GA: Southern Regional Education Board.

Hamming, Richard W. (1969, January). “One Man’s View of Computer Science (1968 ACM

Turing Lecture).” Communications of the ACM, 16(1): 3-12.

Harder, Edwin L. (1957a). “The Computing Revolution.” Electrical Engineering, 76(6): 476-

481.

Harder, Edwin L. (1957b). “The Computing Revolution.” Electrical Engineering, 76(7): 586-

590.

Hartman, Frank R. (1959, November). “The Demand for College Training in Digital

Computing.” Computers and Automation, 8(11): 14.

Hartmanis, Juris, and Herbert Lin. (Eds.). (1992). Computing the Future: A Broader Agenda for

Computer Science and Engineering. Washington, DC: National Academy Press.

Harder, Edwin L. (1991). [Oral history interview conducted by William Aspray]. New

Brunswick, NJ: IEEE History Center, Rutgers University. Retrieved October 23, 2006

www.manaraa.com

 364

from
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/oral_histor
y/pdfs/Harder118.pdf

“Hardware.” (1989). Oxford English Dictionary Online (Second Edition). Retrieved January 19,

2006 from http://dictionary.oed.com/

Hartman, Frank R. (1959, November). “The Demand for College Training in Digital

Computing.” Computers and Automation, 8(11): 11-14.

Hartree, Douglas R. (1947). Calculating Machines. Cambridge, UK: Cambridge University

Press.

Harvard Computation Laboratory. (1946). Manual of Operation for the Automatic Sequence

Controlled Calculator, The Annals of the Computation Laboratory of Harvard
University, Volume 1. Cambride, MA: Harvard University Press.

Harvard Computation Laboratory. (1948). Proceedings of a Symposium on Large-Scale Digital

Calculating Machinery, Harvard University, January 7-10, 1947. The Annals of the
Computation Laboratory of Harvard University, Volume 16. Cambridge, MA: Harvard
University Press.

Heising, William P. (1961, February). “EJCC Program Highlights.” Datamation, 7(2): 36-38.

Hess, David. (1997). Science Studies: An Advanced Introduction. New York, NY: New York

University.

Hettinger, Norman G. (1972, July/August). “On Merging with the ACM” [Letter to the Editor].

Computer, 5(4): 4.

Hoagland, Albert S. (1972a, January/February). “Some Thoughts on the JCCs, Professionalism

and Society Goals.” Computer, 5(1): 6.

Hoagland, Albert S. (1972b, May/June). “Should we merge with the ACM and leave the IEEE?

An interview with Dr. Albert S. Hoagland, President of the IEEE Computer Society.”
Computer, 5(3): 1.

Hoagland, Albert S. (1973, February). “The IEEE Computer Society and the ACM.”

Communications of the ACM, 16(2): 67-68.

Hobbs, L. Charles. (1968a, January). “Chairman’s Letter.” Computer Group News, 2(1): 3A.

Hobbs, L. Charles. (1968b, November). “The Computer Group During 1968.” Computer Group

News, 2(6): 33.

www.manaraa.com

 365

Honeywell Electronic Data Processing. (1962b, January). “A Few Quick Facts on Software.”
Datamation, 8(1): 46-47.

Honeywell Electronic Data Processing. (1962b, March). “More Facts About Honeywell

Software.” Datamation, 8(3): 2-3.

Honeywell Electronic Data Processing. (1962c, April). “Engineers – Programmers.” Datamation,

8(4): 10-11.

Honeywell Electronic Data Processing. (1963, October). “The Dimensions of Logic Design at

Honeywell.” Computer Design, 2(9): 23.

Honeywell Electronic Data Processing. (1965, April). “Job titles are clues, but they can be

misleading.” Computer Design, 4(4): 61.

Honeywell Electronic Data Processing. (1966, February). “Circuit Design – Computers are

realized in the mind of the Circuit Design Engineer.” Datamation, 12(2): 124.

Honeywell Electronic Data Processing. (1966, March). “System Design – Computers are

conceived in the mind of the System Design Engineer.” Datamation, 12(3): 113.

Hopper, Grace M. (1953). “Compiling Routines.” Computers and Automation, 2(4): 1-5.

Hopper, Grace M. and John W. Mauchly. (1953, October). “Influence of Programming

Techniques on the Design of Computers.” Proceedings of the IRE, 41(10), 1250-1254.

Householder, Alston S. (1954, January). “The End of an Epoch: The Joint Computer Conference,

Washington, DC, December, 1953.” Computers and Automation, 3(1): 6-7.

Householder, Alston S. (1956a, January). “Presidential Address to the ACM, Philadelphia,

September 14, 1955.” Journal of the Association for Computing Machinery, 3(1): 1-2.

Householder, Alston S. (1956b, May). “The Position of the University in the Field of High Speed

Computation and Data Handling.” Computers and Automation, 5(5): 6-10.

Householder, Alston S. (1957, January). “Retiring Presidential Address.” Journal of the

Association for Computing Machinery, 4(1): 1-4.

Huggins, William. (1969). “History and Activities of the COSINE Committee.” In William

Viavant (Ed.), Proceedings of the Park City Conference, Computers in Undergraduate
Education, Volume I, Park City, Utah, September 8-13, 1968 (51-67). Salt Lake City, UT:
University of Utah.

Hughes Aircraft Company. (1958a, July). “The sky is no longer the limit.” Electrical

Engineering, 77(7): 66A-67A.

www.manaraa.com

 366

Hughes Aircraft Company. (1958b, December). “The strange shape of defense.” Electrical
Engineering, 77(12): 80A-81A.

Hughes Aircraft Company. (1960, May/June). “Digital Computer Engineers.” Datamation, 6(3):

71.

Hughes Research and Development Laboratories. (1954, May). “Digital Computer Techniques.”

Computers and Automation, 3(5): 5.

Hughes, Joseph L. A., John Impagliazzo, Andrew McGettrick, Victor P. Nelson, David Soldan,

Pradip K. Srimani, and Mitchell D. Theys. (2004, December). Computer Curricula:
Computer Engineering (Final Report of the IEEE-CS/ACM Joint Task Force on
Computing Curricula 2004). Retrieved from the World Wide Web on Feb. 10, 2005:
http://www.eng.auburn.edu/ece/CCCE/CCCE-FinalReport-2004Dec12.pdf

Hunter, G. T. (1955). “Manpower Requirements by Computer Manufacturers.” In Arvid W.

Jacobson (Ed.), Proceedings of the First Conference on Training Personnel for the
Computing Machine Field, Detroit, MI, June 22-23, 1954 (14-18). Detroit, MI: Wayne
University Press.

Huskey, Harry D. (1955). “Status of University Educational Programs Relative to High Speed

Computation.” In Arvid W. Jacobson (Ed.), Proceedings of the First Conference on
Training Personnel for the Computing Machine Field, Detroit, MI, June 22-23, 1954 (22-
25). Detroit, MI: Wayne University Press.

Huskey, Harry D. (1960a, September). “Letter from the President of ACM.” Communications of

the ACM, 3(9): 481.

Huskey, Harry D. (1960b, December). “Letter from the President of ACM.” Communications of

the ACM, 3(12): 631.

Huskey, Harry D. (1961a, August). “A Perspective.” Datamation, 7(8): 18.

Huskey, Harry D. (1961b, December). “Letter from the President of ACM.” Communications of

the ACM, 4(12): 530.

Huskey, Harry D. (1962ac, March). “Letter from the President of ACM.” Communications of the

ACM, 5(3): 131.

Huskey, Harry D. (1962b, April). “Letter from the President of ACM.” Communications of the

ACM, 5(4): 186.

Huskey, Harry D. (1991, July/September). “Harry D. Huskey: The Early Days (Memior).”

Annals of the History of Computing, 13(3): 290-306.

www.manaraa.com

 367

Husson, Samir S. (1970). Microprogramming: Principles and Practices. Englewood Cliffs, NJ:
Prentice-Hall, Inc.

IBM. (1954, November). “IBM has positions open in Development and Manufacturing for

Electronic and Electro-mechanical Engineers.” Electrical Engineering, 73(11): 72A.

IBM. (1955a, January). “IBM Has positions open for Engineers.” Electrical Engineering, 74(1):

68A.

IBM. (1955b, May). “The Challenge of Creative Engineering.” Electrical Engineering, 74(5):

77A.

IBM. (1955c, December). “The legacy of the scientist.” Electrical Engineering, 74(12): 75A.

IBM. (1957, February). “Where do you belong in IBM Military Products?” Electrical

Engineering, 76(2): 78A-79A.

IBM. (1961. October). “Immediate Opportunities with the IBM Advanced Systems Development

Division.” Datamation, 7(10): 94.

IBM. (1962, May). “At IBM, Programmers shape the future of a new technology.” Computers

and Automation, 11(5): 39.

IEEE Center for the History of Electrical Engineering. (1984). “The Origins of the IEEE.”

Retrieved April 20, 2006 from
http://www.ieee.org/organizations/history_center/historical_articles/history_of_ieee.html

“IEEE Computer Group.” (1965, February). IEEE Transactions on Electronic Computers, EC-

14(1): Inside front cover.

“IEEE Computer Group Constitution and Bylaws.” (1965, February). IEEE Transactions on

Electronic Computers, EC-14(1): 1-6.

“IEEE Computer Society Constitution.” (1977, July). Computer, 10(7): 108-109.

“IEEE Computer Society Technical Committees.” (1976, May). Computer, 9(5): 26-27.

“IEEE-CS Membership Grows at Record Rate, Exceeds 62,000.” (1982, March). Computer,

15(3): 105.

IEEE Educational Activities Board. (1978, February). “ECPD Accreditation Guidelines:

Preliminary Computer Science and Engineering Programs.” Computer, 11(2): 67-69.

“Information for Authors.” (1961a, September). IRE Transactions on Electronic Computers, EC-

10(3): Inside back cover.

www.manaraa.com

 368

“Information for Authors.” (1961b, December). IRE Transactions on Electronic Computers, EC-
10(4): Inside back cover.

“Institute Committees – 1954.” (1954, October). Proceedings of the IRE, 42(10): 1580-1585.

“The Institute on the March – A New Professional Group System.” (1948, May). Proceedings of

the IRE, 36(5): 570.

“Integrated circuit.” (2006, October 19). In Wikipedia, The Free Encyclopedia. Retrieved

October 19, 2006 from http://en.wikipedia.org/wiki/Integrated_circuit

“Inventor Profile – George Stibitz.” (2002). In National Inventors Hall of Fame. Retrieved

November 7, 2006 from http://www.invent.org/hall_of_fame/140.html

“The IRE Professional Group System – A Status Report.” (1948, December). Proceedings of the

IRE, 36(12): 1507.

Irwin, David J. and C. V. Ramamoorthy. (1975, December). “Guest Editor's Introduction.”

Computer, 8(12): 26-27.

“Is it Overhaul or Trade-in Time?” (1959a, July/August). [Edited transcript]. Datamation, 5(4):

24-33.

“Is it Overhaul or Trade-in Time?” (1959b, September/October). [Edited transcript]. Datamation,

5(5): 17-26; 44-45.

“Is the Computer Field Staying Together or Separating?” (1958, June). Computers and

Automation, 7(6): 6; 96.

Jacobson, Arvid W. (Ed.). (1955a). Proceedings of the First Conference on Training Personnel

for the Computing Machine Field, Detroit, MI, June 22-23, 1954. Detroit, MI: Wayne
University Press.

Jacobson, Arvid W. (1955b). “Preface.” In Arvid W. Jacobson (Ed.), Proceedings of the First

Conference on Training Personnel for the Computing Machine Field, Detroit, MI, June
22-23, 1954 (n.p.). Detroit, MI: Wayne University Press.

Jacobson, Arvid W. (1955c). “Opening Remarks by the Chairman.” In Arvid W. Jacobson (Ed.),

Proceedings of the First Conference on Training Personnel for the Computing Machine
Field, Detroit, MI, June 22-23, 1954 (3-4). Detroit, MI: Wayne University Press.

Jasanoff, Sheila (Ed.). (2004). States of Knowledge: The Co-Production of Science and Social

Order. London and New York: Routledge.

Jensen, E. Douglas. (1973, November). “Hardware vs. Software: The Two Faces of Computers.”

Computer, 6(11): 14-15.

www.manaraa.com

 369

Jet Propulsion Laboratory, California Institute of Technology. (1954, June). “Caltech Laboratory

Jet Propulsion.” Proceedings of the IRE, 42(6): 121A.

“Joint AIEE-IRE Computer Conference in Philadelphia Attracts Over 900.” (1952, February).

Electrical Engineering, 71(2): 189.

“Joint AIEE-IRE Conference Committee.” (1952, February). In Review of Electronic Digital

Computers – Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12,
1951 (3). New York, NY: American Institute of Electrical Engineers.

Joint Committee of the Association for Computing Machinery and the IEEE Computer Society.

(1978). A Library List on Undergraduate Computer Science, Computer Engineering, and
Information Systems. Long Beach, CA and New York, NY: IEEE Computer Society and
ACM.

“Joint IRE/AIEE Computer Conference Slated.” (1951, October). Proceedings of the IRE,

39(10): 1343.

The Joint Task Force on Computing Curricula. (2001, December 15). Computing Curricula

2001: Computer Science. IEEE Computer Society and Association for Computing
Machinery. Retrieved November 28, 2006 from
www.computer.org/portal/cms_docs_ieeecs/ieeecs/education/cc2001/cc2001.pdf

Jones, Edwin C., Jr. and Michael C. Mulder. (1984, April). “Accreditation in the Computer

Profession.” Computer, 17(4): 24-27.

Jones, Peter D. (1966, September). “Thirteen Programming Paradoxes.” Datamation, 12(9): 157.

Joseph, Earl C. (1969, March). “Evolving Digital Computer System Architectures.” Computer

Group News, 2(8): 2-8.

Kagan, Claude A. R. (1961, March). “Computer Papers at the American Institute of Electrical

Engineers Meeting in New York, Jan. 29-Feb. 3, 1961.” Computers and Automation,
10(3B): 6B.

Kapla, Gadi. (1999, June). “Charles Concordia: A Renowned Power Systems Guru Will Receive

the 1999 IEEE Medal of Honor.” IEEE Spectrum, 36(6): 29-33.

Karp, Richard. (2004). “A Personal View of Computer Science at Berkeley.” In U.C. Berkeley

Computer Science 30th Anniversary Celebration, Berkeley, CA, February 28, 2004.
Retrieved February 16, 2006 from
http://www.eecs.berkeley.edu/BEARS/CS_Anniversary/karp-talk.html

www.manaraa.com

 370

Katz, Adolph. (1960, June). “Do Computers Belong in the Engineering Curricula.” Journal of
Engineering Education, 50(10): 835-838.

Katz, Donald, and Elliott I. Organick. (1960, December). “Use of Computers in Engineering

Undergraduate Teaching.” Journal of Engineering Education, 51(3): 183-205.

Katz, Donald, and Elliott I. Organick, Silvio O. Navarro, and Brice Carnahan (1963). The Use of

Computers in Engineering Education: Final Report of Project. Ann Arbor, MI: College
of Engineering, The University of Michigan.

Kearfott Division, General Precision, Inc. (1960, November/December). “Digital Computer

Engineers.” Datamation, 6(6): 80.

Keenan, Thomas A. (1964, April). “Computers and Education.” Communications of the ACM,

7(4): 205-209.

Kidder, Tracy. (1981). The Soul of a New Machine. Boston and Toronto: Little, Brown and

Company.

King, Willis K. and Oscar N. Garcia. (1975, July). “Second Annual Symposium on Computer

Architecture (Conference Report).” Computer, 8(7): 79-80.

Knuth, Donald E. (1968). The Art of Computer Programming, Volume 1: Fundamental

Algorithms (First Edition). Reading, MA: Addison-Wesley.

Knuth, Donald E. (1972, August). “George Forsythe and the Development of Computer

Science.” Communications of the ACM, 15(8): 721-726.

Kline, Ronald R. (2006, July). “The Emergence of ‘Information Technology’ as a Keyword,

1948–1985.” Technology and Culture, Vol. 47, No. 3: pp. 513-535.

Koffman, Elliot B., Philip L. Miller, and Caroline E. Wardle. (1984, October). “Recommended

Curriculum for CS1, 1984.” Communications of the ACM, 27(10): 998-1001.

Koffman, Elliot B., David Stemple, and Caroline E. Wardle. (1985, August). “Recommended

Curriculum for CS2, 1984: A Report of the ACM Curriculum Task Force for CS2.”
Communications of the ACM, 28(8): 815-818.

Korfhage, Robert R. (1964, April). “Logic for the Computer Sciences.” Communications of the

ACM, 7(4): 216-218.

Latour, Bruno. (1987). Science in Action: How to Follow Scientists and Engineers Through

Society. Cambridge, MA: Harvard University Press.

“Large-Scale Computer Developments Discussed.” (1947, March). Electrical Engineering,

66(3): 289-290.

www.manaraa.com

 371

“The Last FJCC.” (1987, December). Computer, 20(12): 100.

Layton, Edwin T. (1971). The Revolt of the Engineers: Social Responsibility and the American

Engineering Profession. Cleveland, OH: Press of Case Western Reserve University.

Lee, J.A.N. (1995). Computer Pioneers. Los Alamitos, California: IEEE Computer Society

Press.

Lee, J.A.N. (2001, January/March). “John Weber Carr III” (Obituaries). IEEE Annals of the

History of Computing, 23(1): 67.

Lehmer, Derrick. (1952). [Summary] In Proceedings of the Electronic Computer Symposium,

Los Angeles, CA, April 30-May 2, 1952 (Session XX:1-3). Los Angeles, CA: Los
Angeles Chapter of the IRE Professional Group on Electronic Computers.

Lenoir, Timothy. (1997). Instituting Science: The Cultural Production of Scientific Disciplines.

Stanford: Stanford University Press.

Lesser, Murray L. (1952). “An Approach to the Use of the IBM Card-Programmed Electronic

Calculator in the Solution of Engineering Problems.” In Proceedings of the Electronic
Computer Symposium, Los Angeles, CA, April 30-May 2, 1952 (Session IX). Los
Angeles, CA: Los Angeles Chapter of the IRE Professional Group on Electronic
Computers.

Levine, Samuel. (1966, July). “Chairman’s Letter (1966-1967).” Computer Group News, 1(1):

n.p.

Levine, Samuel. (1967a, January). “Chairman’s Letter.” Computer Group News, 1(4): n.p.

Levine, Samuel. (1967b, March). “Chairman’s Letter.” Computer Group News, 1(5): 2.

Levine, Samuel. (1968, September). “The Computer Group Contemplates Its Next Move.”

Computer Group News, 2(5): 16-18.

Librascope. (1957, June). “I just have to tell you…” Electrical Engineering, 76(6): 88A.

Lindsay, Tom. (1969, March). “On the Track of New Members.” Computer Group News, 2(8):

32.

Lindvall, F. C. (1955). “Computers Challenge Engineering Education.” Proceedings of the

Western Joint Computer Conference, Los Angeles, CA, March 1-3, 1955. New York,
NY: Institute of Radio Engineers.

www.manaraa.com

 372

“Looking Back, Looking Ahead: A SIAM History.” (2002). Philadelphia, PA: Society for
Industrial and Applied Mathematics. Retrieved April 22, 2006 from
http://www.siam.org/about/pdf/siam50.pdf

Lucena, Juan C. (2005). Defending the Nation: U.S. Policymaking to Create Scientists and

Engineers from Sputnik to the ‘War against Terrorism.’ Lanham, MD: University Press
of America, Inc.

Luebbert, William F. (1960, November). “Computers in Engineering Education” [Letter].

Journal of Engineering Education, 51(2): 134-137.

Mauchly, John W. (1948). “Preparation of Problems for EDVAC-Type Machines.” In

Proceedings of a Symposium on Large-Scale Digital Calculating Machinery, Harvard
University, January 7-10, 1947 (203-207). Cambridge, MA: Harvard University Press.

Mauchly, Kahtleen R. (1984, April-June). “John Mauchly’s Early Years.” Annals of the History

of Computing, 6(2): 116.

MacKenzie, Donald. (1990). Inventing Accuracy: A Historical Sociology of Nuclear Missile

Guidance. Cambridge, MA: The MIT Press.

Macnaughton, Peter C. (1972, July/August). “On Merging with the ACM” [Letter to the

Editor].” Computer, 5(4): 4-5.

MacWilliams, W. H., Jr. (1952). “Keynote Address.” In Review of Electronic Digital Computers

– Joint AIEE-IRE Computer Conference, Philadelphia, PA, December 10-12, 1951 (5-6).
New York, NY: American Institute of Electrical Engineers.

Madden, J. Don. (1963, April). “Improving the Current Format.” Datamation, 9(4): 45-46.

Magel, Kenneth I., Richard H. Austing, Alfs Berztiss, Gerald L. Engel, John W. Hamblen, A.

A.J. Hoffman, and Robert Mathis. (1981, March). “Recommendations for Master's Level
Programs in Computer Science: A Report of the ACM Curriculum Committee on
Computer Science.” Communications of the ACM, 24(3): 115-123.

Mahoney, Michael S. (1988, April). “The History of Computing in the History of Technology.”

IEEE Annals of the History of Computing, 10(2): 113-125.

Mahoney, Michael S. (1990). “The Roots of Software Engineering.” CWI Quarterly, 3(4): 325-

34.

Mahoney, Michael S. (1996). "Issues in the History of Computing." In Thomas J. Bergin and

Rick G. Gibson (Eds.), History of Programming Languages II (772-781). New York:
ACM Press.

www.manaraa.com

 373

Mahoney, Michael S. (2000). “Software as Science – Science as Software.” Retrieved September
14, 2006 from http://www.princeton.edu/~mike/softsci.htm

Mahoney, Michael S. (2004a, May). “The Histories of Computing(s).” Lecture delivered in the

“Digital Scholarship, Digital Culture” Series, Centre for Computing in the Humanities,
King's College, London, UK. Retrieved from the World Wide Web on May 10, 2004:
http://www.princeton.edu/~mike/articles/histories/kingscch.htm

Mahoney, Michael S. (2004b, March). “Finding a History for Software Engineering.” Annals of

the History of Computing, 26(1): 8-19.

“Manpower Needs and Educational Programs: Panel Discussion, A. C. Hall, Chairman.” (1955).

In Arvid W. Jacobson (Ed.), Proceedings of the First Conference on Training Personnel
for the Computing Machine Field, Detroit, MI, June 22-23, 1954 (32-34). Detroit, MI:
Wayne University Press

Martin, William L. (1955). “Foreward.” Proceedings of the Western Joint Computer Conference,

Los Angeles, CA, March 1-3, 1955 (p. 1). New York, NY: Institute of Radio Engineers.

Martin, William L. and S. R. Olson. (1957, March). “PGEC Membership Survey.” IRE

Transactions on Electronic Computers, EC-6(1): 49-55.

Matula, David W. (1969, December). “Minutes of SIGCSE Meeting at FJCC (Las Vegas, Nov.

18, 1969).” ACM SIGCSE Bulletin, 1(4): 6.

McCluskey, Edward J. (1967). “The ACM-C3S Curriculum.” In Summary of Talks and

Discussion Group Recommendations, Conference on Computer Sciences in Electrical
Engineering Education, Princeton University, March 28-29, 1967 (6-8). Washington,
DC: National Academy of Engineering.

McCluskey, Edward. (1970, January/February). “Message from the Chairman: The Year of the

Opening.” Computer Group News, 3(1): 2-3.

McCluskey, Edward. (1970, September, October). “On the Group’s Petition for a Change to

Society Status.” Computer, 3(5): 1.

McCluskey, Edward J. (1976). “Logic Design.” In Anthony Ralston and Chester L. Meek (Eds.),

Encyclopedia of Computer Science, First Edition (809-813). New York, NY: Van
Nostrand Reinhold Company.

McCluskey, Edward. (2005). [Personal correspondence between Brent K. Jesiek and Edward J.

McCluskey via telephone on September 27, 2005 and October 7, 2005.]

McCracken, Dan. (1979, March). “The Institute for Certification of Computer Professionals: A

Call for ACM Action.” Communications of the ACM, 22(3); 145-146.

www.manaraa.com

 374

McCracken, Dan. (1980, February). “ACM President’s Letter: ACM Governance.”
Communications of the ACM, 23(2): 65-66.

McMahon, A. Michal. (1984). The Making of a Profession: A Century of Electrical Engineering

in America. New York, NY: IEEE Press.

McMahon, E. Lawrence, and Brice Carnahan, Donald L. Katz, and Warren D. Seider (1966).

Computers in Engineering Design Education: Volume IV – Electrical Engineering. Ann
Arbor, MI: College of Engineering, The University of Michigan.

McNeill, Daniel, and Paul Freiberger. (1993). Fuzzy Logic. New York, NY: Simon and Schuster.

Merkle, Luiz Ernesto. (2001). Disciplinary and Semiotic Relations across Human-Computer

Interaction. Unpublished Dissertation. The University of Western Ontario.

Merkle, Luiz Ernesto, and Robert E. Mercer. (2002). “Variations in Computing Science's

Disciplinary Diversity: The Case of Curricula Recommendations.” In Lillian N. Cassel
and Ricardo Augusto da Luz Reis (Eds.), Informatics Curricula and Teaching Methods
(87-96). IFIP TC3/WG3.2 Conference on Informatics Curricula, Teaching Methods, and
Best Practice (ICTEM 2002), July 10-12, 2002, Florianópolis, SC, Brazil.

Mesa Scientific Corporation. (1964, November). “Mesa Men Now Come in Two Convenient

Types: Software… and Hardware!” Datamation, 10(11): 64.

Messer-Davidow, David R. Shumway, and David J. Sylvan (Eds.). (1993). Knowledges:

Historical and Critical Studies in Disciplinarity. Charlottesville and London: University
Press of Virginia.

Miller, C. L. and W. W. Seifert. (1960, June). “The Faculty and the Computer – Some Problems

and Goals.” Journal of Engineering Education, 50(10): 839-845.

MITRE Corporation. (1961, May). “Computer Engineers and Scientists.” Computers and

Automation, 10(5): 23.

Model Program Committee of the IEEE Educational Activities Board. (1983). The 1983 IEEE

Computer Society Model Program in Computer Science and Engineering. Silver Spring,
MD: IEEE Computer Society Press.

Moon, Suzanne. (2004, July). “Tracy Kidder, The Soul of a New Machine” (Classics Revisited

Book Review). Technology and Culture, 45(3): 597-602.

Moone, Tom. (2002, October). “Mac Van Valkenburg: ‘One of the very best engineering

teachers in the world.’” Ingenuity (UIUC ECE Newsletter), 7(3). Retrieved October 24,
2006 from http://www.ece.uiuc.edu/ingenuity/1002/mac.html

www.manaraa.com

 375

Morse, Philip M. (Ed.). (1960, October). “Report on a Conference of University Computing
Center Directors, June 2-4, 1960.” Communications of the ACM, 3(10): 519-521.

Mulder, Michael, George Davida, Oscar N. Garcia, Sakti P. Ghosh, and David Pessel. (1975).

“Model Curricula for Computer Science and Engineering Programs.” In COMPCON '75
Digest of Papers: Proceedings of the Spring ’75 COMPCON Conference, February 25-
27, 1975, San Francisco, CA (33-35). Long Beach, CA and New York, NY: IEEE
Computer Society.

Mulder, Michael. (1975, December). “Model Curricula for Four-Year Computer Science and

Engineering Programs: Bridging the Tar Pit.” Computer, 8(12): 28-33.

Mulder, Michael. (1977, December). “Computer Science and Engineering Education:

Introduction and Overview.” Computer, 10(12): 70-71.

Mulder, Michael, and John Dalphin. (1984, April). “Computer Science Program Requirements

and Accreditation.” Computer, 17(4): 30-35.

Muller, David E. (1964, April). “The Place of Logical Design and Switching Theory In the

Computer Curriculum.” Communications of the ACM, 7(4): 222-224.

National Cash Register Company. (1956a, January). “Engineers for immediate placement.”

Electrical Engineering, 75(1): 59A.

National Cash Register Company. (1956b, April). “Digital Computer Engineers.” Computers and

Automation, 5(4): 41.

National Cash Register Company. (1960, December). “Digital Computer Engineers.” Computers

and Automation, 9(12): 5.

Neumann, Peter G. (1976, May). “Letter from the Editor.” ACM SICSOFT Software Engineering

Notes, 1(1): 2-3.

“New Attendance Record Set at AIEE Fall General Meeting.” (1956, December). Electrical

Engineering, 75(12): 1108-1112.

“New Programming Committee Chairman.” (1967, September). Computer Group News, 1(8):

31.

Newell, Allen, Alan J. Perlis, and Herbert A. Simon. (1967, September 22). “Computer Science”

[Letter to the Editor]. Science, 157: 1373-1374.

“News: Association for Computing Machinery.” (1948, April). Mathematical Tables and Other

Aides to Computation, 3(22): 132-134.

www.manaraa.com

 376

“News: Association for Computing Machinery.” (1949, January). Mathematical Tables and
Other Aides to Computation, 3(25): 380.

“News.” (1954, September). IRE Transactions on Electronic Computers, EC-3(3): 39.

Norberg, Arthur L. (2005). Computers and Commerce: A Study of Technology and Management

at Eckert-Mauchly Computer Company, Engineering Research Associates, and
Remington Rand, 1946-1957. Cambridge, MA and London England: The MIT Press.

Northrop Aircraft, Inc. (1956, January). “Computers.” Computers and Automation, 5(1): 53.

North American Aviation, Inc. (1956, October). “New Developments in flutter, vibration,

electronics, many other specialized fields: Exceptional Opportunities Now.” Electrical
Engineering, 75(10): 103A.

Oettinger, Anthony G. (1966a, April). “On ACM’s Responsibility.” Communications of the

ACM, 9(4): 246.

Oettinger, Anthony G. (1966b, December). “President’s Letter to the ACM Membership.”

Communications of the ACM, 9(12): 838-839.

Oettinger, Anthony G. (1967, October). “The Hardware-Software Complimentarity.”

Communications of the ACM, 10(10): 604-606.

Oettinger, Anthony G. (1968a). “Computers and Education.” In Aaron Finerman (Ed.),

University Education in Computing Science, Proceedings of a conference on graduate
academic and related research programs in computing science, held at the State
University of New York at Stony Brook, June 1967 (27-38). New York and London:
Academic Press.

Oettinger, Anthony G. (1968b, May). “President’s Letter to the ACM.” Communications of the

ACM, 11(5): 293-294.

Opler, Ascher. (1967, January). “Fourth-Generation Software.” Datamation, 13(1): 22-24.

“Organization of the National Joint Computer Committee.” (1956). Proceedings of the Eastern

Joint Computer Conference, New York, NY, December 10-12, 1956 (1-2). New York,
NY: American Institute of Electrical Engineers.

“Panels Feature of First IEEE Computer Conference.” (1967, October). Datamation, 13(10):

109-110.

Patrick, Robert L. (1961, May). “An Editorial Commentary on The Gap in Programming

Support.” Datamation, 7(5): 37.

Patrick, Robert L. (1966, June). “Not-So-Random Discs.” Datamation, 12(6): 77-78.

www.manaraa.com

 377

“Pentium FDIV Bug.” (2006, November 28). In Wikipedia, The Free Encyclopedia. Retrieved

November 28, 2006 from http://en.wikipedia.org/wiki/Pentium_FDIV_bug

Perlis, Alan J. (1964, August). “Report of the Commission of Thoughtful Persons to the ACM

Council, 24 April 1964.” Communications of the ACM, 7(8): 507-508.

Perlis, Alan J. (1968). “Computer Science is Neither Mathematics nor Electrical Engineering.” In

Aaron Finerman (Ed.), University Education in Computing Science, Proceedings of a
conference on graduate academic and related research programs in computing science,
held at the State University of New York at Stony Brook, June 1967 (69-81). New York
and London: Academic Press.

Peterson, Harold A., and Charles Concordia. (1945, September). General Electric Review, 48:

29-37.

Philco Computer Division. (1960, April). “Computer Engineers.” Computers and Automation,

9(4): 35.

Philco Computer Division. (1960b, November/December). “Computer Growth Opportunities.”

Datamation, 6(6): 81.

Phister, Montgomery. (1958, tenth printing 1967). Logical Design of Digital Computers. New

York, NY: John Wiley and Sons.

Phister, Montgomery. (2005). [Personal correspondence between Brent K. Jesiek and

Montgomery Phister via telephone on October 14, 2005.]

“Post Conference Feedback.” (1958, May/June). Datamation, 4(3): 20-21.

“Program, AIEE Summer General Meeting.” (1947, June). Electrical Engineering, 66(6): 592-

594.

“Progress of Institute Technical Groups Program.” (1961, May). Electrical Engineering, 80(5):

372-373.

“Professional Group Notes.” (1951, November). Proceedings of the IRE, 39(11): 1466.

“Provisional IEEE Computer Society Constitution and Bylaws.” (1970, September/October).

Computer, 3(5): 33-37.

“Q – Science.” (Library of Congress Classification Outline). (n.d.). Library of Congress.

Retrieved October 9, 2006 from http://www.loc.gov/catdir/cpso/lcco/lcco_q.pdf

“Radio Progress During 1951.” (1952, April). Proceedings of the IRE, 40(4): 388-439.

www.manaraa.com

 378

Ralston, Anthony. (1973a, January). “The Computer Society and ACM.” Computer, 6(1): 1-2.

Ralston, Anthony. (1973b, December). “Computer Science Resarch – Storm Clouds in

Washington (ACM President’s Letter).” Communications of the ACM, 16(12): 725-726.

Ralston, Anthony, and Chester L. Meek (Eds.). (1976). Encyclopedia of Computer Science (First

Edition). New York, NY: Van Nostrand Reinhold Company.

Ralston, Anthony. (1980). “Preface.” In Anthony Ralston (Ed.), Taxonomy of Computer Science

and Engineering (v). Arlington, VA: The American Federation of Information Processing
Societies, Inc.

Ralston, Anthony, and Edwin D. Reilly, Jr. (1983). Encyclopedia of Computer Science and

Engineering (Second Edition). New York, NY: Van Nostrand Reinhold Company.

Ralston, Anthony. (2004, January-March). “Four Editions and Eight Publishers: A History of the

Encyclopedia of Computer Science.” IEEE Annals of the History of Computing, 26(1):
42-52.

Ramamoorthy, C. V. (1976, December). “Computer Science and Engineering Education.” IEEE

Transactions on Computers, C-25(12): 1200-1206.

Ramo, Simon. (1960, January). “Intellectronics.” Computers and Automation, 9(1): 6, 23.

Randell, Brian. (1982). The Origins of Digital Computers: Selected Papers (3rd ed.). Berlin and

New York: Springer-Verlag.

Randell, Brian. (2002). “The New Electronic Technology.” In Atsushi Akera and Frederik

Nebeker (Eds.), From 0 to 1: An Authoritative History of Modern Computing (41-50).
Oxford, England and New York, NY: Oxford University Press.

“Record Attendance at Computer Conference.” (1953, February). Proceedings of the IRE, 41(2):

299.

“Record Growth: IEEE Tops 200,000; Computer Society over 44,000.” (1980, March).

Computer, 13(3): 96.

Rector, Robert W. (1986, July). “Personal Recollections on the First Quarter-Century of AFIPS.”

Annals of the History of Computing, 8(3): 261-269.

Redmond, Kent C., and Thomas M. Smith (1980). Project Whirlwind: The History of a Pioneer

Computer. Bedford, MA: Digital Press.

“Reflections on a Quarter-Century: AFIPS Founders.” (1986, July). Annals of the History of

Computing, 8(3): 225-256.

www.manaraa.com

 379

“Report on the Chicago Gathering.” (1967, November). Computer Group News, 1(9): 24.

“Report of the Board of Directors.” (1954, August). Electrical Engineering, 73(8): 755-782.

“Report of the Board of Directors.” (1955, August). Electrical Engineering, 74(8): 709-740.

“Report of the Board of Directors.” (1956, August). Electrical Engineering, 75(8): 729-761.

“Report of the Board of Directors.” (1957, August). Electrical Engineering, 76(8): 711-748.

Republic Aviation. (1955, March). “Creative Engineering Opportunities with Republic.”

Computers and Automation, 4(3): 31.

“Retirements: Samuel Byron Williams.” (1946, June). Bell Laboratories Record, 24(6): 252-253.

Reynolds, Terry S. (1986, October). “Defining Professional Boundaries: Chemical Engineering

in the Early 20th Century.” Technology and Culture, 27(4): 694-716.

Rhodes, Ida. (1952). “The Human Computer’s Dreams of the Future.” In Proceedings of the

Electronic Computer Symposium, Los Angeles, CA, April 30-May 2, 1952 (Session
XII:1-5). Los Angeles, CA: Los Angeles Chapter of the IRE Professional Group on
Electronic Computers.

Rice, Rex. (1973, September). “COMPCON: Establishing a Conference Identity.” Computer,

6(9): 15-16.

Rideout, Vincent C. (1957). “Curriculum Needs in the Computing Field.” In Preston C. Hammer

(Ed.), The Computing Laboratory in the University (153-159). Madison, WI: The
University of Wisconsin Press.

Rine, David C., S. P. Ghosh, C. A. Harlow, and M. Tsuchiya. (1976). “Regional HELP for

Computer Education.” In COMPCON '76 Digest of Papers: Proceedings of the Spring
’76 COMPCON Conference, February 24-26, 1976, San Francisco, CA (208-211). Long
Beach, CA and New York, NY: IEEE Computer Society.

Rine, David C. and Ralph E. Lee. (1978). “Introductory Remarks.” In Proceedings of College

Curriculum in Computer Science, Engineering, and Data Processing, February 2-3,
1978, Orlando, FL (front matter). Long Beach CA: IEEE Computer Society.

Rine, David C. (1979, September). “Special Message – From the Education Committee

Chairman.” Computer, 12(9): 3-5.

Rojas, Raúl, and Ulf Hashagen (Eds.). (2000). The First Computers: History and Architecture.

Cambridge, MA and London: The MIT Press.

www.manaraa.com

 380

Rose, C. W. and M. Albarran. (1975). “Modeling and Design Description of Hierarchical
Hardware/Software Systems.” In Proceedings of the 12th Conference on Design
Automation (421-430). Piscataway, NJ: IEEE Press.

Rossmann, George E., C. Gordon Bell, Michael J. Flynn, Frederick P. Brooks, Jr., Samuel H.

Fuller, and Herbert Hellerman. (1975, December). “A Course of Study in Computer
Hardware Architecture.” Computer, 8(12): 44-57.

Rubinoff, Morris. (1971). [Oral history interview conducted by Richard R. Mertz on May 17,

1971.] Retrieved November 7, 2006 from
http://invention.smithsonian.org/downloads/fa_cohc_tr_rubi710517.pdf

Russo, Roy L. (1983, November). “From the Vice-President for Technical Activities.”

Computer, x(11): 6.

Ryder, John D., and Donald G. Fink. (1984). Engineers and Electronics: A Century of Electrical

Progress. New York, NY: IEEE Press.

Sacks, S. Henry. (1963, June). “Joint Computer Conferences (Editorial Notes).” Computer

Design, 2(6): 1.

Salisbury, A. B., J. N. Snyder, and E. J. Smith. (1975). “A Report of the Subcommittee on

Coordination, IEEE Computer Society, Education Committee.” In COMPCON '75 Digest
of Papers: Proceedings of the Spring ’75 COMPCON Conference, February 25-27, 1975,
San Francisco, CA (41). Long Beach, CA and New York, NY: IEEE Computer Society.

Sammet, Jean E. (1976, May). “What Has Been Accomplished?” Communications of the ACM,

19(5): 227-228.

Samuel, Arthur L. (1953, October). “Computer Bit by Bit or Digital Computers Made Easy.”

Proceedings of the IRE, 41(10): 1223-1230.

Saunders, Robert M. (1965, June-September). “Electrical Engineering Education in 1975.” IEEE

Transactions on Education, E-8(2-3): 33-37.

Schweppe, Earl J. (1964). “A Proposed Academic Program in the Computer Sciences.” In

Proceedings of the 1964 19th ACM National Conference (L1.1-1-L1.1-2). New York,
NY: ACM Press.

Scott, Norman R. (1961, September). “Editorial.” IRE Transactions on Electronic Computers,

EC-10(3): front matter.

Seely, Bruce E. (1999, July). “The Other Re-engineering of Engineering Education, 1900-1965.”

Journal of Engineering Education, 88(3): 285-294.

www.manaraa.com

 381

Seising, Rudolf. (2005). “1965 – ‘Fuzzy Sets’ appear – A Contribution to the 40th Anniversary.”
In Proceedings of the 2005 IEEE International Conference on Fuzzy Systems, Reno, NV,
May 22-25, 2005 (5-10). IEEE.

Serra, Micaela., and William B. Gardner. (1998). “A First Course in Hardware/Software

Codesign.” In Proceedings of the Third Western Canadian Conference on Computing
Education (WCCCE '98), Vancouver, BC, May, 1998 (57-66). Retrieved on May 6, 2004
from: http://www.uoguelph.ca/~gardnerw/pubs/WCCCE98.pdf

Shapiro, Fred R. (2000, April/June). “Origin of the term software: Evidence from the JSTOR

electronic journal archive.” IEEE Annals of the History of Computing, 22(2): 69-70.

Shapiro, Stuart. (1994). “Boundaries and Quandaries: Establishing a Professional Context for

IT.” Information Technology and People, 7(1): 47-68.

Shaw, Christopher J. (1962, September). “Programming Schisms.” Datamation, 8(9): 32.

Shaw, Mary (Ed.). (1985). The Carnegie-Mellon Curriculum for Undergraduate Computer

Science. New York, NY: Springer-Verlag.

Simmons, Dick B. (1980, November). “From the Division V Director…” Computer, 13(11): 7.

Simmons, Dick B. (1982, September). “Membership Growth and Information Activities.”

Computer, 15(9): 6-7.

Simon, Herbert A. (1969). The Sciences of the Artificial. Cambridge, MA: The MIT Press.

“SJCC Society Gleanings.” (1964, May). Datamation, 10(5): 19.

Slamecka, Vladimir. (1968). “The Science and Engineering of Information.” In Aaron Finerman

(Ed.), University Education in Computing Science, Proceedings of a conference on
graduate academic and related research programs in computing science, held at the
State University of New York at Stony Brook, June 1967 (81-92). New York and London:
Academic Press.

Sloan, Martha. (1973). The Impact of the COSINE Committee on the Undergraduate Electrical

Engineering Curriculum. Unpublished Dissertation. Stanford University.

Sloan, Martha. (1974, November). “The Impact of the COSINE Committee on the

Undergraduate Electrical Engineering Curriculum.” IEEE Transactions on Education, E-
17(4): 179-189.

Sloan, Martha. (1975, December). “Survey of Electrical Engineering and Computer Science

Departments in the U.S.” Computer, 8(12): 35-42.

Sloan, Martha. (1985, December). “Two Years of Transition.” Computer, 18(12): 6-7.

www.manaraa.com

 382

Sloan, Martha. (2005). [Personal correspondence between Brent K. Jesiek and Martha Sloan via

telephone on June 29, 2005 and July 27, 2005].

Sloan, Martha E., Clarence L. Coates, and Edward J. McCluskey. (1973, June). “COSINE

Survey of Electrical Engineering Departments, Fall 1973.” Computer, 6(6): 30-39.

Smith, Merlin G. (1977a, January). “From the President.” Computer, 10(1): 2.

Smith, Merlin G. (1977b, December). “Special Message – From the President.” Computer,

10(12): 3.

Smith, Merlin G. (1978, October). “New Transactions Launched; Computer Society Growth

Continues.” Computer, 11(10): 4.

Smith, Merlin G. (1991, September). “IEEE Computer Society: Four Decades of Service, 1951-

1991.” Computer, 24(9): 6-12.

Smotherman, Mark. (1999, March). “A Brief History of Microprogramming.” Retrieved June 8,

2006 from http://www.cs.clemson.edu/~mark/uprog.html

“Software Engineering Prospectus Proposed.” (1975, November). Computer, 8(11): 2.

Spaanenburg, Ben. (1982, January). “Mermelade or jam?” Computer, 15(1): 146.

“Standards on Electronic Computers: Definitions of Terms, 1950.” (1951, March). Proceedings

of the IRE, 39(3): 271-277.

Star, Susan L., and James R. Griesemer. (1989). “Institutional Ecology, `Translations' and

Boundary Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate
Zoology, 1907-39.” Social Studies of Science, 19(3): 387-420.

Stephan, Karl D. (2002, Fall). “All This and Engineering Too: A History of Accreditation

Requirements.” IEEE Technology and Society Magazine, 21(3): 8-15.

Stern, Nancy. (1980, April-June). “John William Mauchly: 1907-1980.” Annals of the History of

Computing, 2(2): 100-103.

“Symposia on Modern Calculating Machinery and Numerical Methods.” (1949, January).

Mathematical Tables and Other Aids to Computation, 3(25): 381-388.

“Symposium on the Impact of Computers on Science and Society.” (1956, September). IRE

Transactions on Electronic Computers, EC-5(3): 142-158.

System Development Corporation. (1959, November). “Computer Programmers: Seen any new

horizons lately?” Computers and Automation, 8(11): 5.

www.manaraa.com

 383

“T – Technology (Library of Congress Classification Outline).” (n.d.). Library of Congress.

Retrieved October 9, 2006 from http://www.loc.gov/catdir/cpso/lcco/lcco_t.pdf

Tanenbaum, Andrew S. (1976). Structured Computer Organization. Englewood Cliffs, NJ:

Prentice-Hall, Inc.

Tartar, John (Ed.), Bruce Arden, Taylor Booth, Peter Denning, Ray Miller, and Andries van

Dam. (1985, May). “1984 Snowbird Report: Future Issues in Computer Science.”
Computer, 18(5): 101-104.

“Technical Committee Notes.” (1949, January). Proceedings of the IRE, 37(1): 62-63.

“Technical Committees – May 1, 1948-May 1, 1949.” (1948, June). Proceedings of the IRE,

36(6): 761-762.

“Technical Committees, May 1, 1949-May 1, 1950.” (1949, June). Proceedings of the IRE,

37(6): 668-669.

“Technical Committees, May 1, 1951-April 30, 1952.” (1951, June). Proceedings of the IRE,

39(6): 721-722.

“Technical Committee Notes.” (1949, December). Proceedings of the IRE, 37(12): 1448.

“Technical Interest Councils and Technical Committees.” (1979, September). Computer, 12(9):

113.

Temco Aircraft Corporation. (1957, June). “In Engineering, the Best Opportunities are in

Aviation. In Aviation, the Best Opportunities are at Temco.” Electrical Engineering,
76(6): 75-79.

“Tentative Program, AIEE Winter Meeting.” (1947, January). Electrical Engineering, 66(1):

“Tentative Program, Conference on Electron Tubes.” (1948, March). Electrical Engineering,

67(3): 267.

Titus, James P. (1968, August). “The New NAS Board as a Government Advisor.”

Communications of the ACM, 11(8): 580-581.

Tompkins, Howard E. (1963). “Computer Education.” In Franz L. Alt and Morris Rubinoff

(Eds.), Advances in Computers, Volume 4 (135-168). New York and London: Academic
Press.

Tucker, Allen B. (Ed.), Bruce H. Barnes, Robert M. Aiken, Keith Barker, Kim B. Bruce, J.

Thomas Cain, Susan E. Conry, Gerald L. Engel, Richard G. Epstein, Doris K. Lidtke,
Michael C. Mulder, Jean B. Rogers, Eugene H. Spafford, and A. Joe Turner. (1991).

www.manaraa.com

 384

Computing Curricula 1991: Report of the ACM/IEEE-CS Joint Curriculum Task Force.
New York, NY and Los Alamitos, CA: ACM Press and IEEE Computer Society Press.

Tucker, Allen B. (Ed.). (1991, June). “Computing Curricula 1991.” Communications of the

ACM, 34(6): 69-84.

Tucker, Allen B. and Bruce H. Barnes. (1991, November). “Flexible Design: A Summary of

Computing Curricula 1991.” Computer, 24(11): 56-66.

Tumbleson, Robert C. (1948, January). “Calculating Machines.” Electrical Engineering, 67(1):

6-12.

Uncapher, Keith W. (1959, March). “1958 PGEC Membership Survey Report.” IRE

Transactions on Electronic Computers, EC-8(1): 61-67.

Uncapher, Keith W. (1961, March). “1960 PGEC Membership Report.” IRE Transactions on

Electronic Computers, EC-10(1): 81-91.

Uncapher, Keith W. (1964a, June). “Message from the New Chairman.” IEEE Transactions on

Electronic Computers, EC-13(3): 184.

Uncapher, Keith W. (1964b, December). “Chairman’s Newsletter.” IEEE Transactions on

Electronic Computers, EC-13(6): 792.

Uncapher, Kieth W., Malcolm Davis, James Babcock, and Shirley Marks. (1959,

January/February). “Computer Conferences: Some Observations, Some Suggestions.”
Datamation, 5(1): 47.

Van Atta, L. C. (1950, October). “The Role of Professional Groups in the IRE.” Proceedings of

the IRE, 38(10): 1124-1126.

Van der Spiegel, Jan, and James F. Tau, Titiimaea F. Ala’ilima, and Lin Ping Ang. (2000). “The

ENIAC: History, Operation, and Reconstruction in VLSI.” In Raúl Rojas and Ulf
Hashagen (Eds.), The First Computers: History and Architectures (121-178). Cambridge,
MA and London, England: The MIT Press.

Van Valkenburg, Mac E. (1967). “Objectives of the COSINE Committee.” In Summary of Talks

and Discussion Group Recommendations, Conference on Computer Sciences in
Electrical Engineering Education, Princeton University, March 28-29, 1967 (3).
Washington, DC: National Academy of Engineering.

Van Valkenburg, Mac E. (1971). “Foreward.” Proceedings of the IEEE, 59(6): 854.

Van Valkenburg, Mac E. (1972, November). “Electrical Engineering Education in the U.S.”

IEEE Transactions on Education, E-15(4): 240-246.

www.manaraa.com

 385

Varga, Richard S. (1964). “Computer Technology at Case.” In Proceedings of the 1964 19th
ACM National Conference (L1.3-1-L1.3-2). New York, NY: ACM Press.

Vemuri, V. Rao. (1993, February). “Computer Science and Engineering Curricula.” IEEE

Transactions on Education, 36(1): 108-110.

Viavant, William (Ed.). (1968). Proceedings of the Park City Conference, Computers in

Undergraduate Education, Volume I, Park City, Utah, September 8-13, 1968. Salt Lake
City, UT: University of Utah.

Viehman, M. J. (1973, January). (Letter to the Editor). Computer, 6(1): 8.

Vincenti, Walter G. (1990). What Engineers Know and How they Know It: Analytical Studies

from Aeronautical History. Baltimore and London: The Johns Hopkins University Press.

Ware, Willis H. (1959, June). “The Chairman’s Column.” IRE Transactions on Electronic

Computers, EC-8(2): 90-91.

Ware, Willis H. (1963, April). “Perspective on AFIPS.” Datamation, 9(4): 42-43.

Ware, Willis H. (1986, July). “AFIPS in Retrospect.” Annals of the History of Computing, 8(3):

303-310.

Ware, Willis H. (2005). [Personal correspondence between Brent K. Jesiek and Willis H. Ware

via telephone on November 3, 2005].

Wasserman, Anthony I. (1977a, January). “Letter from the Chairman.” ACM SICSOFT Software

Engineering Notes, 2(1): 1.

Wasserman, Anthony I. (1977b, July). “Chairman’s Message.” ACM SIGSOFT Software

Engineering Notes, 2(4): 2.

Weiss, Eric A. (1968). “Industry’s View of Computing Science.” In Aaron Finerman (Ed.),

University Education in Computing Science, Proceedings of a conference on graduate
academic and related research programs in computing science, held at the State
University of New York at Stony Brook, June 1967 (105-116). New York and London:
Academic Press.

Weiss, Eric A. (1988, January-March). “John Grist Brainerd: Obituary.” Annals of the History of

Computing, 10(1): 78-79.

Weiss, Eric A. (1992). “Saul Gorn (Obituary).” IEEE Annals of the History of Computing, 14(3):

76-77.

Westinghouse-Baltimore, Westinghouse Electric Corporation. (1957, February). “Are You

Looking For A Job… Or A Career?” Electrical Engineering, 76(2): 89A.

www.manaraa.com

 386

“Where Should I Send My Manuscript?” (1955, September). IRE Transactions on Electronic

Computers, 4(3): 87.

“Which Institute Technical Groups Do Members of AIEE Want to Join?” (1961, September).

Electrical Engineering, 80(9): 704-705.

Whitby, Oliver. (1956). “Foreward.” Proceedings of the Western Joint Computer Conference,

San Francisco, CA, February 7-9, 1956. New York, NY: American Institute of Electrical
Engineers.

Wiener, Norbert. (1948). Cybernetics; or, Control and Communication in the Animal and the

Machine. New York, NY: John Wiley and Sons, Inc.

Wiesner, Jerome B. (1958, October). “Communication Sciences in a University Environment.”

IBM Journal of Research and Development, 2(4): 268-275.

Wildes, Karl L., and Nilo A. Lindgren. (1985). A Century of Electrical Engineering and

Computer Science at MIT, 1882-1982. Cambridge, MA and London, England: The MIT
Press.

Wilkes, Maurice V. (1989). “The Best Way to Design an Automatic Calculating Machine.” In

M. R. Williams and Martin Campbell-Kelly (Eds.), The Early British Computer
Conferences (182-184). Cambridge, MA and London England: The MIT Press and Los
Angeles/San Francisco: Tomash Publishers. (Original work published 1951)

Wilkes, Maurice V. (1969, September). “The Growth of Interest in Microprogramming: A

Literature Survey.” Computing Surveys, 1(3): 139-145.

Wilkes, Maurice V. (1992). “EDSAC 2.” IEEE Annals of the History of Computing, 14(4): 49-

56.

Wilkes, Maurice V. (2004). “The Origins and Growth of Electronic Engineering – A Personal

View.” Paper presented at the 2004 IEEE Conference on the History of Electronics,
Bletchley Park, UK, June 28-30, 2004. Retrieved October 19, 2006 from
http://www.ieee.org/portal/cms_docs_iportals/iportals/aboutus/history_center/conference
s/che2004/Wilkes.pdf

Williams, Kathleen Broome. (1999, Summer). “Scientists in Uniform: The Harvard Computation

Laboratory in World War II.” Naval War College Review, LII(3). Retrieved October 19,
2006 from http://www.nwc.navy.mil/PRESS/Review/1999/summer/art4-su9.htm

Williams, Michael. (2002). “Computing before the Computer.” In Atsushi Akera and Frederik

Nebeker (Eds.), From 0 to 1: An Authoritative History of Modern Computing (11-24).
Oxford, England and New York, NY: Oxford University Press.

www.manaraa.com

 387

Williams, Samuel B. (1953, January). “What Computers Do.” The Computing Machinery Field,
2(1): 21.

Williams, Samual B. (1954, January). “The Association for Computing Machinery.” Journal of

the Association for Computing Machinery, 1(1): 1-3.

Winegrad, Dilys. (1996, Spring). “Celebrating the Birth of Modern Computing: The Fiftieth

Anniversary of a Discovery at the Moore School of Engineering of the University of
Pennsylvania.” IEEE Annals of the History of Computing, 18(1): 5-9.

Yau, Stephen S. (1974a, June). “From the President.” Computer, 7(6): 2.

Yau, Stephen S. (1974b, October). “From the President.” Computer, 7(10): 2-3.

Yau, Stephen S. (1975, January). “From the President.” Computer, 8(1): 2-3.

Yau, Stephen S. (1976, January). “Finished and Unfinished Business: A Message from the

Outgoing President.” Computer, 9(1): 3-4.

Yau, Stephen S. (1981, January). “Proposed Bylaws Changes.” Computer, 14(1): 108.

Yau, Stephen S. (Ed.), Robert W. Ritchie, Warren Semon, Joseph F. Traub, Andries van Dam,

and Stanley Winkler. (1983, December). “Meeting the Crisis in Computer Science.”
Computer, 16(12): 83-87.

Yeargan, Jerry R. (2002, May). “The Integration of ABET and CSAB.” IEEE Transactions on

Education, 45(2): 111-117.

Zadeh, Lotfi A. (1950, January). “Thinking Machines: A New Field in Electrical Engineering.”

Columbia Engineering Quarterly, 3: 12-13, 30-31.

Zadeh, Lotfi A. (1965a). “Fuzzy Sets.” Information and Control, 8: 338-353.

Zadeh, Lotfi A. (1965b). “Electrical Engineering at the Crossroads.” 1965 IEEE International

Convention Record, 12(13): 47-50.

Zadeh, Lotfi A. (1965c, June-September). “Electrical Engineering at the Crossroads.” IEEE

Transactions on Education, E-8(2-3): 30-33.

Zadeh, Lotfi A. (1967). “Curricula for Computer Science.” In Summary of Talks and Discussion

Group Recommendations, Conference on Computer Sciences in Electrical Engineering
Education, Princeton University, March 28-29, 1967 (9-10). Washington, DC: COSINE
Committee of the Commission on Engineering Education.

Zadeh, Lotfi A. (1968a). “The Dilemma of Computer Sciences.” In Aaron Finerman (Ed.),

University Education in Computing Science, Proceedings of a conference on graduate

www.manaraa.com

 388

academic and related research programs in computing science, held at the State
University of New York at Stony Brook, June 1967 (61-68). New York and London:
Academic Press.

Zadeh, Lotfi A. (1968b). “Computer Science as a Discipline.” Journal of Engineering Education,

58(8): 913-916.

Zadeh, Lotfi A. (1971, November). “Impact of Computers on the Orientation of Electrical

Engineering Curricula.” IEEE Transactions on Education, E-14(4): 153-157.

Zadeh, Lotfi A. (1998). [Tribute to Mac Van Valkenburg.] In Tamer Basar (Ed.), Mac Van

Valkenburg Memorial Volume: Proceedings and Related Documents of the Mac Van
Valkenburg Memorial Symposium, November 15, 1997 (134). UIUC ECE Publications
Office.

Zadeh, Lotfi A. (2001). [Interview with Christian Freksa, Rudolf Kruse, Ramon López de

Mántaras.] Retrieved October 24, 2006 from KI Zeitschrift [AI Magazine]:
http://www.kuenstliche-intelligenz.de/index.php?id=%3ANO-
1687&tx_ki_pi1[showUid]=254&cHash=1f5e15ef23

Zaphyr, P. A. (1959, January). [Letter to the Editor]. Communications of the ACM, 2(1): 4.

